I. Perfect secrecy

Definition 0 A private or symmetric encryption scheme consists of three algorithms Gen, Enc, Dec.

- 1. The key generation algorithm outputs a key k, according to some distribution on the key space K.
- 2. The encryption algorithm Enc, on input a key k and a plaintext message m from message space P, outputs a ciphertext c, $Enc_k(m)=:c.$
- 3. The decryption algorithm Dec, on input a key k and a ciphertext c from a cipher space C, outputs a plaintext message m, $Dec_k(c)=:m$.
- $\forall k \in K, m \in P : Dec_k(Enc_k(m)) = m$

Basic concepts

- Pr[P = m] denotes probability distribution on P.
- **Pr**[K = k] denotes probability distribution on K (given by Gen).
- distributions are independent
- induced distribution on C: $Pr[C = c] = \sum_{k \in V} Pr[P = m \land K = k]$ $\{(m,k):Enc_k(m)=c\}$ $= \sum Pr[P=m] \cdot Pr[K=k]$ $\{(m,k):Enc_{k}(m)=c\}$ $Pr[P = m|C = c] = Pr[P = m \land C = c]/Pr[C = c]$ $= \sum Pr[P=m] \cdot Pr[K=k] / Pr[C=c]$ $\{k:Enc_{\mu}(m)=c\}$ 2

Definition

Definition 1.1 An encryption scheme $\Pi = (Gen, Enc, Dec)$ with message space P, key space K, and cipher space C is perfectly secret if for every distribution over P, every $m \in P$, and every $c \in C$ with Pr[C = c] > 0:

$$\Pr[\mathbf{P} = \mathbf{m} | \mathbf{C} = \mathbf{c}] = \Pr[\mathbf{P} = \mathbf{m}].$$

Equivalent definition

Definition 1.2 Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme with message space P, key space K, and cipher space C. For $m \in P$ and $c \in C$ we set $Pr[Enc_{\kappa}(m) = c] := \sum_{\{k \in K | Enc_{\kappa}(m) = c\}} Pr[K = k].$

Lemma 1.3 Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme with message space P, key space K, and cipher space C. Let $Pr[P = \cdot]$ be a distribution on P. For every $c \in C$ and every $m \in P$ with Pr[P = m] > 0: $Pr[Enc_{\kappa}(m) = c] = Pr[C = c|P = m].$

Equivalent definition

Lemma 1.4 An encryption scheme $\Pi = (Gen, Enc, Dec)$ with message space P, key space K, and cipher space C is perfectly secret if and only if for every $m_0, m_1 \in P$, and every $c \in C$:

$$\Pr[\operatorname{Enc}_{\kappa}(\mathbf{m}_{0}) = \mathbf{c}] = \Pr[\operatorname{Enc}_{\kappa}(\mathbf{m}_{1}) = \mathbf{c}].$$

Remark The equivalent formulation for perfect secrecy uses no distributions on P.

One-time-pad

- $I \in \mathbb{N}, P = C = K = \{0,1\}^{I}$
 - Gen: chooses $k \in \{0,1\}^{I}$ uniformly
 - Enc: $Enc_k(m) := m \oplus k$
 - Dec: $Dec_k(c) := c \oplus k$

Theorem 1.5 The one-time-pad is perfectly secret.

Shannon's theorem

Theorem 1.6 Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme with $|\mathbf{P}| = |\mathbf{C}| = |\mathbf{K}|$. Scheme Π is perfectly secret if and only if

- **1.** Gen chooses every $k \in K$ with probability 1/|K|.
- 2. For every $m \in P, c \in C$ there exists a unique key $k \in K$ with $Enc_k(m) = c$.

The indistinguishability game

Eavesdropping indistinguishability game $PrivK_{A,\Pi}^{eav}$

- 1. A key k is chosen with Gen.
- 2. A chooses 2 plaintexts $m_0, m_1 \in P$.
- 3. $b \leftarrow \{0,1\}$ chosen uniformly. $c := Enc_k(m_b)$ and c is given to A.
- 4. A outputs bit b'.
- 5. Output of experiment is 1, if b = b', otherwise output is 0.

Write $PrivK_{A,\Pi}^{eav} = 1$, if output is 1. Say A has succeeded or A

has won.

Theorem 1.7 $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ is perfectly secret if and only if for every adversary A Pr $\lceil \text{PrivK}_{A,\Pi}^{eav} = 1 \rceil = 1/2$.

8