Projektgruppe

Steffen Beringer

Categorization of text documents via classification

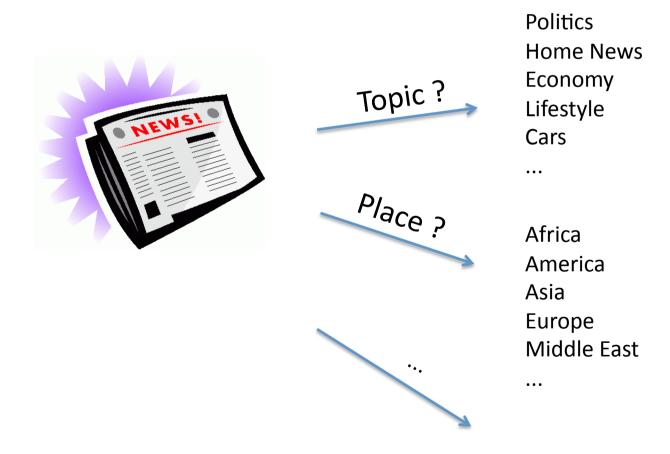
4. Juni 2010

ID SE Information-Driven Software Engineering

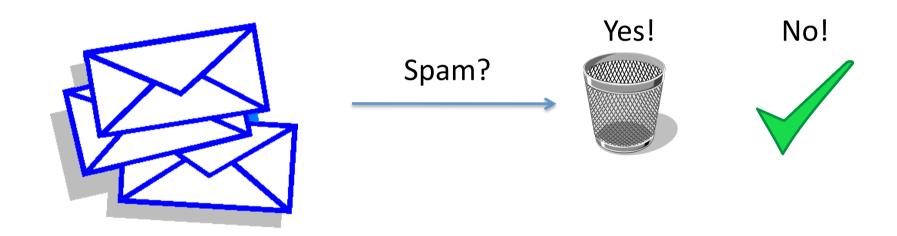
Content

- Motivation
- Text categorization
- Classification in the machine learning
- Document indexing
- Construction methods
- Evaluation

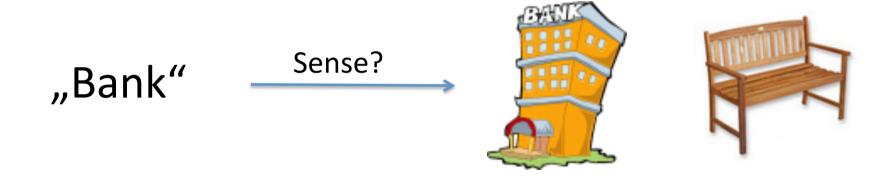
Document organization (newspapers)



• Text filtering (E-mail filter)



 Word Sense Disambiguation / resolving natural language ambiguities



iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...)

Topic?

iPhone, iPod, iPad

documents D

function f

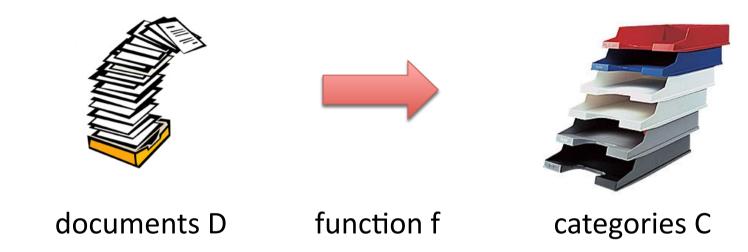
categories C

 $d \in D$

f

 $c \in C$

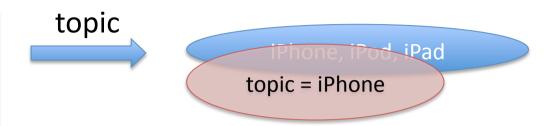
Text categorization: A Definition



- \rightarrow Goal: approximate the unknown target function f: D \rightarrow C
- Properties:
 - Just symbolic labels (no "meaning" of labels)
 - No exogenous knowledge
- Different constraints

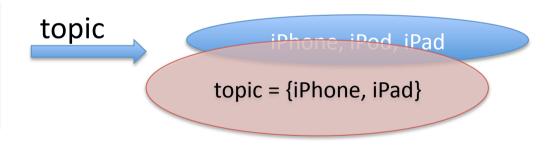
Text categorization: Single- vs. Multilabel

iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...) Das iPad ist doof!



 $f: D \rightarrow C$

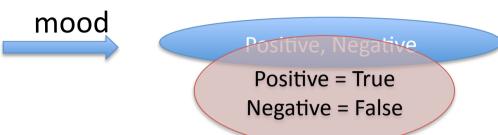
iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...) Das iPad ist doof!



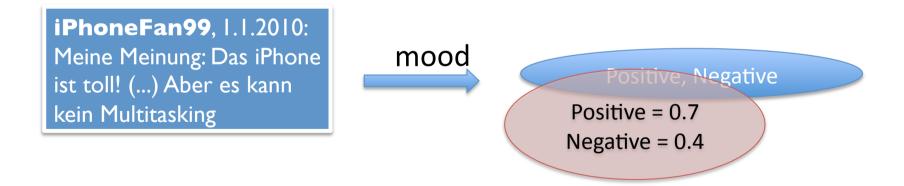
 $f: D \rightarrow Pow(C)$

Text Categorization: "Hard" vs. Ranking





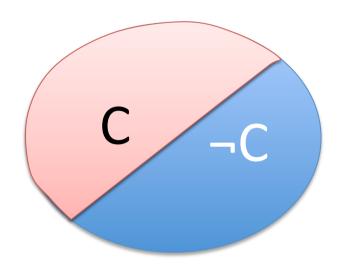
f: D x C \rightarrow {True, False}



 $f: D \times C \rightarrow R$

Binary Categorization

- Only two categories C and ¬C
- $f: D \rightarrow \{C, \neg C\}$
- Some classifier only support this type of classification
- Is this a problem?
- Transform multilabel
 classification with C = {c₁,...c_n}
 into |C| independent problems
 of binary classification {c_i, ¬c_i}

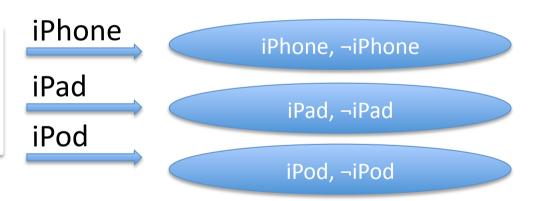


Binary Classification

iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...) Das iPad ist doof!

Topic iPhone, iPad, iPod

iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...) Das iPad ist doof!



Text classification: The knowledge engineering approach

- In the 80s most popular: knowledge engineering
 - System consisting of a set of **manually** defined logical rules (DNF rules)

```
■ If(iPhone & toll) or

(iPhone & ¬schlecht) or

(Touchscreen & Handy) then IPHONE else
¬IPHONE
```

■ → knowledge aquisition bottleneck 🕾

Text classification: The machine learning approach

- General inductive process (learner) builds the classifier
- Supervised learning: inductive, automatic construction of a classifier from a set of manually classified documents
- Preclassified documents are the key resource!

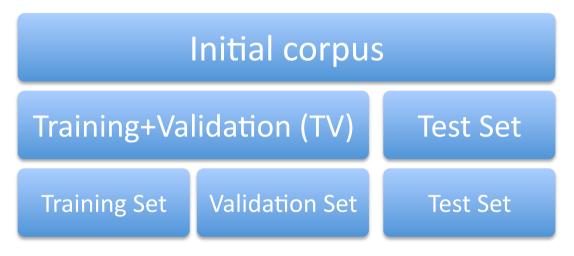
ID SE Information-Driven Software Engineering

Approach for Automation

- I. Classify some real examples manually
- 2. Transform documents into a representation suitable for learning algorithm and classification task
- 3. Find relations between features and document class and try to approximate ideal function

Initial corpus: Training Set, Test Set and Validation Set

 Initial corpus: preclassified documents with positive and negative examples



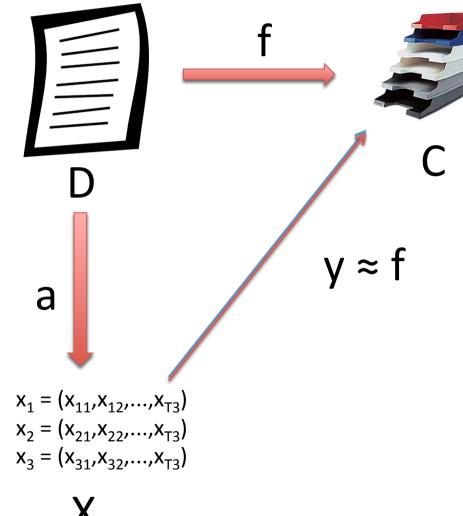
- Training Set → construct classifier
- Test Set → testing effectiveness

Document indexing

How to represent documents

ID SE Information-Driven Software Engineering

Document indexing



Documents typically strings of characters, cannot be direcly interpreted by classifier

- Transformed into a representation suitable for learning algorithm and classification task
- usually represented as a vector of term weights / features
- $d_j = (w_{1j},...,w_{Tj})$
- Classifier approximates

ID SE Information-Driven Software Engineering

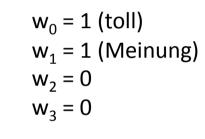
Document indexing

- Different approaches
 - Different ways to understand what a term is
 - Different ways to compute term weights
- Examples:
 - Set of Words / Bag of words
 - Average Word Frequency Class
 - Part of Speech
 - Genre-Specific Core Vocabularies
 - Gini Coefficient

Set of Words / Bag of words

 Idea: Each distinct word w_i corresponds to a feature with the number of times w_i occurs in the document as its value

iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...)



 $w_n = 0$

- Problems: very big feature vectors
- Optimizations:
 - Word stemming
 - Skip "stop-words" (and, or, ...)

ID SE Information-Driven Software Engineering

Average Word Frequency Class

- Idea: measure complexity of language usage
- For each word w in domain D compute word frequency class c(w)
- $c(w^*)=0 \rightarrow w^*$ denote the most frequent word
- Most uncommonly words have frequency class 19
- $c(w) = L \log 2(f(w*)/f(w))^{-1}$

Word	Instances	c(w)
The	3789654	0
Не	2098762	log2(3789654/2098762) = 0
Boy	56975	log2(3789654/56975) = 6
Outragious	76	log2(3789654/76) = 15
Stringyfy	5	log2(3789654/5) = 19

More features on complexity of language usage: readability analysis

- Automated readability index, Coleman- Liau index
 - Measure characters / words and words / sentences
- Gunning fog index
 - Measure words / sentences and complex words / words
- Flesh-Kinaid readability test
 - Measure words / sentences and syllables / words

Part of Speech

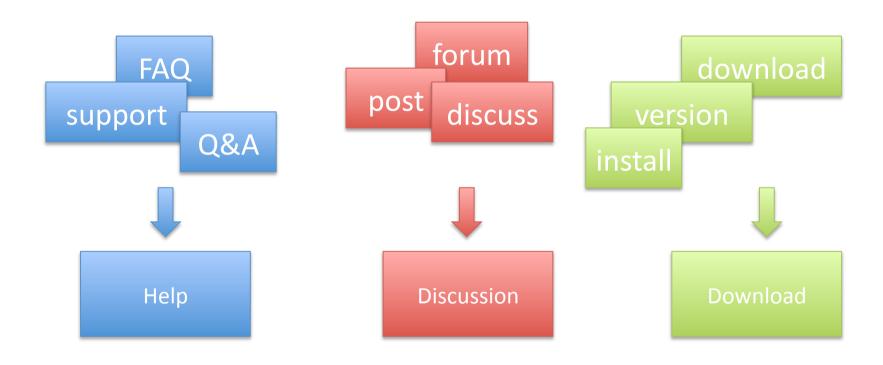
• Idea: label the words of a sentence according to their function or word-class (Nouns, verbs, adjectives, adverbs...)

iPhoneFan99, 1.1.2010: Meine Meinung: Das iPhone ist toll! (...)

noun	alphan um.	prono un	noun	article	noun	verb	adjecti ve
------	---------------	-------------	------	---------	------	------	---------------

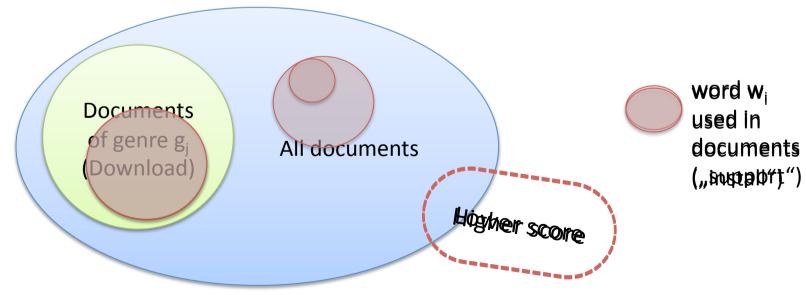
Genre-Specific Core vocabularies

• Idea: compile word sets that may be specific to a certain genre



Genre-Specific Core vocabularies: mining core vocabularies

- What are words characteristic for a specific genre?
 - Frequently used in some genre class g
 - Rarely used in all other classes
- Computation of a score for each word w_i and genre g_i:

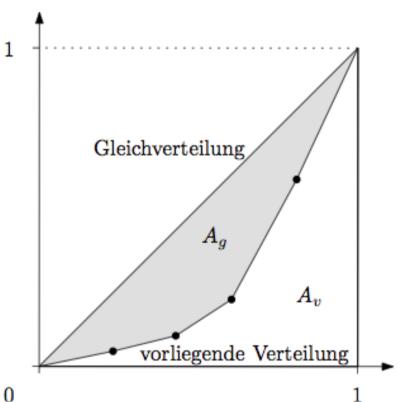


Genre-Specific Core vocabularies: measure core vocabulary

- Ideas to measure presence or absence of core vocabulary:
 - Determine coverage of core vocabulary of document
 - Determine how the core vocabulary is distributed over the document

Gini Coefficient

- Idea: Measure distribution
 of vocabulary in the
 document
- $G = A_g / (A_g + A_v)$



ID SE Information-Driven Software Engineering

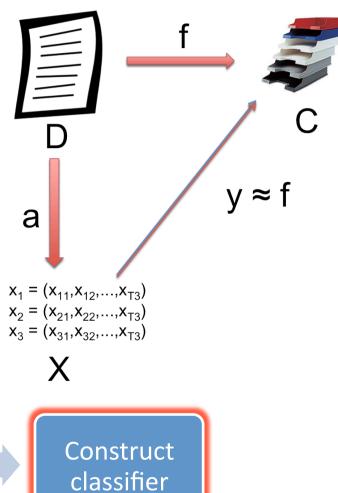
More features

- Syntactic Group Analysis
- Text Statistics
- Presentation Related Features

ID SE Information-Driven Software Engineering

Inductive Construction of Text Classifiers

- Approximates the classification function f
- Examples:
 - Bayes classifier
 - Decision rule classifier
 - Neuronal networks
 - Example based classifiers
 - Support vector machines



Inductive Construction of Text Classifiers: 3 Example Approaches

- (Naive) Bayes Classifier
- Descision Tree Classifier
- Support Vector Machines

- Idea: compute probability that a document $D = (d_1..d_n)$ belongs to category C: $P(C|D) = P(C \cap D)/P(D)$
- Based on Bayes Theorem: P(A|B) = (P(B|A)*P(A))/P(B)
- Assumptions:
 - Binary classification
 - Features independent of each other

- P(C|D) = (P(D|C)*P(C)) / P(D) (Bayes Theorem)
- We know:
 - P(C) = #documents in category C / #documents
 - P(d_i|C) = #documents in category C containing feature d_i/ #documents in C
 - $P(D|C) = P(d_1|C)*P(d_2|C)*...*(d_n|C)$ (with independence)
- $P(C|D) = (P(dI|C)*..*P(d_n|C)*P(C))/P(D)$

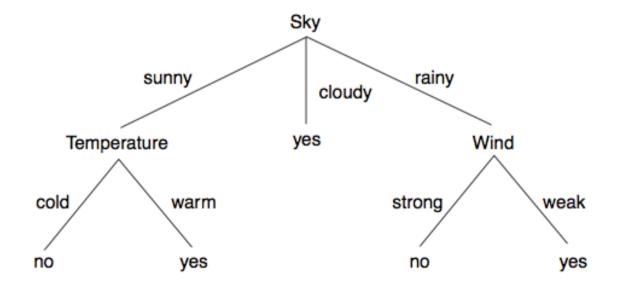
- Assume binary classification $C = \{S, \neg S\}$
- Compute proportion Q = P(S,D)/P(¬S,D) = (P(d₁|S)*..*P(d_n|S) *P(S))/(P(d₁|¬S)*..*P(d_n|¬S)*P(¬S))

- Feature properties:
 - All features identically important
 - Statistically independent → mostly not true ⊗
- Works fine in practice
- Not easily interpretable by humans

Descision Tree Classifier

• Idea: disjoint decomposition of documents via a tree

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
1	sunny	warm	normal	strong	warm	same	yes
2	sunny	warm	high	strong	warm	same	yes
3	rainy	cold	high	strong	warm	change	no
4	sunny	warm	high	strong	cool	change	yes

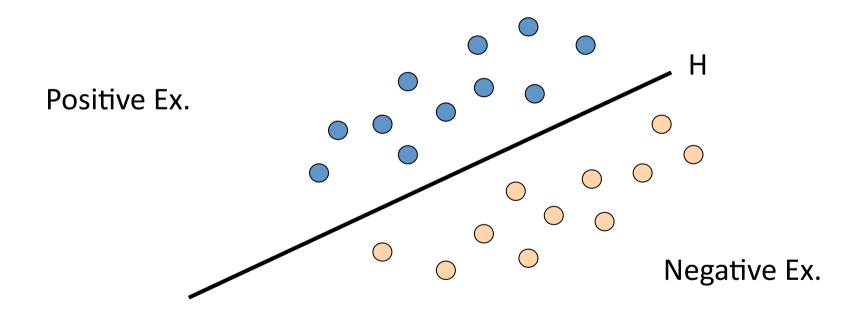


Descision Tree Classifier

- Symbolic / nonnumeric algorithm
- How to construct the tree?

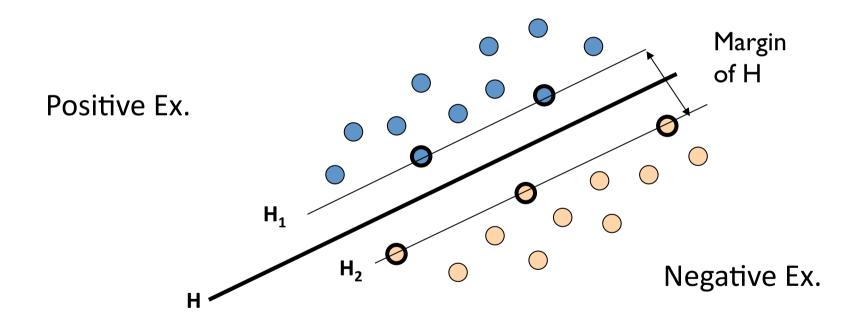
Support Vector Machines

• Idea: Separation of the documents by hyperplane H (desision surface) in the T-dimensional space



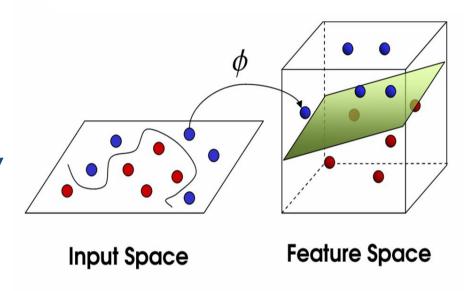
Support Vector Machines

• Construction: maximize the minimum margin of H



Support Vector Machines

- Best understood for binary classification
- Also applicable if positives and negatives are not linearly separable
- Few parameter tuning

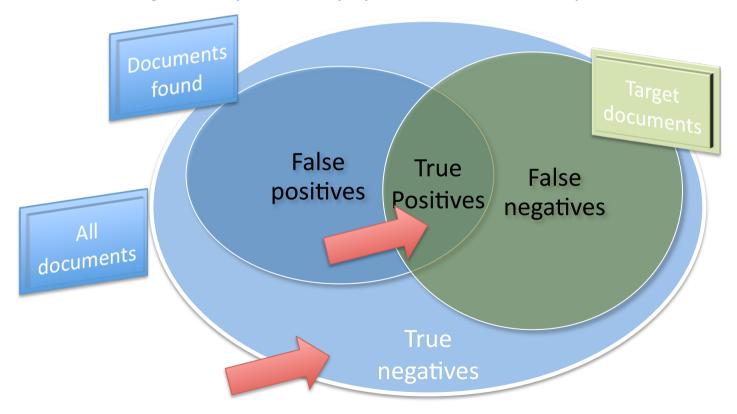


Evaluation

- Typically conducted experimantally
- Usually measure is **effectiveness**, not efficiency
- Measures for effectiveness:
 - Accuracy & Error
 - Precision and Recall
 - Micro- and Macroaveraging

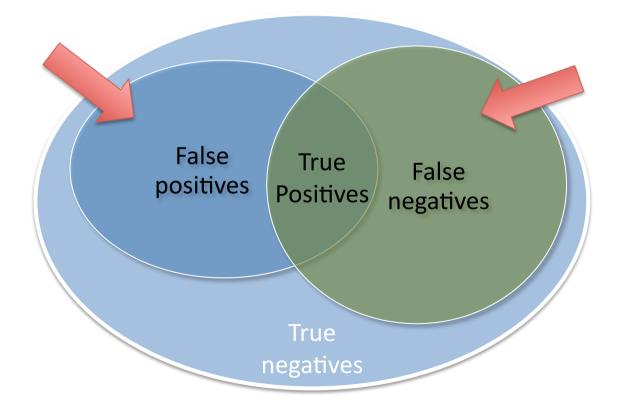
Accuracy

- Accuracy: the fraction of the correct classifications
- Accuracy A = (TP+TN)/(TP+TN+FP+FN) = ,,correct"/|D|



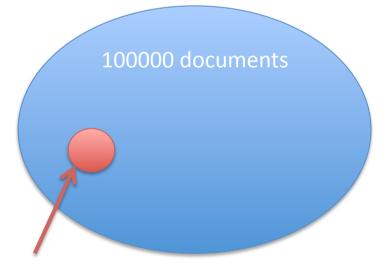
Error

- Error: fraction of the **incorrect** classifications
- Error = (FP+FN)/(TP+TN+FP+FN) = I-Accuracy



Accuracy and Error

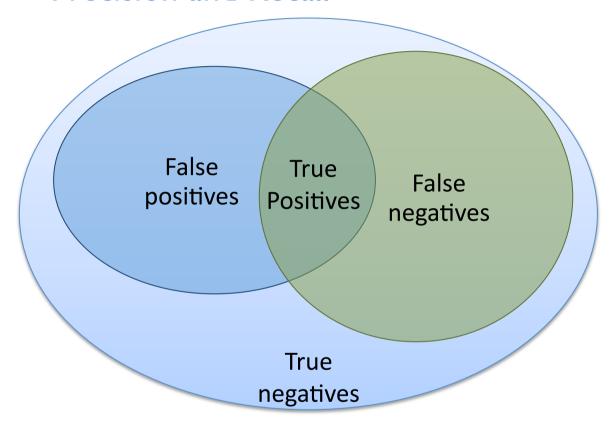
- Equal weights on relevant and irrelevant documents
- #relevant documents usually very small compared to total
 #documents → insensitive to number of correct decisions



Algorithm just returning 0 documents has accuracy of 99900/100000 = 0.99 and error = 0.01

100 relevant documents

Precision and Recall



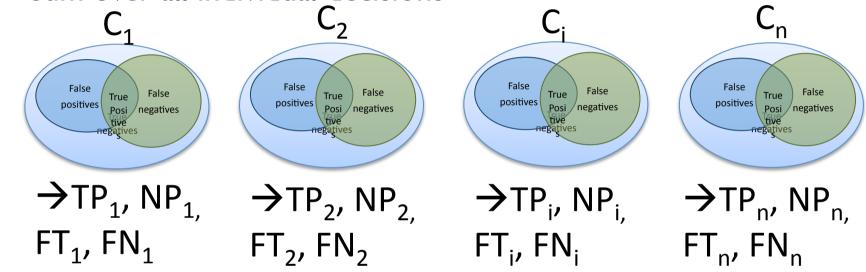
$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

- Precision P: measure for exactness
- Recall R: measure for completeness

Microaveraging

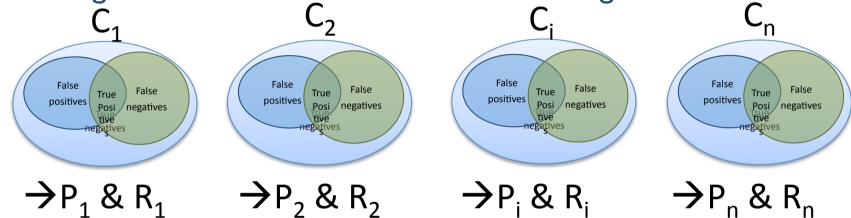
Sum over all individual decisions



- Precision^{μ} = Σ (TP_i) / Σ (TP_i+FP_i)
- Recall^{μ} = $\Sigma(TP_i) / \Sigma(TP_i + FN_i)$

Macroaveraging

Average over the results of the different categories



- Precision^M= $(P_1+P_2+...+P_n)/|C|$
- Recall^M= $(R_1 + R_2 + ... + R_n) / |C|$

Micro- and Macroaveraging

- Difference can be large
- Macroaveraging gives equal weights to each class
- Microaveraging gives equal weights to each classification decision → higher weight on larger classes

Conclusion

- Applications for Text Classification in the Project group
 - Preprocessing task (filter documents, find documents suitable for further Information Extraction tasks)
 - Classifiy documents by
 - Document type → requirements, documentation?
 - Suitable model structure (behavioral, structural) → UML?
 - Combined category search

Questions?