
Fast Distributed Algorithms for LP-Type
Problems of Low Dimension
Kristian Hinnenthal
Paderborn University, Germany
krijan@mail.upb.de

Christian Scheideler
Paderborn University, Germany
scheideler@upb.de

Martijn Struijs
TU Eindhoven, The Netherlands
m.a.c.struijs@tue.nl

Abstract
In this paper we present various distributed algorithms for LP-type problems in the well-known
gossip model. LP-type problems include many important classes of problems such as (integer)
linear programming, geometric problems like smallest enclosing ball and polytope distance, and
set problems like hitting set and set cover. In the gossip model, a node can only push information
to or pull information from nodes chosen uniformly at random. Protocols for the gossip model
are usually very practical due to their fast convergence, their simplicity, and their stability under
stress and disruptions. Our algorithms are very efficient (logarithmic rounds or better with just
polylogarithmic communication work per node per round) whenever the combinatorial dimension of
the given LP-type problem is constant, even if the size of the given LP-type problem is polynomially
large in the number of nodes.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Mathematical optimization

Keywords and phrases LP-type problems, linear optimization, distributed algorithms, gossip al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.24

Funding K. Hinnenthal and C. Scheideler are supported by the DFG SFB 901 (On-The-Fly Com-
puting).

1 Introduction

1.1 LP-type Problems
LP-type problems were defined by Sharir and Welzl [18] as problems characterized by a tuple
(H, f) where H is a finite set of constraints and f : 2H → T is a function that maps subsets
from H to values in a totally ordered set (T,≤) containing −∞. The function f is required
to satisfy two conditions:

Monotonicity: For all sets F ⊆ G ⊆ H, f(F ) ≤ f(G) ≤ f(H).
Locality: For all sets F ⊆ G ⊆ H with f(F ) = f(G) and every element h ∈ H, if
f(G) < f(G ∪ {h}) then f(F ) < f(F ∪ {h}).

Given an LP-type problem (H, f), the goal is to determine f(H). In doing so, the following
notation has commonly been used. A subset B ⊆ H with f(B′) < f(B) for all proper
subsets B′ of B is called a basis of H. An optimal basis is a basis B with f(B) = f(H).
The maximum cardinality of a basis is called the (combinatorial) dimension of (H, f) and
denoted by dim(H, f).

© Kristian Hinnenthal, Christian Scheideler, and Martijn Struijs;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 24; pp. 24:1–24:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:krijan@mail.upb.de
mailto:scheideler@upb.de
mailto:m.a.c.struijs@tue.nl
https://doi.org/10.4230/LIPIcs.DISC.2019.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 Fast Distributed Algorithms for LP-Type Problems of Low Dimension

LP-type problems cover many important optimization problems like linear optimization
problems (where H is the set of linear inequalities, f(G) represents the optimal solution
w.r.t. the given objective function under the constraints G ⊆ H, and the dimension is at
most the number of variables in the LP) or geometric problems like the smallest enclosing
ball problem (where H is the set of points, f(G) is the radius of the smallest enclosing ball
for point set G ⊆ H, and the dimension is at most d+ 1 for the d-dimensional case).

Clarkson [2] proposed a very elegant randomized algorithm for solving LP-type problems
(see Algorithm 1). In this algorithm, each h ∈ H has a multiplicity of µh ∈ N, and H(µ) is a
multiset where each h ∈ H occurs µh times in H(µ). The algorithm requires a subroutine
for computing f(S) for sets S of size O(dim(H, f)2), but this is usually straightforward if
dim(H, f) is a constant. In the following, let d = dim(H, f), and we say that an iteration of
the repeat-loop is successful if |V | ≤ |H(µ)|/(3d), where V is the set of elements violating
a solution f(R) for the chosen subset R ⊆ H(µ) (which might be a multiset), see also the
algorithm.

Algorithm 1 Clarkson’s Algorithm.
1: if |H| ≤ 6 dim(H, f)2 then return f(H)
2: else
3: r := 6 dim(H, f)2

4: for all h ∈ H do µh := 1
5: repeat
6: choose a random subset R of size r from H(µ)
7: V := {h ∈ H(µ) | f(R) < f(R ∪ {h})}
8: if |V | ≤ |H(µ)|/(3 dim(H, f)) then
9: for all h ∈ V do µh := 2µh

10: until V = ∅
11: return f(R)

I Lemma 1 ([9]). Let (H, f) be an LP-type problem of dimension d and let µ be any
multiplicity function. For any 1 ≤ r < m, where m = |H(µ)|, the expected size of V = {h ∈
H(µ) | f(R) < f(R ∪ {h})} for a random subset R of size r from H(µ) is at most d · m−rr+1 .

From this lemma and the Markov inequality it immediately follows that the probability
that an iteration of the repeat-loop is successful is at least 1/2. Moreover, it holds:

I Lemma 2 ([15, 20]). Let k ∈ N and B be an arbitrary optimal basis of H. After k · d
successful iterations, 2k ≤ µ(B) < |H| · ek/3.

Lemma 2 implies that Clarkson’s algorithm must terminate after at most O(d log |H|)
successful iterations (as otherwise 2k > |H| · ek/3), so Clarkson’s algorithm performs at most
O(d log |H|) iterations of the repeat-loop, on expectation. This bound is also best possible
in the worst case for any d � |H|: given that there is a unique optimal basis B of size
d, its elements can have a multiplicity of at most

√
|H| after (log |H|)/2 iterations, so the

probability that B is contained in R is polynomially small in |H| up to that point.
Clarkson’s algorithm can easily be transformed into a distributed algorithm with expected

runtime O(d log2 n) if n nodes are available that are interconnected by a hypercube, n = |H|,
and each node is responsible for one element in H, for example, because in that case every



K. Hinnenthal, C. Scheideler, and M. Struijs 24:3

iteration of the repeat-loop can be emulated in O(logn) communication rounds, w.h.p.1, using
appropriate (weighted random) routing, broadcast, and convergecast approaches. However,
it has been open so far whether it is also possible to construct a distributed algorithm for
LP-type problems with an expected runtime of just O(d logn) (either with a variant of
Clarkson’s algorithm or a different approach). We will show in this paper that this is possible
when running certain variants of Clarkson’s algorithm in the gossip model, even if H has a
size polynomial in n.

1.2 Network Model
We assume that we are given a fixed node set U (instead of the standard notation V to
distinguish it from the violator set V ) of size n consisting of the nodes v1, . . . , vn. In our paper,
we do not require the nodes to have IDs. Moreover, we assume the standard synchronous
message passing model, i.e., the nodes operate in synchronous (communication) rounds, and
all messages sent (or requested) in round i will be received at the beginning of round i+ 1.

In the (uniform) gossip model, a node can only send or receive messages via random push
and pull operations. In a push operation, it can send a message to a node chosen uniformly
at random while in a pull operation, it can ask a node chosen uniformly at random to send
it a message. We will restrict the message size (i.e., its number of bits) to O(logn). A node
may execute multiple push and pull operations in parallel in a round. The number of push
and pull operations executed by it in a single round is called its (communication) work.

Protocols for the gossip model are usually very practical due to their fast convergence,
their simplicity, and their stability under stress and disruptions. Many gossip-based protocols
have already been presented in the past, including protocols for information dissemination,
network coding, load-balancing, consensus, and quantile computations (see [3, 11, 12, 13, 14]
for some examples). Also, gossip protocols can be used efficiently in the context of population
protocols and overlay networks, two important areas of network algorithms. In fact, it is easy
to see that any algorithm with runtime T and maximum work W in the gossip model can
be emulated by overlay networks in O(T + logn) time and with maximum work O(W logn)
w.h.p. (since it is easy to set up n (near-)random overlay edges, one per node, in hypercubic
networks in O(logn) time and with O(logn) work, w.h.p., and this can be pipelined to avoid
a logn-overhead in the runtime).

1.3 Related Work
There has already been a significant amount of work on finding efficient sequential and
parallel algorithms for linear programs of low dimension (i.e., based on a small number of
variables), which are a special case of LP-type problems of low combinatorial dimension
(see [5] for a very thorough survey). We just focus here on parallel algorithms. The fastest
parallel algorithm known for the CRCW PRAM is due to Alon and Megiddo [1], which has a
runtime of O(d2 log2 d). It essentially follows the idea of Clarkson, with the main difference
that it replicates elements in V much more aggressively by exploiting the power of the CRCW
PRAM. This is achieved by first compressing the violated elements into a small area and then
replicating them by a factor of n1/(4d) (instead of just 2). The best work-optimal algorithm
for the CRCW PRAM is due to Goodrich [10], which is based on an algorithm by Dyer and
Frieze [6] and has a runtime of O((log logn)d). This also implies a work-optimal algorithm

1 By “with high probability”, or short, “w.h.p.”, we mean a probability of least 1− 1/nc for any constant
c > 0.

DISC 2019



24:4 Fast Distributed Algorithms for LP-Type Problems of Low Dimension

for the EREW PRAM, but the runtime increases to O(logn(log logn)d) in this case. The
fastest parallel algorithm known for the EREW PRAM is due to Dyer [4], which achieves
a runtime of O(logn(log logn)d−1) when using an O(logn)-time parallel sorting algorithm
(like Cole’s algorithm). Since the runtime of any algorithm for solving a linear program of
constant dimension in an EREW PRAM is known to be Ω(logn) [5], the upper bound is
optimal for d = 1.

Due to Ranade’s seminal work [16], it is known that any CRCW PRAM step can be emu-
lated in a butterfly network in O(logn) communication rounds, yielding an O(d2 log2 d logn)-
time algorithm for linear programs of constant dimension in the butterfly. However, it is
not clear whether any of the parallel algorithms would work for arbitrary LP-type problems.
Also, none of the proposed parallel algorithms seem to be easily adaptable to an algorithm
that works efficiently (i.e., in time o(log2 n) and with polylog work) for the gossip model as
they require processors to work together in certain groups or on certain memory locations in
a coordinated manner, and assuming no (unique) node IDs would further complicate the
matter.

As mentioned above, LP-type problems were introduced by Sharir and Welzl [18]. Since
then, various results have been shown, but only for sequential algorithms. Combining
results by Gärtner [7] with Clarkson’s methods, Gärtner and Welzl [8] proposed an al-
gorithm with runtime O(d2|H|) + eO(

√
d log d), for any d, which implies that as long as

d = O(log2 |H|/ log log |H|), f(H) can be determined in polynomial time. Extensions of
LP-type problems were studied by Gärtner [7] (abstract optimization problems) and Skovron
[19] (violator spaces).

1.4 Our Results
In all of our results, we assume that initially, H is randomly distributed among the nodes.
This is easy to achieve in the gossip model if this is not the case (for example, each node
initially represents its own point for the smallest enclosing ball problem) by performing a
push operation on each element. The nodes are assumed to know f , and we require the
nodes to have a constant factor estimate of logn for the algorithms to provide a correct
output, w.h.p., but they may not have any information about |H|. For simplicity, we also
assume that the nodes know d. If not, they may perform a binary search on d (by stopping
the algorithm and switching to 2d if it takes too long for some d), which does not affect our
bounds below since they depend at least linearly on d.

In all of our results and proofs we assume that the dimension d of the given LP-type
problem is at most logarithmic in |H|, to ensure that internal computations only take
polynomial time and message sizes satisfy our O(logn) bound. Section 2 starts with the
lightly loaded case (i.e., |H| = O(n logn), where n = |U |) and proves the following theorem.

I Theorem 3. For any LP-type problem (H, f) satisfying |H| = O(n logn), the Low-Load
Clarkson Algorithm finds an optimal solution in O(d logn) rounds with maximum work
O(d2 + logn) per round, w.h.p.

At a high level, the Low-Load Clarkson Algorithm is similar to the original Clarkson
algorithm, but sampling a random subset and termination detection are more complex now,
and a filtering approach is needed to keep |H(µ)| low at all times so that the work is low. In
Section 3, we then consider the highly loaded case and prove the following theorem.

I Theorem 4. For any LP-type problem (H, f) with |H| = ω(n logn) and |H| = O(poly(n)),
the High-Load Clarkson Algorithm finds an optimal solution in O(d logn) rounds with max-



K. Hinnenthal, C. Scheideler, and M. Struijs 24:5

imum work O(d logn) per round, w.h.p. If we allow a maximum work of O(d log1+ε n) per
round, for any constant ε > 0, the runtime reduces to O(d log(n)/ log log(n)), w.h.p.

Note that as long as we only allow the nodes to spend polylogarithmic work per round, a
trivial lower bound on the runtime when using Clarkson’s approach is Ω(log(n)/ log log(n))
since in o(log(n)/ log log(n)) rounds an element in H can only be spread to no(1) nodes, so
the probability of fetching it under the gossip model is minute.

The reason why we designed different algorithms for the lightly loaded and highly loaded
cases is that the Low-Load Clarkson Algorithm is much more efficient than the High-Load
Clarkson Algorithm concerning internal computations. Also, it is better concerning the work
for the lightly loaded case, but its work does not scale well with an increasing |H|. The
main innovation for Theorem 4 is that we come up with a Chernoff-style bound for |V | that
holds for all LP-type problems. Gärtner and Welzl [9] also provided a Chernoff-style bound
on |V | for LP-type problems, but their proof only works for LP-type problems that are
regular (i.e., for all G ⊆ H with |G| ≥ d, all optimal bases of G have a size of exactly d) and
non-degenerate (i.e., every G ⊂ H with |G| ≥ d has a unique optimal basis). While regularity
can be enforced in the non-degenerate case, it is not known so far how to make a general
LP-type problem non-degenerate without substantially changing its structure (though for
most of the applications considered so far for LP-type problems, slight perturbations of the
input would solve this problem). Also, since the duplication approach of Clarkson’s algorithm
generates degenerate instances, their Chernoff-style bound therefore cannot be used here.

2 Low-Load Clarkson Algorithm

Suppose that we have an arbitrary LP-type problem (H, f) of dimension d with |H| =
O(n logn). First, we present and analyze an algorithm for |H| ≥ n, and then we extend it to
any 1 ≤ |H| = O(n logn).

Recall that initially the elements of H are assigned to the nodes uniformly and independ-
ently at random. Let us denote the set of these elements in node vi by H0(vi) to distinguish
them from copies created later by the algorithm, and let H0 =

⋃
iH0(vi).

At any time, H(vi) denotes the (multi)set of elements in H known to vi (including the
elements in H0) and H(U) =

⋃
iH(vi), where U represents the node set. Let m = |H(U)|.

At a high level, our distributed algorithm is similar to the original Clarkson algorithm, but
sampling a random subset and termination detection are more complex now (which will be
explained in dedicated subsections). In fact, the sampling might fail since a node vi might
not be able to collect enough elements for its sample set Ri. Also, a filtering approach is
needed to keep |H(U)| low at all times (see Algorithm 2). However, it will never become too
low since the algorithm never deletes an element in H0, so |H(U)| ≥ n at any time. Note
that never deleting an element in H0 also guarantees that no element in H will ever be
washed out (which would result in incorrect solutions).

For the runtime analysis, we note that sampling Ri can be done in one round (see
Section 2.1), spreading the violator set Vi just takes one round (by executing the push
operations in parallel), and we just need one more round for processing the received elements
h, so each iteration of the repeat loop just takes O(1) rounds. We start with a slight variant
of Lemma 1.

I Lemma 5. Let (H, f) be an LP-type problem of dimension d. For any 1 ≤ r < m, where
m = |H(U)|, the expected size of Vi = {h ∈ H(vi) | f(R) < f(R ∪ {h})} for a random subset
R of size r from H(U) is at most d · m−r

n(r+1) .

DISC 2019



24:6 Fast Distributed Algorithms for LP-Type Problems of Low Dimension

Algorithm 2 Low-Load Clarkson Algorithm.
1: repeat
2: for all nodes vi in parallel do
3: choose a random subset Ri of size 6d2 from H(U) . see Section 2.1
4: if the sampling of Ri succeeds then
5: Vi := {h ∈ H(vi) | f(Ri) < f(Ri ∪ {h})}
6: for all h ∈ Vi do push(h) . randomly spread Vi
7: for all h received by vi do add h to H(vi)
8: for all h ∈ H(vi)−H0(vi) do
9: keep h with probability 1/(1 + 1/(2d))

10: until at least one vi satisfies f(Ri) = f(H) . see Section 2.2

Proof. According to Lemma 1, the expected size of V (R) = {h ∈ H(V ) | f(R) < f(R∪{h})}
for a random subset R is at most d · m−rr+1 . Since every element in H(U) has a probability of
1/n to belong to H(vi), E[|Vi|] ≤ d · m−r

n(r+1) . J

This allows us to prove the following lemma.

I Lemma 6. For all i, |Vi| = O(m/n+ logn), w.h.p., and
∑n
i=1 |Vi| ≤ m/(3d), w.h.p.

Proof. Let the random variable Xi be defined as |Vi| and let X =
∑
iXi. If the sampling

of Ri fails then, certainly, Xi = 0, and otherwise, E[Xi] ≤ d · m−r
n(r+1) for all i. Thus,

E[X] ≤ d·m−rr+1 . Also, since the elements in H(U) are distributed uniformly and independently
at random among the nodes at all times, the standard Chernoff bounds imply that |H(vi)| =
O(m/n+ logn) w.h.p., and therefore also Xi ≤ O(m/n+ logn) w.h.p. Unfortunately, the
Xi’s are not independent since the H(vi)’s are not chosen independently of each other though
the Ri’s are, but the dependencies are minute: given that we have already determined H(vj)
for k many vj ’s, where k = o(n) is sufficiently small, the probability that any one of the
remaining elements h ∈ H(U) is assigned to H(vi) is 1/(n− o(n)) = (1 + o(1))/n, so that
for any subset S = {i1, . . . , ik} ⊆ {1, . . . , n} of size k,

E[Xi1 · . . . ·Xik ] =
∑

xi1 ,...,xik

xi1 · . . . · xik · Pr[Xi1 = xi1 ∧ . . . ∧ Xik = xik ]

=
∑
H(vi1 )

Pr[H(vi1)]
∑
xi1

xi1 Pr[Xi1 = xi1 | H(vi1)] ·

 ∑
H(vi2 )

Pr[H(vi2) | H(vi1)]
∑
xi2

xi2 Pr[Xi2 = xi2 | H(vi1) ∧H(vi2)] · . . .


=
∑
H(vi1 )

Pr[H(vi1)]
∑
xi1

xi1 Pr[Xi1 = xi1 | H(vi1)] ·

 ∑
H(vi2 )

(1 + o(1)) Pr[H(vi2)]
∑
xi2

xi2 Pr[Xi2 = xi2 | H(vi2)] · . . .


= . . . ≤ (1 + o(1))k

k∏
j=1

E[Xij ] ≤
(

(1 + o(1)) d · m− r
n(r + 1)

)k
. (∗)

This allows us to use a Chernoff-Hoeffding-style bound for k-wise negatively correlated
random variables, which is a slight extension of Theorem 3 in [17]:



K. Hinnenthal, C. Scheideler, and M. Struijs 24:7

I Theorem 7. Let X1, . . . , Xn be random variables with Xi ∈ [0, C] for some C > 0. Suppose
there is a k > 1 and q > 0 with E[

∏
i∈S Xi] ≤ qs for all subsets S ⊆ {1, . . . , n} of size s ≤ k.

Let X =
∑n
i=1 Xi and µ = q · n. Then it holds for all δ > 0 with k ≥ dµδe that

Pr[X ≥ (1 + δ)µ] ≤ e−min{δ2,δ}µ/(3C)

Setting C = Θ(m/n + logn), µ = q · n with q = (1 + o(1))d · m−r
n(r+1) and r = 6d2, and

δ > 0 large enough so that δ2µ = ω(C lnn) but δµ = o(n) so that inequality (∗) applies,
which works for δ = Θ(

√
(Cd lnn)/m) = O(

√
(d ln2 n)/n), Pr[X ≥ m/(3d)] is polynomially

small in n. J

Next, we show that m will never be too large, so that the communication work of the
nodes will never be too large.

I Lemma 8. For up to polynomially many iterations of the Low-Load Clarkson Algorithm,
|H(U)| = O(|H0|), w.h.p.

Proof. Let q = |H(U)−H0| and suppose that |H(U)| ≥ c|H0| for some c ≥ 4, which implies
that q ≥ (c−1)/c ·m. Then it holds for the size q′ of H(U)−H0 at the end of a repeat-round
that

E[q′] ≤
(
q + m

3d

)
· 1/

(
1 + 1

2d

)
≤
(
q + cq

(c− 1) · 3d

)
/

(
1 + 1

2d

)
= q

((
1 + 1

2d

)
−
(

1
6d −

1
(c− 1) · 3d

))
/

(
1 + 1

2d

)
= q(1−Θ(1/d))

Since the decision to keep elements h ∈ H(U)−H0 is done independently for each h, it follows
from the Chernoff bounds that Pr[q′ > q] is polynomially small in n for |H(U)| ≥ 4|H0|.
Moreover, Lemma 6 implies that |H(U)| can increase by at most |H(U)|/3 in each iteration,
w.h.p., so for polynomially many iterations of the algorithm, |H(U)| ≤ 5|H0| w.h.p. J

Thus, combining Lemma 6 and Lemma 8, the maximum work per round for pushing out
some Vi is bounded by O(logn) w.h.p. Next we prove a lemma that adapts Lemma 2 to our
setting.

I Lemma 9. Let B be an arbitrary optimal basis of H. If, for T many iterations of the
Low-Load Clarkson Algorithm, every node was successful in sampling a random subset and
no vi satisfies f(Ri) = f(H), then E[|{h ∈ H(U) | h ∈ B}|] ≥ (2/

√
e)T/d after these T

iterations.

Proof. Let B = {h1(B), . . . , hb(B)}, b ≤ d, and let pi,j be the probability that f(Ri) <
f(Ri ∪ {hj(B)}). If node vi has chosen some Ri with f(Ri) < f(H), then there must
exist an hj(B) with f(Ri) < f(Ri ∪ {hj(B)}), which implies that under the condition that
f(Ri) < f(H),

∑
j pi,j ≥ 1. The pi,j ’s are the same for each vi since each vi has the same

probability of picking some subset R of H(U) of size 6d2. Hence, we can simplify pi,j to pj
and state that

∑
j pj ≥ 1. Now, let pj,t be the probability that f(R) < f(R ∪ {hj(B)}) for a

randomly chosen subset R in iteration t, and fix any values for the pj,t so that
∑
j pj,t ≥ 1

for all j and t. Let µj,t be the multiplicity of hj(B) at the end of round t. Then, for all j,
µj,0 ≥ 1, and

E[µj,t+1] ≥ 1 + pj,t
1 + 1/(2d) · µj,t

DISC 2019



24:8 Fast Distributed Algorithms for LP-Type Problems of Low Dimension

Hence, E[µj,T ] ≥ (
∏T
t=1(1 + pj,t))/(1 + 1/(2d))T . Since 1 + x ≥ 2x for all x ∈ [0, 1], it follows

that
∏
t(1 + pj,t) ≥

∏
t 2pj,t = 2

∑
t
pj,t . Also, since

∑T
t=1
∑
j pj,t ≥ T , there must be a j∗

with
∑T
t=1 pj∗,t ≥ T/d. Therefore, there must be a j∗ with E[µj∗,T ] ≥ 2T/d/(1 + 1/(2d))T ≥

2T/d/eT/(2d), which completes the proof. J

Since |H(U)| is bounded by O(|H0|) w.h.p., the expected number of h ∈ H with h ∈ B
should be in O(|H0|) as well. Due to Lemma 8, this cannot be the case if T = Ω(d log |H0|)
is sufficiently large. Thus, the algorithm must terminate within O(d log |H0|) = O(d logn)
rounds w.h.p. In order to complete the description of our algorithm, we need distributed
algorithms satisfying the following claims:
1. The nodes vi succeed in sampling subsets Ri uniformly at random in a round, w.h.p.,

with maximum work O(d2 + logn).
2. Once a node vi has chosen an Ri with f(Ri) = f(H), all nodes are aware of that within

O(logn) communication rounds, w.h.p., so that the Low-Load Clarkson Algorithm can
terminate. The maximum work for the termination detection is O(logn) per round.

The next two subsections are dedicated to these algorithms.

2.1 Sampling Random Subsets
For simplicity, we assume here that every node knows the exact value of logn, but it is
easy to see that the sampling algorithm also works if the nodes just know a constant factor
estimate of logn, if the constant c used below is sufficiently large.

Each node vi samples a subset Ri in a way that is as simple as it can possibly get: vi asks
(via pull requests) s = c(6d2 + logn) many nodes vj , selected uniformly and independently
at random, to send it a random element in H(vj), where c is a sufficiently large constant. If
vi doesn’t receive at least 6d2 distinct elements (where two elements are distinct if they do
not represent the same copy of some h ∈ H), the sampling fails. Otherwise, vi selects the
first 6d2 distinct elements (based on an arbitrary order of the pull requests) for its subset Ri.
Certainly, the work for each node is just O(d2 + logn).

I Lemma 10. For any i, node vi succeeds in sampling a subset Ri uniformly at random,
w.h.p.

Proof. Suppose that vi succeeds in receiving k distinct elements in the sampling procedure
above. Since the elements in H(U) are distributed uniformly and independently at random
among the nodes, every subset R of size k in H(U) has the same probability of representing
these k elements. Hence, it remains to show that vi succeeds in receiving at least 6d2 distinct
elements w.h.p.

Consider any numbering of the pull requests from 1 to s. For the jth pull request of vi,
two bad events can occur. First of all, the pull request might be sent to a node that does not
have any elements. Since |H(U)| ≥ n, the probability for that is at most (1− 1/n)n ≤ 1/e.
Second, the pull request might return an element that was already returned by one of the
prior j − 1 pull requests. Since this is definitely avoided if the jth pull request selects a node
that is different from the nodes selected by the prior j − 1 pull requests, the probability for
that is at most (j − 1)/n. So altogether, the probability that a pull request fails is at most
1/e+ s/n ≤ 1/2.

Now, let the binary random variable Xj be 1 if and only if the jth pull request fails.
Since the upper bound of 1/2 for the failure holds independently of the other pull requests, it
holds for any subset S ⊆ {1, . . . , s} that E[

∏
j∈S Xj ] ≤ (1/2)|S|. Hence, Theorem 7 implies



K. Hinnenthal, C. Scheideler, and M. Struijs 24:9

that
∑
j Xj ≤ 3s/4 w.h.p. If c is sufficiently large, then s/4 ≥ 6d2, which completes the

proof. J

Note that our sampling strategy does not reveal any information about which elements
are stored in H(vi), so each element still has a probability of 1/n to be stored in H(vi),
which implies that Lemma 5 still holds.

2.2 Termination
For efficiency reasons, the termination check is done concurrently with the iterations of the
repeat-loop, i.e., instead of waiting for the termination check to complete, the nodes already
start a new iteration. We use the following strategy for each node vi:

Suppose that in iteration t of the repeat loop, |Vi| = 0, i.e., f(Ri) = f(Ri ∪H(vi)). Then
vi determines an optimal basis B of Ri, stores the entry (t, B, 1) in a dedicated set Si, and
performs a push operation on (t, B, 1). At the beginning of iteration ti of the repeat loop, vi
works as described in Algorithm 3. In the comparison between f(B′) and f(B) we assume
w.l.o.g. that f(B′) = f(B) if and only if B′ = B (otherwise, we use a lexicographic ordering
of the elements as a tie breaker). The parameter c in the algorithm is assumed to be a
sufficiently large constant known to all nodes.

Algorithm 3 One iteration of the Termination Algorithm for vi.
1: for all (t, B, x) received by vi do . update best seen base w.r.t. t
2: if there is some (t, B′, x′) in Si then
3: if f(B′) > f(B) then discard (t, B, x)
4: if f(B′) < f(B) then replace (t, B′, x′) by (t, B, x)
5: if f(B′) = f(B) then
6: replace (t, B′, x′) by (t, B,min{x, x′})
7: else
8: add (t, B, x) to Si
9: for all (t, B, x) in Si do . check optimality and maturity

10: if ∃h ∈ H(vi) : f(B) < f(B ∪ {h}) then x := 0 . not optimal
11: if t < ti − c logn then . B is mature (ti: current iteration)
12: remove (t, B, x) from Si
13: if x = 1 then output f(B), stop
14: else
15: push(t, B, x)

I Lemma 11. If the constant c in the termination algorithm is large enough, it holds
w.h.p.: Once a node vi satisfies f(Ri) = f(H), then all nodes vj output a value f(B)
with f(B) = f(H) after c logn iterations, and if a node vi outputs a value f(B), then
f(B) = f(H).

Proof. Using standard arguments, it can be shown that if the constant c is large enough,
then for every iteration t, it takes at most (c/2) logn further iterations, w.h.p., until the
basis B with maximum f(B) injected into some Si at iteration t (which we assume to be
unique by using some tie breaking mechanism) is contained in all Si’s. At this point, we have
two cases. If f(B) = f(H), then for all vi, there is no h ∈ H(vi) with f(B) < f(B ∪ {h}) at
any point from iteration t to t+ (c/2) logn, and otherwise, there must be at least one vi at

DISC 2019



24:10 Fast Distributed Algorithms for LP-Type Problems of Low Dimension

iteration t+ (c/2) logn with f(B) < f(B ∪ {h}) for some h ∈ H(vi). In the first case, no vi
will ever set x in the entry (t, B, x) to 0, so after an additional (c/2) logn iterations, every vi
still stores (t, B, 1) and therefore outputs B. In the second case, there is at least one entry
of the form (t, B, 0) at iteration s+ (c/2) logn. For this entry, it takes at most (c/2) logn
further iterations, w.h.p., to spread to all nodes so that at the end, no node outputs B. J

Since the age of an entry is at most c logn and for each age a node performs at most one
push per iteration, every node executes just O(logn) pushes per iteration.

2.3 Extension to Any |H| ≥ 1
If |H| < n, the probability that our sampling strategy might fail will get too large. Hence,
we need to extend the Low-Load Clarkson algorithm so that we quickly reach a point where
|H(U)| ≥ n at any time afterwards. We do this by integrating a so-called pull phase into the
algorithm.

Initially, a node vi sets its Boolean variable pull to true if and only if H0(v) = ∅ (which
would happen if none of the elements in H has been assigned to it). Afterwards, it executes
the algorithm shown in Algorithm 4. As long as pull = true (i.e., vi is still in its pull
phase), vi keeps executing a pull operation in each iteration of the algorithm, which asks
the contacted node vj to send it a copy of a random element in H0(vj), until it successfully
receives an element h that way. Once this is the case, vi pushes the successfully pulled element
to a random node vj (so that all elements are distributed uniformly and independently at
random among the nodes), which will store it in H0(vj), and starts executing the Low-Load
Clarkson algorithm from above.

Algorithm 4 Extended Low-Load Clarkson Algorithm for vi.
1: repeat
2: if pull = true then . vi is still in its pull phase
3: pull(h) . vi expects some h ∈ H0
4: if h 6= NULL then
5: push(h, 0) . 0: flag that h belongs to H0
6: pull := false . pull phase is over
7: else
8: choose a random subset Ri of size 6d2 from H(U)
9: if the sampling of Ri succeeds then

10: Vi := {h ∈ H(vi) | f(Ri) < f(Ri ∪ {h})}
11: for all h ∈ Vi do push(h)
12: for all (h, 0) received by vi do add h to H0(vi)
13: for all h received by vi do add h to H(vi)
14: for all h ∈ H(vi)−H0(vi) do
15: keep h with probability 1/(1 + 1/(2d))
16: until vi outputs a solution

I Lemma 12. After O(logn) rounds, all nodes have completed their pull phase, w.h.p.

Proof of Lemma 11. Note that no node will ever delete an element in H0, and pull requests
only generate elements for H0, so the filtering approach of the Low-Load Clarkson algorithm
cannot interfere with the pull phase. Thus, it follows from a slight adaptation of proofs in



K. Hinnenthal, C. Scheideler, and M. Struijs 24:11

previous work on gossip algorithms (e.g., [13]) that for any |H| ≥ 1, all nodes have completed
their pull phase after at most O(logn) rounds, w.h.p. J

Certainly, |H0| ≤ n+ |H| = O(n logn) and H ⊆ H0 at any time, and once all nodes have
finished their pull phase, |H0| ≥ n, so we are back to the situation of the original Low-Load
Clarkson Algorithm.

During the time when some nodes are still in their pull phase, some nodes might already
be executing Algorithm 2, which may cause the sampling of Ri to fail for some nodes vi.
However, the analyses of Lemma 6 and Lemma 8 already take that into account. Once all
nodes have finished their pull phase, Lemma 9 applies, which means that after an additional
O(d logn) rounds at least one node has found the optimal solution, w.h.p. Thus, after
an additional O(logn) rounds, all nodes will know the optimal solution and terminate.
Altogether, we therefore still get the same runtime and work bounds as before, completing
the proof of Theorem 3.

3 High-Load Clarkson Algorithm

If |H| = ω(n logn), then our LP-type algorithm in the previous section will become too
expensive since, on expectation, |Vi| would be in the order of m/(dn), which is now ω(logn).
In this section, we present an alternative distributed LP-type algorithm that just causes
O(d logn) work for any |H| = poly(n), but the internal computations are more expensive
than in the algorithm presented in the previous section because now f(S)-values for sets of
size Θ(m/n) have to be computed instead of just O(d2). Again, we assume that initially the
elements in H are randomly distributed among the nodes in U . Let the initial H(vi) be all
elements of H assigned that way to vi. As before, H(U) =

⋃
iH(vi).

Algorithm 5 High-Load Clarkson Algorithm.
1: repeat
2: for all nodes vi in parallel do
3: compute an optimal basis Bi of H(vi)
4: push(Bi)
5: for all Bj received by vi do
6: Vj := {h ∈ H(vi) | f(Bj) < f(Bj ∪ {h})}
7: for all h ∈ Vj do push(h)
8: for all h received by vi do add h to H(vi)
9: until at least one vi satisfies f(H(vi)) = f(H)

Irrespective of which elements get selected for the Vi’s in each round, H(vi) is a random
subset of H(U) because the elements in H are assumed to be randomly distributed among
the nodes and every element in Vi is sent to a random node in U . Hence, if follows from
|H(U)| = ω(n logn) and the standard Chernoff bounds that |H(vi)| is within (1±ε)|H(U)|/n,
w.h.p., for any constant ε > 0. Thus, we are computing bases of random subsets R of size
r within (1 ± ε)|H(U)|/n, w.h.p. This, in turn, implies with E[|Vi|] ≤ d · m−r

n(r+1) , where
m = |H(U)|, that E[|Vi|] ≤ (1 + ε)d. In the worst case, however, |Vi| could be very large,
so just bounding the expectation of |Vi| does not suffice to show that our algorithm has a
low work. Therefore, we need a proper extension of Lemma 5 that exploits higher moments.
Note that it works for arbitrary LP-type problems, i.e., also problems that are non-regular
and/or degenerate.

DISC 2019



24:12 Fast Distributed Algorithms for LP-Type Problems of Low Dimension

I Lemma 13. Let (H, f) be an LP-type problem of dimension d and let µ be any multiplicity
function. For any k ≥ 1 and any 1 ≤ r < m/2 − k, where m = |H(µ)|, it holds for
V = {h ∈ H(µ) | f(R) < f(R ∪ {h})} for a random subset R of size r from H(µ) that
E[|V |k] ≤ 2(k · d · (m− r)/(r + 1))k.

Proof of Lemma 12. By definition of the expected value it holds that

E[|V |k] = 1(
m
r

) ∑
R∈(H(µ)

r )
|VR|k

For R ∈
(
H(µ)
r

)
and h ∈ H(µ) let X(R, h) be the indicator variable for the event that

f(R) < f(R ∪ {h}). Then we have(
m

r

)
E[|V |k] =

∑
R∈(H(µ)

r )
|VR|k =

∑
R∈(H(µ)

r )

 ∑
h∈H(µ)−R

X(R, h)

k

(1)
≤
∑

R∈(H(µ)
r )

 ∑
h∈H(µ)−R

X(R, h) + 2k
∑

{h1,h2}⊆H(µ)−R

X(R, h1) ·X(R, h2) + . . .

+ kk
∑

{h1,...,hk}⊆H(µ)−R

X(R, h1) · . . . ·X(R, hk)


(1) holds because X(R, h)i = X(R, h) for any i ≥ 1 and there are at most ik ways of
assigning k X(R, h)’s, one from each sum in (

∑
h∈H(µ)−RX(R, h))k, to the i X(R, h)’s in

some X(R, h1) · . . . ·X(R, hi). Moreover, for any k > 1,∑
R∈(H(µ)

r )

∑
{h1,...,hk}⊆H(µ)−R

X(R, h1) · . . . ·X(R, hk)

=
∑

Q∈(H(µ)
r+k )

∑
{h1,...,hk}⊆Q

X(Q− {h1, . . . , hk}, h1) · . . . ·X(Q− {h1, . . . , hk}, hk)

=
∑

Q∈(H(µ)
r+k )

∑
{h1,...,hk−1}⊆Q

∑
hk∈Q−{h1,...,hk−1}

X(Q− {h1, . . . , hk}, h1) · . . .

·X(Q− {h1, . . . , hk}, hk−1) ·X((Q− {h1, . . . , hk−1})− hk, hk)
(2)
≤

∑
Q∈(H(µ)

r+k )

∑
{h1,...,hk−1}⊆Q∑

hk∈B(Q−{h1,...,hk−1})

X((Q− hk)− {h1, . . . , hk−1}, h1) · . . .

·X((Q− hk)− {h1, . . . , hk−1}, hk−1)

≤
∑

Q∈(H(µ)
r+k )

d · max
hk∈Q

 ∑
{h1,...,hk−1}⊆Q−hk

X((Q− hk)− {h1, . . . , hk−1}, h1) · . . .

·X((Q− hk)− {h1, . . . , hk−1}, hk−1)


≤ ... ≤

∑
Q∈(H(µ)

r+k )
dk



K. Hinnenthal, C. Scheideler, and M. Struijs 24:13

where B(S) is an optimal basis of S. (2) holds because X((Q−{h1, . . . , hk−1})−hk, hk) = 0
for every hk 6∈ B(Q− {h1, . . . , hk−1}). The skipped calculations apply the same idea for hk
to hk−1, . . . , h2. Hence, as long as r + k < |H(µ)|/2,(

m

r

)
E[|V |k] =

∑
R∈(H(µ)

r )
|VR|k ≤

∑
Q∈(H(µ)

r+1 )
d+ 2k

∑
Q∈(H(µ)

r+2 )
d2 + . . .+ kk

∑
Q∈(H(µ)

r+k )
dk

≤ 2kk
∑

Q∈(H(µ)
r+k )

dk = 2(dk)k
(

m

r + k

)

Resolving that to E[|V |k] results in the lemma. J

Lemma 13 allows us to prove the following probability bound, which is essentially best
possible for constant d by a lower bound in [9].

I Lemma 14. Let (H, f) be an LP-type problem of dimension d and let µ be any multiplicity
function. For any γ ≥ 1 and 1 ≤ r < m/2 − γ, where m = |H(µ)|, it holds for V = {h ∈
H(µ) | f(R) < f(R ∪ {h})} for a random subset R of size r from H(µ) that

Pr[|V | ≥ 4γ · d ·m
r + 1] ≤ 1/2γ

Proof. From Lemma 13 and the Markov inequality it follows that, for any c ≥ 1 and k ≥ 1,
Pr[|V |k ≥ ck · 2(k · d · (m− r)/(r + 1))k] ≤ 1/ck and therefore,

Pr[|V | ≥ c · (1 + 1/k)(k · d · (m− r)/(r + 1))] ≤ 1/ck

Setting c = 2 and k = γ results in the lemma. J

Since, for every element h ∈ V , the probability that h ∈ H(vi) is equal to 1/n, it follows
that |Vi| = O(d logn) for every i, w.h.p., so the maximum work needed for pushing some Vi
is O(d logn). Moreover, the size of H(U) after T iterations is at most |H|+O(Tdn logn),
w.h.p. On the other hand, we will show the following variant of Lemma 9.

I Lemma 15. Let B be an arbitrary optimal basis of H. As long as no vi has satisfied
f(H(vi)) = f(H) so far, E[|{h ∈ H(U) | h ∈ B}|] ≥ 2T/d after T iterations of the High-Load
Clarkson Algorithm.

Proof. Let B = {h1(B), . . . , hb(B)}, b ≤ d, and let pi,j be the probability that f(Bi) <
f(Bi ∪ {hj(B)}). If f(Bi) < f(H), then there must exist an hj(B) with f(Bi) < f(Bi ∪
{hj(B)}), which implies that under the condition that f(Bi) < f(H),

∑
j pi,j ≥ 1. Let ρj

be the expected number of duplicates created for some copy of hj(B). Since the Bi’s are
sent to nodes chosen uniformly at random, ρj = (1/n)

∑
i pi,j . Certainly, since pi,j ∈ [0, 1]

for all i, also ρj ∈ [0, 1]. Moreover,∑
j

ρj =
∑
j

(1/n)
∑
i

pi,j = (1/n)
∑
i

∑
j

pi,j ≥ 1

Hence, we can use the same arguments as in the proof of Lemma 9, with pj replaced by ρj
and without the term (1 + 1/(2d)) in the denominator since we do not perform filtering, to
complete the proof. J

Thus, because |H(U)| ≤ |H|+O(Tdn logn) after T iterations, w.h.p., our algorithm must
terminate within O(d log |H|) = O(d logn) rounds, w.h.p. For the termination detection, we
can again use the algorithm proposed in Section 2.2, which results in an additional work of
O(logn) per round.

DISC 2019



24:14 Fast Distributed Algorithms for LP-Type Problems of Low Dimension

3.1 Accelerated High-Load Clarkson Algorithm
If we are willing to spend more work, we can accelerate the High-Load Clarkson Algorithm.
Suppose that in Algorithm 5 node vi does not just push Bi once but C many times. Then
the work for that goes up from O(d) to O(C · d), and the maximum work for pushing out
the elements of the Wi’s is now bounded by O(C · d logn), w.h.p., which means that after T
rounds, |H(U)| is now bounded by |H|+O(TC · dn logn), w.h.p. Furthermore, we obtain
the following result, which replaces Lemma 15.

I Lemma 16. Let B be an arbitrary optimal basis of H. As long as no vi has satisfied
f(H(vi)) = f(H) so far, E[|{h ∈ H(U) | h ∈ B}|] ≥ (C + 1)bT/dc after T rounds of the
High-Load Clarkson Algorithm with parameter C.

Proof. Recall the definition of ρj in the proof of Lemma 15. It now holds that ρj =
(C/n)

∑
i pi,j , which implies that ρj ∈ [0, C] for all j and

∑
j ρj ≥ C. Now, let ρj,t be the

expected number of duplicates created for some copy of hj(B) in round t, and fix any values
of ρj,t so that

∑
j ρj,t ≥ C and ρj ∈ [0, C] for all j and t. Let µj,t be the multiplicity of

hj(B) at the end of round t. Then, for all j, µj,0 ≥ 1, and

E[µj,t+1] ≥ (1 + ρj,t) · µj,t

Hence, E[µj,T ] ≥
∏T
t=1(1+ρj,t). Suppose that

∑T
t=1 ρj,t = M . Since

∏T
t=1(1+ρj,t) is a convex

function (i.e., it attains its maximum when ρj,t = ρj,t′ for all t, t′ under the constraint that∑T
t=1 ρj,t is fixed, which can be seen from the fact that ((1+r)+ε)((1+r)−ε) = (1+r)2−ε2),

it gets lowest if as many of the ρj,t’s are as large as possible and the rest is 0. Thus,∏T
t=1(1 + ρj,t) ≥ (C + 1)bM/Cc.
Since

∑T
t=1
∑
j pj,t ≥ C · T , there must be a j∗ with

∑T
t=1 pj∗,t ≥ C · T/d. Therefore,

there must be a j∗ with E[µj∗,T ] ≥ (C + 1)bT/dc, which completes the proof. J

Setting C = logε n for any constant ε > 0, it follows that our algorithm must terminate
in O((d/ε) log(|H|)/ log log(n)) = O(d log(n)/ log log(n)) rounds, w.h.p. This completes the
proof of Theorem 4.

4 Experimental Results

While we have obtained the theoretical bound of O(d logn) rounds w.h.p. for Algorithms 2
and 5, we are also interested in their practical performance. In particular, we would like to
estimate the constant factor hidden in our asymptotic bound. To achieve this, we will look at
the specific LP-type problem of finding the minimum enclosing disk, i.e., the two-dimensional
version of the minimum enclosing ball problem mentioned in the introduction.

Note that the running time for the termination phase (Algorithm 3) of these algorithms
is predictable and independent of the actual input, so we will measure the number of rounds
until at least one node found the solution. We consider the four different test cases shown in
Figure 1. For each test case, we take the average result of 10 runs of our algorithms with n
nodes on n data-points, where n = 2i ranges over i = 1, . . . 14, (this is extended to 17 for the
duo-disk case for the Low-Load Clarkson Algorithm), see Figures 2a and 2b for the results.

For the Low-Load Algorithm, note that the small test cases finish within one round,
because there is a high probability that there is a node vi where H(vi) contains an optimal
basis. For the duo-disk test case the number of rounds is 1.2 logn, while it is 1.7 logn for
the other test cases. For the High-Load Algorithm, the runtime of the duo-disk test cases is
around 0.9 logn, while it is 1.1 logn for the other test cases. So these experiments show that



K. Hinnenthal, C. Scheideler, and M. Struijs 24:15

(a) duo-disk: The
points are uniformly
distributed over a disk
defined by 2 points.

(b) triple-disk: The
points are uniformly
distributed over a disk
defined by 3 points.

(c) triangle: The
points are uniformly
distributed over a tri-
angle.

(d) hull: The points
are perturbed vertices
of a regular polygon.

Figure 1 The 4 types of data-sets of the minimum enclosing disk problem used in our experimental
evaluation: duo-disk, triple-disk, triangle, and hull

8 10 12 14 16

2i nodes

2

4

6

8

10

12

14

av
er

ag
e

ro
u

n
d

s
u

n
ti

l
te

rm
in

at
io

n

triple-disk

triangle

hull

duo-disk

(a) The average number of rounds until a node
finds the minimum enclosing disk over 10 runs
of the Low-Load Clarkson Algorithm. Test
instances of size < 28 finish in one round.

2 4 6 8 10 12 14

2i nodes

2

4

6

8

10

12

14

16

18

av
er

ag
e

ro
u

n
d

s
u

n
ti

l
te

rm
in

at
io

n

triple-disk

triangle

hull

duo-disk

(b) The average number of rounds until a node
finds the minimum enclosing disk over 10 runs
of the High-Load Clarkson Algorithm.

Figure 2 The result of the experimental analysis.

when applied to the minimum enclosing disk problem, where d ≤ 3, the constants hidden in
our asymptotic bounds are small. Note that the three test cases other than duo-disk behave
similarly, while duo-disk runs a bit faster. The difference between the duo-disk case and the
other test cases is the size of the optimal basis, which is 2 for duo-disk and 3 for the others.
This confirms the runtime bound implied by Lemma 2, since we can define d there as the
minimum size of an optimal basis, and suggests that other features of the problem do not
influence the number of rounds much.

5 Conclusion

In this paper we presented various efficient distributed algorithms for LP-type problems in
the gossip model. Of course, it would be interesting to find out which other problems can
be efficiently solved within Clarkson’s framework, and whether some of our bounds can be
improved.

DISC 2019



24:16 Fast Distributed Algorithms for LP-Type Problems of Low Dimension

References
1 Noga Alon and Nimrod Megiddo. Parallel linear programming in fixed dimension almost surely

in constant time. Journal of the ACM, 41(2):422–434, 1994.
2 Kenneth L. Clarkson. Las vegas algorithms for linear and integer programming when the

dimension is small. Journal of the ACM, 42(2):488–499, 1995.
3 Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauerwald, and Christian

Scheideler. Stabilizing consensus with the power of two choices. In Proc. 23rd ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 149–158, 2011.

4 Martin Dyer. A parallel algorithm for linear programming in fixed dimension. In Proc. 11th
Symposium on Computational Geometry (SoCG), pages 345–349, 1995.

5 Martin Dyer, Bernd Gärtner, Nimrod Megiddo, and Emo Welzl. Linear programming. In
Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete and Computational
Geometry, 3rd edition, chapter 49, pages 49:1–49:19. Chapman and Hall/CRC, 2017.

6 Martin E. Dyer and Alan M. Frieze. A randomized algorithm for fixed-dimensional linear
programming. Mathematical Programming, 44(1–3):203–212, 1989.

7 Bernd Gärtner. A subexponential algorithm for abstract optimization problems. SIAM Journal
on Computing, 24(5):1018–1035, 1995.

8 Bernd Gärtner and Emo Welzl. Linear programming – randomization and abstract frameworks.
In Proc. 13th Symposium on Theoretical Aspects of Computer Science (STACS), pages 669–687,
1996.

9 Bernd Gärtner and Emo Welzl. A simple sampling lemma: Analysis and applications in
geometric optimization. Discrete Computational Geometry, 25:569–590, 2001.

10 Michael T. Goodrich. Geometric partitioning made easier, even in parallel. In Proc. 9th ACM
Symposium on Computational Geometry (SoCG), pages 73–82, 1993.

11 Bernhard Häupler. Analyzing network coding (gossip) made easy. Journal of the ACM,
63(3):26:1–26:22, 2016.

12 Bernhard Häupler, Jeet Mohapatra, and Hsin-Hao Su. Optimal gossip algorithms for exact and
approximate quantile computations. In Proc. ACM Symposium on Principles of Distributed
Computing (PODC), pages 179–188, 2018.

13 Richard M. Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöcking. Randomized
rumor spreading. In Proc. 41st IEEE Symposium on Foundations of Computer Science (FOCS),
pages 565–574, 2000.

14 David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In Proc. 44th IEEE Symposium on Foundations of Computer Science (FOCS
2003), pages 482–491, 2011.

15 Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. In Proc. 28th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 68–77, 1987.

16 Abhiram G. Ranade. How to emulate shared memory. Journal of Computer and System
Sciences, 42(3):307–326, 1991.

17 Jeanette Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds for ap-
plications with limited independence. SIAM Journal on Discrete Mathematics, 8(2):223–250,
1995.

18 Micha Sharir and Emo Welzl. A combinatorial bound for linear programming and related
problems. In Proc. 9th Symposium on Theoretical Aspects of Computer Science (STACS),
pages 569–579, 1992.

19 Petr Škovroň. Abstract Models of Optimization Problems. PhD thesis, Charles University,
Prague, 2007.

20 Emo Welzl. Partition trees for triangle counting and other range searching problems. In Proc.
4th ACM Symposium on Computational Geometry (SoCG), pages 23–33, 1988.


	Introduction
	LP-type Problems
	Network Model
	Related Work
	Our Results

	Low-Load Clarkson Algorithm
	Sampling Random Subsets
	Termination
	Extension to Any |H|1

	High-Load Clarkson Algorithm
	Accelerated High-Load Clarkson Algorithm

	Experimental Results
	Conclusion

