Cryptography - Provable Security

SS 2016

Handout 5

Exercises marked (*) and (**) will be checked by tutors. We encourage submissions of solutions by small groups of up to four students.

Exercise 1 (4 points):
$(* *)$ Show that the following function $f_{\text {add }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is not one-way. To define the value of $f_{\text {add }}$ at $z \in\{0,1\}^{*}$, we write z as $z=x| | y$ with $|x|=\lceil|z| / 2\rceil$ and $|y|=\lfloor|z| / 2\rfloor$ and interpret x and y as the binary representations of two natural numbers. Then $f_{\text {add }}(z)=x+y$.

Exercise 2:

Assume that f is a one-way function. Define $g:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ as follows: For $z \in\{0,1\}^{*}$ write $z=x| | y$, where $|x|=\lceil|z| / 2\rceil$ and $|y|=\lfloor|z| / 2\rfloor$, then $g(z)=(f(x)| | y)$. Prove that the function g is also one-way. Observe that g fully reveals half of its input bits, but is nevertheless still one-way.

Exercise 3:

Prove that if there exists a one-way function, then there exists a one-way function f such that for every $n, f\left(0^{n}\right)=0^{n}$. Provide a full formal proof of your answer. Note that this demonstrates that for infinitely many values x, the function f is easy to invert. Why does this not contradict one-wayness?

Exercise 4 (4 points):
${ }^{(* *)}$ Assume that f is a one-way function. Prove that for every polynomial p and all n sufficiently large it holds that

$$
\left|\left\{f(x): x \in\{0,1\}^{n}\right\}\right|>p(n)
$$

Exercise 5:

Show that if a one-to-one function has a hard-core predicate, then it is one-way.
Exercise 6 (4 points):
${ }^{(* *)}$ Prove Corollary 5.12 using Theorem 5.11.

