
5 Introduction to Probability Theory

In this section we review the basic concepts in the area of probability theory.

5.1 Set Theory

Let M be an arbitrary set. Given any subset A ⊆ M , |A| denotes its cardinality, that is, the number
of elements in A, and Ā denotes its complement M \ A. 2M is called the power set of M and consists
of all subsets A ⊆ M . We summarize a few standard sets.

• ∅ denotes the empty set.

• IN means the set of integers {1, 2, 3, 4, . . .}, and IN0 = IN ∪ {0}.
• For any c ∈ IN, [c] represents the set {1, . . . , c}.

Given two sets A and B,

• A ∩B = {x | x ∈ A and x ∈ B} is called the intersection of A and B,

• A ∪B = {x | x ∈ A or x ∈ B} is called the union of A and B, and

• A \B = {x | x ∈ A and x 6∈ B} is called the difference of A and B.

Two sets A and B are called disjoint if A ∩B = ∅.
A very important principle in set theory is the inclusion-exclusion principle: Consider any collection

of n sets A1, . . . , An. Then,
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5.2 Combinatorics

We start with some basic definitions:

• n! = 1 · 2 · 3 · . . . · (n− 1) ·n is called “n factorial”. As an example, there are n! ways of arranging
n different numbers in a sequence. In order to prove this, let P (n) denote the number of ways of
arranging (or permuting) n different numbers. Then it is easy to see that

P (1) = 1 and
P (n) = n · P (n− 1) for all n > 1

This allows to prove via induction that P (n) = n! and therefore our statement above is indeed
correct.

• (n
k

)
= n!

k!(n−k)! is called “n choose k” or, in general, “binomial coefficient”. As an example, there
are

(n
k

)
different ways of picking a set of k numbers out of a set of n different numbers.

Many combinatorial problems can be viewed as drawing balls. Consider the problem of determining
the number of ways of drawing k balls one after the other out of n balls, numbered from 1 to n. The
most important cases are summarized in Figure 1.

To give an example that the expressions are true: for the special case in which we draw n balls out
of n balls in an ordered way without replacement, we get the number of all possible ways of permuting
n numbers, which as we know is n!.
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Figure 1: Number of outcomes of drawing k out of n balls

5.3 Basic concepts in probability theory

Next we introduce some basic concepts in probability theory.
Let us consider a random experiment of which all possible results are included in a non-empty

set Ω, usually called the sample space. An element ω ∈ Ω is called a sample point or outcome of the
experiment. An event of a random experiment is specified as a subset of Ω. Event A is called true if
an outcome ω ∈ Ω has been chosen with ω ∈ A. Otherwise A is called false. A system A of events (or,
in general, subsets of Ω) is called an algebra if

• Ω ∈ A,

• if A,B ∈ A, then A ∪B ∈ A and A ∩B ∈ A, and

• if A ∈ A, then Ā ∈ A.

Given an algebra A, a function µ : A → IR+ is called a measure on A if for every pair of disjoint sets
A,B ∈ A we have

µ(A ∪B) = µ(A) + µ(B) .

This definition clearly implies that µ(∅) = 0 and that for any set of pairwise disjoint events A1, . . . , Ak ∈
A we have

µ

(
k⋃

i=1

Ai

)
=

n∑

i=1

µ(Ai) .

Furthermore, it implies that for any pair of sets A,B ∈ A we have

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) .

We say that a function p : A → [0, 1] is a probability measure if

• p is a measure on A and

• p(Ω) = 1.

Given a probability measure p, the probability of an event A to be true is defined as

Pr[A] = p(A) .

We say that a triple (Ω,A, p) is a probability space if A is an algebra over Ω and p is a probability
measure on A.
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5.4 Events

Starting from a given collection of sets that represent events, we can form new events by means of
statements containing the logical connectives “or,” “and,” and “not,” which correspond in the language
of set theory to the operations “union,” “intersection,” and “complement.”

If A and B are events, their union, denoted by A∪B, is the event consisting of all outcomes realizing
either A or B. The intersection of A and B, denoted by A∩B, consists of all outcomes realizing both
A and B. The difference of B and A, denoted by B \A, consists of all outcomes that belong to B but
not to A. If A is a subset of Ω, its complement, denoted by Ā, is the set of outcomes in Ω that do not
belong to A. That is, Ā = Ω \A.

Two events A and B are called disjoint if A ∩ B is empty. In probability theory, ∅ is called the
impossible event. The set Ω is naturally called the certain event.

If Ω is a countable sample space (i.e., its elements can be arranged in a sequence so that the rth
element is identifiable for any r ∈ IN), we define the size of an event A, denoted by |A|, to be the
number of outcomes it contains.

5.5 The Inclusion-Exclusion Principle

Let A1, . . . , An be any collection of events. The inclusion-exclusion principle stated earlier implies that
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For the special case of n = 2 we obtain

Pr[A1 ∪A2] = Pr[A1] + Pr[A2]− Pr[A1 ∩A2] .

In cases where it is too difficult to evaluate (1) exactly, Bonferroni’s inequalities may be used to find
suitable approximations:

• For every odd m,
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• For every even m,
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Special cases of these inequalities are Boole’s inequalities:

Pr
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]
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Pr[Ai]

and

Pr
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We will give two examples to illustrate the use of these inequalities.
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Example 1: Given a set system M = {S1, . . . , Sm} over some set of elements V , consider the problem
of coloring each element in V with one out of two colors in such a way that no set Si is monochromatic,
i.e. contains only nodes of a single color. We would like to identify a class of sets S for which this is
always possible. Such a class is given in the following claim.

Claim 5.1 For every set system M of size m in which every set S ∈ M is of size at least log m + 2,
there is a 2-coloring of the elements such that no set in M is monochromatic.

Proof. Consider the random experiment of choosing for each element independently and uniformly at
random one of the two possible colors. In this case, the probability that a set of size k is monochromatic
is equal to 2 · 2−k = 2−k+1. For every i ∈ {1, . . . , m}, let Ai be the event that set Si is monochromatic.
Then, by the inclusion-exclusion principle,

Pr[A1 ∪ . . . ∪Am] ≤
m∑

i=1

Pr[Ai] ≤
m∑

i=1

2−(log m+1) =
1
2

.

Hence,

Pr[Ā1 ∩ . . . ∩ Ān] = 1− Pr[A1 ∪ . . . ∪An] ≥ 1
2

,

and therefore there must exist a 2-coloring such that no set is monochromatic. ut

Example 2: Consider the situation that we have n balls and n bins, and each ball is placed in a bin
chosen independently and uniformly at random.

Claim 5.2 The probability that bin 1 has at least one ball is at least 1/2.

Proof. For any i ∈ [n], let Ai be the event that ball i is placed in bin 1. Then, by Boole’s inequality,

Pr[bin 1 has at least one ball] = Pr


 ⋃

i∈[n]

Ai




≥
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ut

Observe that the probability bound in Claim 5.2 is not far away from the exact bound:

Pr[bin 1 has at least one ball] = 1−
(

1− 1
n

)n
n→∞= 1− 1

e
.
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5.6 Conditional probability

The conditional probability of event B assuming an event A with Pr[A] > 0 is denoted by Pr[B | A]. It
satisfies

Pr[B | A] =
Pr[A ∩B]

Pr[A]

or equivalently,

Pr[A ∩B] = Pr[A] · Pr[B | A] . (2)

Expression 5.6 holds, since the space of outcomes that is left for Pr[B | A] is the set of all outcomes in
A, and therefore we have to normalize the probabilities of the outcomes in A in a way that they sum
up to 1. This is achieved by dividing Pr[A ∩B] by Pr[A].

We can generalize Expression 2 as follows: if A1, . . . , An are events with Pr[A1 ∩ . . . ∩ An−1] > 0,
then

Pr[A1 ∩ . . . ∩An] =
n∏

i=1

Pr[Ai | A1 ∩ . . . ∩Ai−1] .

Suppose that A and B are events with Pr[A] > 0 and Pr[B] > 0. Then, in addition to the equality (2),
we have

Pr[A ∩B] = Pr[B] · Pr[A | B] . (3)

From (2) and (3) we obtain Bayes’s formula

Pr[A | B] =
Pr[A] · Pr[B | A]

Pr[B]
.

Two events A and B are called independent if and only if

Pr[B | A] = Pr[B] .

Note that, due to Bayes’s formula, in this case also Pr[A | B] = Pr[A], that is, the independence
property is symmetric. Furthermore, it holds that

Pr[A ∩B] = Pr[A] · Pr[B] .

If Pr[B | A] 6= Pr[B], then A and B are said to be correlated. A and B are called

• negatively correlated if Pr[B | A] < Pr[B] and

• positively correlated if Pr[B | A] > Pr[B].

By Bayes’s formula, all of these correlation properties are also symmetric.
As an example, any two disjoint events A and B with positive probabilities cannot be independent,

since Pr[B | A] = 0. However, they are always negatively correlated. Furthermore, they have the
property that

Pr[A ∪B] = Pr[A] + Pr[B] .
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5.7 Random Variables

Any numerical function X = X(ω) defined on a sample space Ω may be called a random variable. In
this lecture we will only consider integer-valued random variables, i.e., functions of the form X : Ω → ZZ.
A random variable X is called non-negative if X(ω) ≥ 0 for all ω ∈ Ω. For the special case that X
maps elements in Ω to {0, 1}, X is called a binary or Bernoulli random variable. A binary random
variable X is called an indicator of event A (denoted by IA) if X(ω) = 1 if and only if ω ∈ A for all
ω ∈ Ω.

For any random variable X and any number x ∈ ZZ, we define [X = x] = {ω ∈ Ω : X(ω) = x}.
Instead of using set operations to express combinations of events associated with random variables, we
will use logical expressions in the following, that is,

• instead of Pr[[X = x] ∩ [Y = y]] we write Pr[X = x ∧ Y = y], and

• instead of Pr[[X = x] ∪ [Y = y]] we write Pr[X = x ∨ Y = y].

Furthermore, we define

Pr[X ≤ k] =
∑

`≤k

Pr[X = `] and Pr[X ≥ k] =
∑

`≥k

Pr[X = `] .

The function pX(k) = Pr[X = k] is called the probability distribution of X, and the function FX(k) =
Pr[X ≤ k] is called the (cumulative) distribution function of X.

Two random variables X and Y are called independent if, for all x, y ∈ ZZ,

Pr[X = x | Y = y] = Pr[X = x] .

5.8 Expectation

The most important measure used in combination with random variables is the expectation.

Definition 5.3 Let (Ω,A, p) denote an arbitrary probability space and X : Ω → ZZ be an arbitrary
function with integer values. Then the expectation of X is defined as

E[X] =
∑

x∈ZZ

x · Pr[X = x] . (4)

The following fact lists some basic properties of the expectation.

Fact 5.4 Let X and Y be arbitrary random variables and c be an arbitrary constant.

• E[X + Y ] = E[X] + E[Y ].

• E[c ·X] = c · E[X].

• If X is a binary random variable, then E[X] = Pr[X = 1].

• If X and Y are independent, then E[X · Y ] = E[X] · E[Y ].

The expectation enables us to prove some simple tail estimates.

Fact 5.5 Let X be an arbitrary random variable. Then

Pr[X < E[X]] < 1 and Pr[X > E[X]] < 1 .
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The next result provides a first, simple probability bound that depends on the deviation from the
expected value. It has apparently first been used by Chebychev, but it is commonly called Markov
inequality.

Theorem 5.6 (Markov Inequality) Let X be an arbitrary non-negative random variable. Then, for
any k > 0,

Pr[X ≥ k] ≤ E[X]
k

.

Proof. Obviously,
E[X] =

∑

x≥0

x · Pr[X = x] ≥ k · Pr[X ≥ k] .

ut

Next we present a simple example to illustrate the use of these inequalities.

Example: In the first theorem we show that every graph has a bipartite subgraph with at least half
of its edges.

Theorem 5.7 Let G = (V, E) be a graph with n vertices and m edges. Then G contains a bipartite
subgraph with at least m/2 edges.

Proof. Let T ⊆ V be a random subset given by a random experiment with independent probabilities
Pr[v ∈ T ] = 1/2 for every v ∈ V . We call an edge {v, w} crossing if exactly one of v, w are in T . Let
X be the number of crossing edges. We define

X =
∑

{v,w}∈E

Xv,w

where Xv,w is the indicator random variable for {v, w} being crossing. Then

E[Xv,w] = 1/2

as two fair coin flips have probability 1/2 of being different. Then

E[X] =
∑

{v,w}∈E

E[Xv,w] =
m

2
.

Thus, according to Fact 5.5, there must be some choice of T with X ≥ m/2 and the set of those crossing
edges forms a bipartite graph. ut

The theorem does not automatically provide an efficient algorithm for finding such a subgraph.
However, the next theorem shows that for a slightly smaller value than m/2 this can easily be done.

Theorem 5.8 There is a randomized algorithm that only needs an expected linear amount of time
steps to find a bipartite subgraph in a graph G = (V, E), |E| = m, with at least m/4 edges.

Proof. Let the random variable Y be defined as Y = m−X, i.e. Y counts the number of non-crossing
edges. We would like to have Y as small as possible. From the previous proof and the linearity of
expectation we know that

E[Y ] = m− E[X] = m−m/2 = m/2 .
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Hence, it follows from the Markov inequality that

Pr[Y ≥ 3m/4] ≤ E[Y ]
3m/4

=
m/2
3m/4

=
2
3

.

Thus, Pr[Y < 3m/4] ≥ 1/3 and therefore Pr[X > m/4] ≥ 1/3.
Now, consider the following algorithm:

repeat
perform the random experiment in Theorem 5.7

until at least m/4 edges are crossing

Let the random variable T denote the number of rounds the algorithm needs to produce a bipartite
graph with at least m/4 edges. Since each round has a probability of success of some p ≥ 1/3, we
obtain that

Pr[T = t] = (1− p)t−1 · p .

Hence,

E[T ] =
∑

t∈IN

t · Pr[T = t]

=
∑

t∈IN0

(t + 1) · (1− p)tp

= p


 ∑

t∈IN0

(1− p)t




2

= p ·
(

1
1− (1− p)

)2

=
1
p

.

Since p ≥ 1/3, it follows that E[T ] ≤ 3. ut

5.9 Variance

Definition 5.9 The variance (or dispersion) of a random variable X, denoted by V[X], is defined as

V[X] = E[(X − E[X])2] .

The number σ =
√

V[X] is called the standard deviation of X.

The following fact lists some basic properties of the variance.

Fact 5.10 Let X and Y be arbitrary random variables and a, b be arbitrary constants.

• V[a + b ·X] = b2 ·V[X].

• If X is a binary random variable, then V[X] = E[X] · (1− E[X]).

• If X and Y are independent, then V[X + Y ] = V[X] + V[Y ].

• If X and Y are independent, then

V[X · Y ]
E[X · Y ]2

= −1 +
(

1 +
V[X]
E[X]2

) (
1 +

V[Y ]
E[Y ]2

)
.

The most well-known tail estimate that uses the variance of a random variable is due to Chebychev.
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Theorem 5.11 (Chebychev Inequality) Let X be an arbitrary random variable. Then, for every
k > 0,

Pr[|X − E[X]| ≥ k] ≤ V[X]
k2

.

Proof. From the Markov inequality it follows for all random variables X that

Pr[|X| ≥ k] = Pr[X2 ≥ k2] ≤ E[X2]/k2 .

Replacing |X| by |X − E[X]| yields the theorem. ut

5.10 Higher Order Moments

Expectations of powers of random variables are called moments and play an essential role in the
investigations of probability theory. For us they will be of particular interest in the study of sums of
random variables. Given a random variable X, the following expected values of functions of X are
often studied:

• E[Xk], k ∈ IN : kth moment of X

• E[|X|k], k ∈ IN : kth absolute moment of X

• E[|X − E[X]|k], k ∈ IN : kth absolute central moment of X

• E[eh·X ], h > 0 : exponential moment of X

Loéve stated the following result in [Loé77], which easily follows from the Markov inequality.

Theorem 5.12 (General Markov Inequality) Let X be an arbitrary non-negative random variable
and g be an arbitrary function that is non-negative and non-decreasing on IN0. Then, for any k ≥ 0
with g(k) > 0,

Pr[X ≥ k] ≤ E[g(X)]
g(k)

.

Proof. Since g is non-negative and non-decreasing on IN0, it holds for every k ≥ 0 that

E[g(X)] =
∑

x≥0

g(x) · Pr[X = x] ≥ g(k) Pr[X ≥ k] .

ut

5.11 Basic Probability Distributions

In this section we introduce the most important probability distributions used in combination with
discrete random variables.

5.11.1 Uniform distribution

A random variable X is called uniformly distributed over a finite set M of values in IR if

Pr[X = x] =
1
|M |

for all x ∈ M . If M = {a, a + 1, . . . , b} for some integers a, b with a < b, then

E[X] =
a + b

2
and V[X] =

(b− a)2

12
+

b− a

6
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5.11.2 Binomial distribution

A random variable X is called binomially distributed if there are parameters p ∈ [0, 1] and n ∈ IN such
that

Pr[X = k] =

(
n

k

)
pk(1− p)n−k

for all k ∈ {0, . . . , n}. In this case,

E[X] = n · p and V[X] = n · p(1− p) .

As an example, consider the situation that we have m balls in an urn, of which m1 are red and m2

are blue. We draw n balls at random out of this urn, one after the other, replacing each drawn ball.
Let the random variable X denote the number of red balls drawn. Then X is binomially distributed
with p = m1/m.

5.11.3 Poisson distribution

A random variable X is called Poisson distributed if there is a parameter λ > 0 such that

Pr[X = k] =
λk

k!
· e−λ

for all k ∈ IN0. In this case,
E[X] = λ and V[X] = λ .

The binomial distribution converges towards the Poisson distribution if, in the example above, the
number of balls in the urn, m, and the number of draws, n, is increased while keeping the number of
red balls constant.

5.11.4 Geometric distribution

A random variable X is called geometrically distributed if there is a parameter p ∈ [0, 1] such that

Pr[X = k] = (1− p)k−1p

for all k ∈ IN. In this case,

E[X] =
1
p

and V[X] =
1− p

p2
.

As an example, suppose that we again have an urn with m balls, of which m1 balls are red and m2

balls are blue. We draw a ball at random from this urn and replace it until we draw a red ball. Let
the random variable X denote the number of balls drawn. Then X is geometrically distributed with
p = m1/m.

5.11.5 Hypergeometric distribution

A random variable X is called hypergeometrically distributed if there are parameters N , M , and n such
that

Pr[X = k] =

(M
k

)(N−M
n−k

)
(N

n

)
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for all k ∈ {0, . . . , n}. In this case, we obtain for p = M/N

E[X] = n · p and V[X] =
N − n

N − 1
· n · p(1− p) .

As an example, consider the situation that we have N balls in an urn, of which M are red and N−M
are blue. We draw n balls at random out of this urn, one after the other, without replacing each drawn
ball. Let the random variable X denote the number of red balls drawn. Then X is hypergeometrically
distributed.

5.12 Chernoff bounds

In the following we study sums of independent binary random variables. Tail estimates for these sums
have among many others been investigated by Chernoff [Che52] and are often called Chernoff bounds.
It has been found convenient to use exponential moments of random variables to derive these tail
estimates. The idea of using exponential moments was apparently first used by S. N. Bernstein. His
method had a significant influence on deriving tail estimates also for many other problems. We present
here a proof given by Hagerup and Rüb [HR90]. Bound (6) was taken from [McD98].

Theorem 5.13 (Chernoff Bound) Let X1, . . . , Xn be independent binary random variables, let X =∑n
i=1 Xi, and let µ = E[X]. Then it holds for all δ ≥ 0 that

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

(5)

≤ e−
δ2µ

2(1+δ/3) (6)

≤ e−min[δ2, δ]·µ/3 .

Furthermore, it holds for all 0 ≤ δ ≤ 1 that

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

(7)

≤ e−δ2µ/2 .

Proof. We will only show (5). For all i ∈ [n], let pi = E[Xi]. According to the general Markov
inequality (see Theorem 5.12) we obtain that, for any function g(x) = eh·x with h > 0 and any δ ≥ 0,

Pr[X ≥ (1 + δ)µ] ≤ e−h(1+δ)µ · E[eh·X ] . (8)

Since X1, . . . , Xn are independent, it follows that

E[eh·X ] = E[eh(X1+...+Xn)] = E[eh·X1 · · · eh·Xn ] =
∏n

i=1 E[eh·Xi ]

=
n∏

i=1

(pieh + (1− pi)) =
∏n

i=1(1 + pi(eh − 1))

≤
n∏

i=1

e pi(e
h−1) since 1 + x ≤ ex for all x

= eµ(eh−1) .
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This yields together with inequality (8) that

Pr[X ≥ (1 + δ)µ] ≤ e−h(1+δ)µ · eµ(eh−1) = e−(1+h(1+δ)−eh)µ . (9)

The right-hand side of (9) attains its minimum at h = h0, where h0 = ln(1 + δ). Inserting this in (9)
yields

Pr[X ≥ (1 + δ)µ] ≤ (1 + δ)−(1+δ)µ · eδ·µ =

(
eδ

(1 + δ)1+δ

)µ

.

This completes the proof for inequality (5). The proof of (7) can be done in a similar way. ut
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