### Projektgruppe



Steffen Beringer

## Categorization of text documents via classification

4. Juni 2010

# ID SE Information-Driven Software Engineering

#### Content

- Motivation
- Text categorization
- Classification in the machine learning
- Document indexing
- Construction methods
- Evaluation



Document organization (newspapers)





• Text filtering (E-mail filter)





 Word Sense Disambiguation / resolving natural language ambiguities





iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...)

Topic?

iPhone, iPod, iPad







documents D

function f

categories C

 $d \in D$ 

f

 $c \in C$ 



### Text categorization: A Definition



- $\rightarrow$ Goal: approximate the unknown target function f: D  $\rightarrow$  C
- Properties:
  - Just symbolic labels (no "meaning" of labels)
  - No exogenous knowledge
- Different constraints



### Text categorization: Single- vs. Multilabel

iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...) Das iPad ist doof!



 $f: D \rightarrow C$ 

iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...) Das iPad ist doof!



 $f: D \rightarrow Pow(C)$ 



### Text Categorization: "Hard" vs. Ranking





### f: D x C $\rightarrow$ {True, False}



 $f: D \times C \rightarrow R$ 



### Binary Categorization

- Only two categories C and ¬C
- $f: D \rightarrow \{C, \neg C\}$
- Some classifier only support this type of classification
- Is this a problem?
- Transform multilabel
   classification with C = {c<sub>1</sub>,...c<sub>n</sub>}
   into |C| independent problems
   of binary classification {c<sub>i</sub>, ¬c<sub>i</sub>}





### Binary Classification

iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...) Das iPad ist doof!

Topic iPhone, iPad, iPod

iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...) Das iPad ist doof!



## Text classification: The knowledge engineering approach



- In the 80s most popular: knowledge engineering
  - System consisting of a set of **manually** defined logical rules (DNF rules)

```
■ If(iPhone & toll) or

(iPhone & ¬schlecht) or

(Touchscreen & Handy) then IPHONE else
¬IPHONE
```

■ → knowledge aquisition bottleneck 🕾

## Text classification: The machine learning approach



- General inductive process (learner) builds the classifier
- Supervised learning: inductive, automatic construction of a classifier from a set of manually classified documents
- Preclassified documents are the key resource!

# ID SE Information-Driven Software Engineering

### Approach for Automation

- I. Classify some real examples manually
- 2. Transform documents into a representation suitable for learning algorithm and classification task
- 3. Find relations between features and document class and try to approximate ideal function



### Initial corpus: Training Set, Test Set and Validation Set



 Initial corpus: preclassified documents with positive and negative examples



- Training Set → construct classifier
- Test Set → testing effectiveness



### Document indexing

How to represent documents



# ID SE Information-Driven Software Engineering

### Document indexing



Documents typically strings of characters, cannot be direcly interpreted by classifier

- Transformed into a representation suitable for learning algorithm and classification task
- usually represented as a vector of term weights / features
- $d_j = (w_{1j},...,w_{Tj})$
- Classifier approximates

# ID SE Information-Driven Software Engineering

### Document indexing

- Different approaches
  - Different ways to understand what a term is
  - Different ways to compute term weights
- Examples:
  - Set of Words / Bag of words
  - Average Word Frequency Class
  - Part of Speech
  - Genre-Specific Core Vocabularies
  - Gini Coefficient



### Set of Words / Bag of words

 Idea: Each distinct word w<sub>i</sub> corresponds to a feature with the number of times w<sub>i</sub> occurs in the document as its value

iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...)



 $w_n = 0$ 

- Problems: very big feature vectors
- Optimizations:
  - Word stemming
  - Skip "stop-words" (and, or, ...)

# ID SE Information-Driven Software Engineering

### Average Word Frequency Class

- Idea: measure complexity of language usage
- For each word w in domain D compute word frequency class c(w)
- $c(w^*)=0 \rightarrow w^*$  denote the most frequent word
- Most uncommonly words have frequency class 19
- $c(w) = L \log 2(f(w*)/f(w))^{-1}$

| Word       | Instances | c(w)                      |
|------------|-----------|---------------------------|
| The        | 3789654   | 0                         |
| Не         | 2098762   | log2(3789654/2098762) = 0 |
| Boy        | 56975     | log2(3789654/56975) = 6   |
| Outragious | 76        | log2(3789654/76) = 15     |
| Stringyfy  | 5         | log2(3789654/5) = 19      |

## More features on complexity of language usage: readability analysis



- Automated readability index, Coleman- Liau index
  - Measure characters / words and words / sentences
- Gunning fog index
  - Measure words / sentences and complex words / words
- Flesh-Kinaid readability test
  - Measure words / sentences and syllables / words



### Part of Speech

• Idea: label the words of a sentence according to their function or word-class (Nouns, verbs, adjectives, adverbs...)

iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...)

| noun | alphan<br>um. | prono<br>un | noun | article | noun | verb | adjecti<br>ve |
|------|---------------|-------------|------|---------|------|------|---------------|
|------|---------------|-------------|------|---------|------|------|---------------|





### Genre-Specific Core vocabularies

• Idea: compile word sets that may be specific to a certain genre



### Genre-Specific Core vocabularies: mining core vocabularies



- What are words characteristic for a specific genre?
  - Frequently used in some genre class g
  - Rarely used in all other classes
- Computation of a score for each word w<sub>i</sub> and genre g<sub>i</sub>:



## Genre-Specific Core vocabularies: measure core vocabulary



- Ideas to measure presence or absence of core vocabulary:
  - Determine coverage of core vocabulary of document
  - Determine how the core vocabulary is distributed over the document



#### Gini Coefficient

- Idea: Measure distribution
   of vocabulary in the
   document
- $G = A_g / (A_g + A_v)$



# ID SE Information-Driven Software Engineering

#### More features

- Syntactic Group Analysis
- Text Statistics
- Presentation Related Features

# ID SE Information-Driven Software Engineering

#### Inductive Construction of Text Classifiers

- Approximates the classification function f
- Examples:
  - Bayes classifier
  - Decision rule classifier
  - Neuronal networks
  - Example based classifiers
  - Support vector machines





## Inductive Construction of Text Classifiers: 3 Example Approaches



- (Naive) Bayes Classifier
- Descision Tree Classifier
- Support Vector Machines



- Idea: compute probability that a document  $D = (d_1..d_n)$  belongs to category C:  $P(C|D) = P(C \cap D)/P(D)$
- Based on Bayes Theorem: P(A|B) = (P(B|A)\*P(A))/P(B)
- Assumptions:
  - Binary classification
  - Features independent of each other



- P(C|D) = (P(D|C)\*P(C)) / P(D) (Bayes Theorem)
- We know:
  - P(C) = #documents in category C / #documents
  - P(d<sub>i</sub>|C) = #documents in category C containing feature d<sub>i</sub>/ #documents in C
  - $P(D|C) = P(d_1|C)*P(d_2|C)*...*(d_n|C)$  (with independence)
- $P(C|D) = (P(dI|C)*..*P(d_n|C)*P(C))/P(D)$



- Assume binary classification  $C = \{S, \neg S\}$
- Compute proportion Q = P(S,D)/P(¬S,D) = (P(d<sub>1</sub>|S)\*..\*P(d<sub>n</sub>|S) \*P(S))/(P(d<sub>1</sub>|¬S)\*..\*P(d<sub>n</sub>|¬S)\*P(¬S))



- Feature properties:
  - All features identically important
  - Statistically independent → mostly not true ⊗
- Works fine in practice
- Not easily interpretable by humans



#### **Descision Tree Classifier**

### • Idea: disjoint decomposition of documents via a tree

| Example | Sky   | Temperature | Humidity | Wind   | Water | Forecast | EnjoySport |
|---------|-------|-------------|----------|--------|-------|----------|------------|
| 1       | sunny | warm        | normal   | strong | warm  | same     | yes        |
| 2       | sunny | warm        | high     | strong | warm  | same     | yes        |
| 3       | rainy | cold        | high     | strong | warm  | change   | no         |
| 4       | sunny | warm        | high     | strong | cool  | change   | yes        |





#### **Descision Tree Classifier**

- Symbolic / nonnumeric algorithm
- How to construct the tree?



### Support Vector Machines

• Idea: Separation of the documents by hyperplane H (desision surface) in the T-dimensional space





### Support Vector Machines

• Construction: maximize the minimum margin of H





### Support Vector Machines

- Best understood for binary classification
- Also applicable if positives and negatives are not linearly separable
- Few parameter tuning



#### **Evaluation**

- Typically conducted experimantally
- Usually measure is **effectiveness**, not efficiency
- Measures for effectiveness:
  - Accuracy & Error
  - Precision and Recall
  - Micro- and Macroaveraging

#### **Accuracy**

- Accuracy: the fraction of the correct classifications
- Accuracy A = (TP+TN)/(TP+TN+FP+FN) = ,,correct"/|D|



#### Error

- Error: fraction of the **incorrect** classifications
- Error = (FP+FN)/(TP+TN+FP+FN) = I-Accuracy





### **Accuracy and Error**

- Equal weights on relevant and irrelevant documents
- #relevant documents usually very small compared to total
   #documents → insensitive to number of correct decisions



Algorithm just returning 0 documents has accuracy of 99900/100000 = 0.99 and error = 0.01

100 relevant documents

#### Precision and Recall



$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

- Precision P: measure for exactness
- Recall R: measure for completeness



#### Microaveraging

Sum over all individual decisions



- Precision<sup> $\mu$ </sup> =  $\Sigma$ (TP<sub>i</sub>) /  $\Sigma$ (TP<sub>i</sub>+FP<sub>i</sub>)
- Recall<sup> $\mu$ </sup> =  $\Sigma(TP_i) / \Sigma(TP_i + FN_i)$



#### Macroaveraging

Average over the results of the different categories



- Precision<sup>M</sup>= $(P_1+P_2+...+P_n)/|C|$
- Recall<sup>M</sup>= $(R_1 + R_2 + ... + R_n) / |C|$



### Micro- and Macroaveraging

- Difference can be large
- Macroaveraging gives equal weights to each class
- Microaveraging gives equal weights to each classification decision → higher weight on larger classes

#### Conclusion

- Applications for Text Classification in the Project group
  - Preprocessing task (filter documents, find documents suitable for further Information Extraction tasks)
  - Classifiy documents by
    - Document type → requirements, documentation?
    - Suitable model structure (behavioral, structural) → UML?
    - Combined category search





Questions?