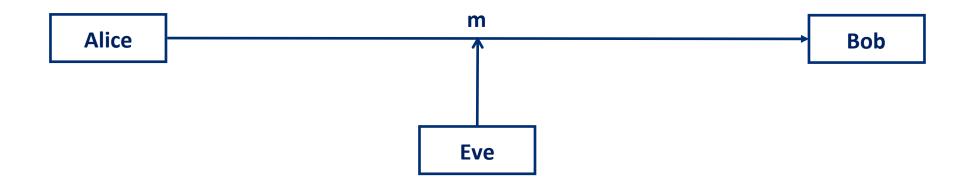
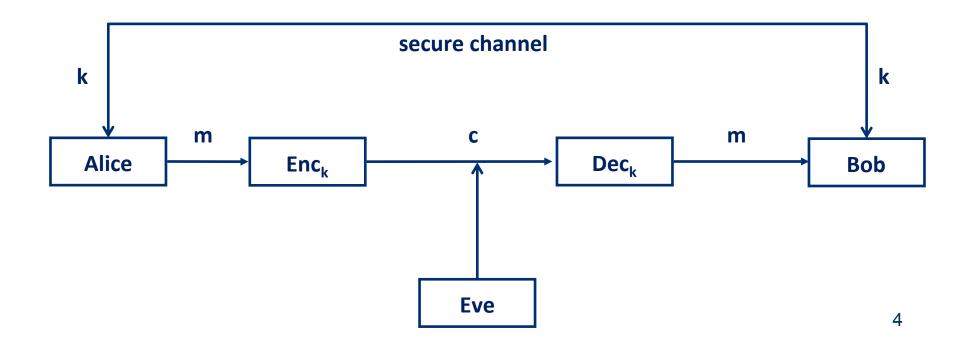
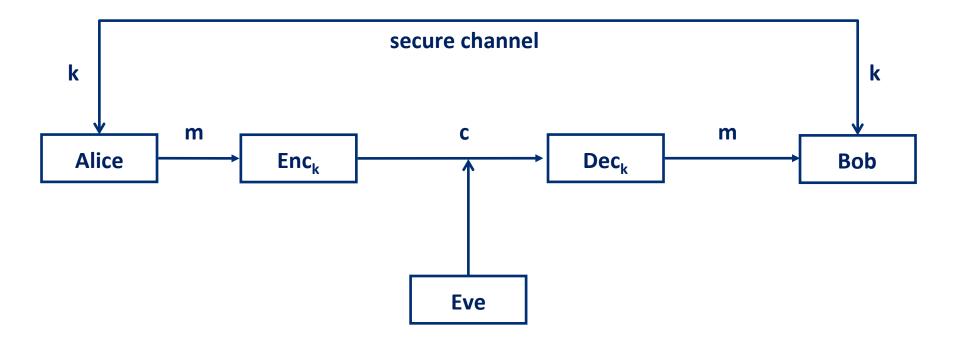

0. Motivation and topics

Cryptography scientific study of techniques for securing digital information, transactions, and distributed computations.

- 4 main goals
 - confidentiality
 - integrity
 - authenticity
 - non-repudiation


Course concentrates on confidentiality and encryption schemes.


Second part of semester: Course on Cryptographic Protocols discusses the other three topics



Definition 0 A private or symmetric encryption scheme consists of three algorithms Gen, Enc, Dec.

- 1. The key generation algorithm outputs a key k, according to some distribution on the key space K.
- 2. The encryption algorithm Enc, on input a key k and a plaintext message m from message space P, outputs a ciphertext c, $Enc_k(m)=:C.$
- 3. The decryption algorithm Dec, on input a key k and a ciphertext c from a cipher space C, outputs a plaintext message m, $Dec_k(c)=:m$.
- $\forall k \in K, m \in P : Dec_k(Enc_k(m)) = m$

Security Eve seeing c should learn almost nothing about m.

What does this mean exactly?

How can we achieve this?

Basic principles

0. Principle (Kerckhoff) The encryption scheme must not be required to be secret and must be able to fall into the hands of the adversary without inconvenience.

- 1. Principle One must formulate a rigorous and precise definition of security for a given cryptographic problem.
- 2. Principle If the security of a cryptographic construction relies on an unproven assumption, this must be stated precisely.
- 3. Principle Cryptographic constructions require rigorous proofs of security with respect to the security definition and the underlying assumptions.

Assumptions

- 1. Concrete assumptions "The following mathematical/ computational problem is hard to solve."
- ➔ factoring, discrete logarithms
- 2. General assumptions "Computationally hard problems of the following type exist."
- \rightarrow languages in NP\P exist, one-way functions exist.

Prerequisites

- elementary probability theory
- algorithm theory
- basic complexity theory
- very basic number theory

Organization

- Information about this course http://cs.uni-paderborn.de/cuk/lehre/veranstaltungen/ss-2016/ cryptography-provable-security/
- Here you find
 - handouts
 - slides
 - literature
 - announcements

Schedule

- Due to time conflicts lectures and tutorials have to be reorganized
- Lectures are Tuesdays 11am 1pm, 2pm 4pm
- Tutorials are Tuesdays 4pm 6pm
- From 9am 11am room F2.425 is reserved for the particiapants of this course
- During this time you can discuss exercises from the handouts
- Peter, Nils, and myself are avaliable for questions during this time