II. Pseudorandom generators & encryption

perfect secrecy

- too much (adversary learns nothing, has unlimited resources)
- too little (only eavesdropping allowed)
- too expensive (true randomness)
- → pseudorandomness, restricted adversaries, different types of attacks.

Notation

- S set: x ← S, x chosen uniformly from S.
- A probabilistic algorithm: x ← A(w), x chosen according to distribution generated by A on input w.

Private key encryption schemes

Definition 2.1 A private key encryption scheme Π consists of three probabilistic polynomial time algorithms Gen, Enc, Dec.

- 1. Gen on input 1ⁿ outputs a key $k \in \{0,1\}^n$, $k \leftarrow Gen(1^n)$
- 2. Enc on input a key k and a plaintext message $m \in \{0,1\}^*$, outputs a ciphertext c, $c \leftarrow Enc_k(m)$.
- 3. Dec on input a key k and a ciphertext $c \in \{0,1\}^*$, outputs a plaintext message m, $m \leftarrow Dec_{k}(c)$.
- Property $\forall k, m : Pr[Dec_k(Enc_k(m)) = m] = 1.$

If Enc with $k \leftarrow \text{Gen} \big(1^n \big)$ works only for $m \in \big\{ 0, 1 \big\}^{l(n)}, \ l : \mathbb{N} \to \mathbb{N}$ a polynomial, then Π is called fixed-length encryption scheme.

Negligible functions

Definition 2.2 A function $\mu: \mathbb{N} \to \mathbb{R}^+$ is called negligible, if $\forall c \in \mathbb{N} \ \exists n_o \in \mathbb{N} \ \forall n \geq n_o \ \mu(n) \leq 1/n^c$.

The indistinguishability game

Eavesdropping indistinguishability game $PrivK_{A,\Pi}^{eav}$

- 1. A key k is chosen with Gen.
- 2. A chooses 2 plaintexts $m_0, m_1 \in P$ with $|m_0| = |m_1|$
- 3. $b \leftarrow \{0,1\}$ chosen uniformly. $c := Enc_k(m_b)$ and c is given to A.
- 4. A outputs bit b'.
- 5. Output of experiment is 1, if b = b', otherwise output is 0.

Write $PrivK_{A,\Pi}^{eav}=1$, if output is 1. Say A has succeded or A has won.

Indistinguishable encryptions

Definition 2.3 $\Pi=\left(\text{Gen,Enc,Dec}\right)$ has indistinguishable encryptions (against eavesdropping adversaries) if for every probabilistic polynomial time algorithm A there is a negligible function $\mu:\mathbb{N}\to\mathbb{R}^+$ such that

$$Pr[PrivK_{A,\Pi}^{eav}(n)=1] \leq 1/2 + \mu(n).$$

Remarks

- 1. Only consider polynomial time adversaries, not unbounded adversaries as in perfect secrecy.
- 2. Allow success probability slightly, i.e. negligibly larger than 1/2 (perfect secrecy =1/2). 5

Indistinguishable encryptions and prediction

Theorem 2.4 Let $\Pi=\big(\text{Gen,Enc,Dec}\big)$ be a fixed length encryption scheme with message length $I:\mathbb{N}\to\mathbb{N}$ that has indistinguishable encryptions. For all ppts A there is a negligible function $\mu:\mathbb{N}\to\mathbb{R}^+$ such that for all $n\in\mathbb{N}$, and all $1\leq i\leq l(n)$

$$Pr[A(1^n,Enc_k(m))=m_i] \leq 1/2 + \mu(n),$$

where
$$m \leftarrow \{0,1\}^{l(n)}$$
, $m = m_1 ... m_{l(n)}$, $k \leftarrow Gen(1^n)$.

From prediction to distinction

A on input 1ⁿ

- $\quad \mathbf{m}_0 \leftarrow \mathbf{I}_0^n, \ \mathbf{m}_1 \leftarrow \mathbf{I}_1^n.$
- Upon receiving c, simulate \tilde{A} on c, b' $\leftarrow \tilde{A}(c)$.
- Output b'.

$$I_0^n = \left\{ m \in \left\{ 0, 1 \right\}^{I(n)} : m_i = 0 \right\}$$
 $I_1^n = \left\{ m \in \left\{ 0, 1 \right\}^{I(n)} : m_i = 1 \right\}$

Pseudorandom generators

Definition 2.5 Let $I: \mathbb{N} \to \mathbb{N}$ be a polynomial with I(n) > n for all $n \in \mathbb{N}$. A deterministic polynomial time algorithm G is a pseudorandom generator if

- 1. $\forall s \in \{0,1\}^* |G(s)| = I(|s|),$
- 2. For every ppt D there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that $\forall n \in \mathbb{N}$

$$Pr[D(r)=1]-Pr[D(G(s))=1] \le \mu(n),$$

where $r \leftarrow \{0,1\}^{l(n)}$ and $s \leftarrow \{0,1\}^n$.

I is called the expansion factor of G.

PRGs and encryption

Construction 2.6 Let $I: \mathbb{N} \to \mathbb{N}$ be a polynomial with I(n) > nfor all $n \in \mathbb{N}$ and let G be a deterministic algorithm with |G(s)| = I(|s|) for all $s \in \{0,1\}^*$. Define fixed length encryption scheme $\Pi_c = (Gen, Enc, Dec)$ with message length I by

$$Gen(1^n): k \leftarrow \{0,1\}^n,$$

$$\operatorname{Enc}_{k}(m): c \leftarrow m \oplus G(k), m \in \{0,1\}^{l(n)},$$

$$Dec_k(c): m \leftarrow c \oplus G(k), m \in \{0,1\}^{l(n)}.$$

Theorem 2.7 If G is a pseudorandom generator, then $\Pi_{\rm G}$ has indistinguishable encryption against eavesdropping adversaries.

The indistinguishability game

Let A be a probabilistic polynomial time algorithm (ppt).

Eavesdropping indistinguishability game PrivK_{A,II}

- 1. A key k is chosen with Gen.
- 2. A chooses 2 plaintexts $m_0, m_1 \in P$.
- 3. $b \leftarrow \{0,1\}$ chosen uniformly. $c := Enc_k(m_b)$ and c is given to A.
- 4. A outputs bit b'.
- 5. Output of experiment is 1, if b = b', otherwise output is 0.

Write $PrivK_{A,\Pi}^{eav} = 1$, if output is 1. Say A has succeded or A has won.

Indistinguishable encryptions

Definition 2.3 $\Pi=\left(\text{Gen,Enc,Dec}\right)$ has indistinguishable encryptions (against eavesdropping adversaries) if for every probabilistic polynomial time algorithm A there is a negligible function $\mu:\mathbb{N}\to\mathbb{R}^+$ such that

$$\text{Pr}\!\left[\text{PrivK}_{A,\Pi}^{\text{eav}}\left(n\right)=1\right] \leq 1/2 + \mu\left(n\right).$$

From adversaries to distinguishers

D on input $w \in \{0,1\}^{l(n)}$ and 1^n

- 1. Simulate $A(1^n)$ to obtain messages $m_0, m_1 \in \{0,1\}^{l(n)}$.
- 2. $b \leftarrow \{0,1\}, c := w \oplus m_b$.
- 3. Simulate $A(1^n,c)$ to obtain b'. If b = b', output 1, otherwise output 0.

Multiple messages

A probabilistic polynomial time algorithm (ppt).

Multiple messages eavesdropping game $PrivK_{A,\Pi}^{mult}(n)$

- 1. $k \leftarrow Gen(1^n)$
- 2. A on input 1ⁿ generates two vectors of messages $\mathbf{M}_0 = \left(\mathbf{m}_0^1, \dots, \mathbf{m}_0^t\right), \ \mathbf{M}_1 = \left(\mathbf{m}_1^1, \dots, \mathbf{m}_1^t\right) \text{ with } \left|\mathbf{m}_0^i\right| = \left|\mathbf{m}_1^i\right| \text{ for all i.}$
- 3. $b \leftarrow \{0,1\}, c_i \leftarrow Enc_k(m_b^i). C = (c_1,...,c_t)$ is given to A.
- 4. $b' \leftarrow A(1^n, C)$.
- 5. Output of experiment is 1, if b = b', otherwise output is 0.

Write $PrivK_{A,\Pi}^{mult}(n) = 1$, if output is 1. Say A has succeded or A has won.

Security for multiple encryptions

Definition 2.8 $\Pi=\left(\text{Gen,Enc,Dec}\right)$ has indistinguishable multiple encryptions (against eavesdropping adversaries) if for every probabilistic polynomial time algorithm A there is a negligible function $\mu:\mathbb{N}\to\mathbb{R}^+$ such that

$$\text{Pr}\!\left[\text{PrivK}_{A,\Pi}^{\text{mult}}\left(n\right)=1\right]\leq 1/2+\mu\left(n\right).$$

Theorem 2.9 There exist encryption schemes with indistinguishable encryptions (against eavesdropping adversaries) that do not have indistinguishable multiple encryption (against eavesdropping adversaries).