Cryptography - Provable Security

SS 2016

Handout 1

Exercise 1:

Let E and A be two events and \overline{A} denote the event that A does not occur. Prove the following (in-)equalities:

a)
$$\Pr[E] = \Pr[E \mid A] \cdot \Pr[A] + \Pr[E \mid \overline{A}] \cdot \Pr[\overline{A}]$$

b)
$$\Pr[E] = \Pr[E \mid \overline{A}] + (\Pr[E \mid A] - \Pr[E \mid \overline{A}]) \cdot \Pr[A]$$

c)
$$\Pr[E] \leq \Pr[E \mid A] + \Pr[\overline{A}]$$

Exercise 2:

Consider the following experiment: Given a bin containing black and white balls. Draw a ball from the bin, check the color and put the ball back. Repeat until a black ball is drawn.

- a) If a black ball is drawn with probability p, how many repetitions are required, on expectation, until the experiment stops?
- b) We now want to perform only a finite number of repetitions. Show that after 1/p repetitions with probability at least 1-1/e at least one repetition yielded a black ball.

Exercise 3:

Let A_1, \ldots, A_n be arbitrary events.

- a) Show that $\Pr\{A_1 \cup A_2 \cup \cdots \cup A_n\} \leq \sum_{i=1}^n \Pr\{A_i\}.$
- b) Show that $\Pr\{A_1 \cap A_2 \cap \dots \cap A_n\} = \Pr\{A_1\} \prod_{i=2}^n \Pr\{A_i | \bigcap_{j=1}^{i-1} A_j\}.$

Exercise 4:

- a) Show that $1 x \le e^{-x}$
- b) Show that for $0 \le x \le 1$ it holds that $e^{-x} \le 1 x/2$.

Exercise 5:

Let S be a finite set of size n and draw $q \leq \sqrt{2n}$ elements x_1, \ldots, x_q uniformly at random from S. Let $X = \{x_1, \ldots, x_q\}$. Let E be the event of a *collision*, i.e., the event that |X| < q. Show that

$$\frac{q(q-1)}{4n} \le \Pr\{E\} \le \frac{q^2}{2n}.$$

by proving the following lemmas:

- a) For fixed $i < j \le q$ it holds that $\Pr\{x_i = x_j\} = \frac{1}{n}$.
- b) $\Pr\{E\} \leq {q \choose 2} \frac{1}{n} \leq \frac{q^2}{2n}$ (Hint: use Exercise 3.a)
- c) For $1 \le i \le q$ let A_i be the event that no collision occurs in the first i elements, i.e., $|\{x_1,\ldots,x_i\}|=i$. It holds that $\Pr\{A_{i+1}|A_i\}=1-\frac{i}{n}$ and

$$\Pr\{A_q\} = \prod_{i=1}^{q-1} \left(1 - \frac{i}{n}\right) \le \prod_{i=1}^{q-1} e^{-i/n} = e^{-q(q-1)/(2n)}$$

Hint: For the first equality, use Exercise 3.b. For the inequality, use Exercise 4. For the last equality, use Gauss.

d) $1 - \Pr\{A_q\} \ge \frac{q(q-1)}{4n}$ (Hint: use Exercise 4)