Basics on scientific working

Scientific working:

Scientific working means to start from a question and then analyze and work with this question. The aim is to get new findings and to document the process and the finding clearly.

- With a scientific work the student shows his competences in systematically and analytical scientific working
- A distinction is drawn between a scientific thesis as a result and scientific working as a process

Following criteria are important for a scientific work:

- The research deals with a visible topic, including a detailed description, so that others can identify the topic.
- Your research has to tell new foundations about the topic, no one has talked about before, or your research has to describe a new point of view.
- The research has to be of avail for others
- Your research has to include details that allow others to verify your hypotheses. So it has to include information that allow a discussion within the scientific community

Procedure model for scientific working

- To hypothesize, describe a problem
- Describe the current state of research about your topic, which is relevant for your hypothesis or problem
- Describe your approach for a new solution of your problem/ of the proof or the falsification of your hypothesis
- Constitute/ show / proof, that your approach (a) solves a problem and (b) is novel.
- Sum up your results and discuss possibilities for further research (open problems, new questions) which results from your work.

Steps of scientific working:

- Problem
- Current state of research
 - Search material
 - Literature review
- Approach
 - Create a structure/outline
 - Own work (architectures, models, hypothesize, algorithm, …)
 - validation, implementation, proof, experiment

- …

- Write your thesis

Find a Topic:

To find a topic it’s often helpful to have a look at the different research groups of your university or at different companies where you want to write your thesis or have a look on your own ideas.

- Often research groups have announcements
 - Topics are often defined clearly, but there is also place for own ideas
 - Advisors have often a big interest on the results

- Talk with possible advisors
 - Create a topic within talks
 - More place for your own interests
 - In addition often an orientation to the interests of your advisor

- Own topic
 - Rather an exception, but possible
 - Results are often not so important for the advisor
 - Students often want too much

- Topic in a company
 - Often you are the butler of two sides
 - In the best case your advisor at university is part of the industry project

- You have to attend the following points:
 - Which coverage and which depth should the work have?
 - Has the topic enough potential for a scientific work?
 - Can you contain and specify the topic?
 - Which hypotheses and questions can derive from the topic?
 - Which material can you use for this topic?

Important:

- To describe the implementation of a system is no scientific work!
 - In the best case it’s part of the use of a software engineering process

- Why?
 - Does not express a problem which has to solve
 - Does not show the state of the art of the research!
 - No evaluation of the results
Does not show open questions and future research

Contain your topic to a question to attend in your thesis/ create a Proposal

- Familiarizing yourself with the topic/ plan your work
 - Bachelor thesis: 4 weeks → 90 hours
- Written fixing of your topic, assignments, time schedule
 - What should be the achievement of your work?
 - Target agreement
 - Draft by student
 - Creation in agreement with advisor
 - Detailed time schedule
 - Name work packages
 - Plan the order and time for the different packages
- Registration
- Development
 - Bachelor thesis: 5 month → 360 hours

Project plan:

- Time scheduling
 - Take your deadlines seriously
 - During thesis with implementation, define the time for it
 - In agreement with your advisor
 - Normally max. 50% of your time
 - You need more time for writing than you think!
 - Plan 14 days for correction at the end of your thesis
- Time management
 - Time schedule is not equal to execution
 - But have a look on your time schedule and adapt it permanently
 - Adapt consequences of delays
 - If you have big problems, talk with your advisor early!
 - Always have a look at: study, exams, job, semester times
Search for material: Sources

- Sources must have a relevance to guarantee the quality of scientific work
- Need to use the whole spectrum of sources. Restriction on appropriate sources is not legal.
- Don’t use trivial literature and unsecured internet resources as well as resources without reference
- Books: always use the newest edition
- Journals and Paper: good for actual topics
 - Citeseer, http://citeseer.ist.psu.edu/
 - Springer: http://www.springerlink.com/
 - University library: ub.upb.de
 → Access to the portals from the network of the university!

Resource search on the web:

- Resources on the web are often more actual
- It’s difficult to retrace the quality of the resources
- Therefore prefer scientific articles or technical reports (for example of a research group) Also you can use specifications and manuals.
- Internet references: URL+Description+day of download
- http://scholar.google.com – scientific search engine (shows also what resources are accessible from university network)
- Wikipedia:
 - Not good for primary reference
 - Good for orientation and finding of good literature
 - Good for some really actual topics

Collect literature /bibliography

- Founded literature hat to note with complete references, so a later locating is easier.
- In best case write a short summary after reading an article:
 - What is the input?
 - Why is it relevant for my thesis?
- To collect and administrate your literature and the reference, there exists many tools
 - Citavi
 - Zotero
 - Etc.
- If you write your thesis with LaTeX it’s good to use BibTeX and Tools like jabref.
Formalism

- **Language**: German or English
- **Orthography, grammar**: error free
- **Typological presentation**
 - Accentuation with italic or bold
 - no CAPITALIZATION, underline
- **Footnote**
 - Use advised
- **Foreign words and terms**
 - Explain unknown foreign words (glossary)
- **Abbreviation**
 - Explain abbreviations which are not used in dictionaries

Content

- **Phrasing**
 - Scientific, precise style
 - Clipped and precise explanations
 - No personal terminology (“I think…”)
- **Line of argument**
 - Reproducible and clear argumentation
 - Show known facts with resources
 - Connections between the different chapters of your thesis
- **Graphics**
 - Connection between graphics and text is very important
 - Only readable graphics
- **Citation**
 - Needed for the corroboration of your own argumentation line
 - **You have to mark foreign ideas!**
 - Show your own ideas as your own and ideas and results of others as foreign ideas and results!
 - Direct vs. Indirect citation
 - Direct:
 - „A formula F is a tautology iff ¬F is unsatisfiable.“ (Schöning 2000, S. 19)
 - Indirect:
 - We have shown that ¬F is unsatisfiable, so F is a tautology (Schöning 2000, S. 19)
 - Indirect:
 - Because of the unsatisfiability of ¬F, F is like written in Schöning (2000, S. 19) a tautology.
The structure of a scientific work

- Title page
 - Title, with subtitle if applicable
 - Type of thesis (bachelor, master etc.)
 - Author, location, date
 - Have a look at special regulations (examination office)
- Affirmation
- Abstract
- Outline/Table of contents
 - Title until sub subtitle or subsubsubtitle
 - With page number
- List of figures, or at the end
- List of figures, or at the end
- List of abbreviations (optional), or at the end
- Introduction
- Main section
- Related work
- Conclusion/Outlook
- Appendix (optional)
- Bibliography
 - Alphabetical order of author
- Glossary (optional)
- Index (optional)
- enclosure (optional)

Explanatory notes:

- Title
 - Clear declaration of the title
 - To attract interesting readers
- Abstract
 - Defines the topic of the thesis
 - Shows the important theses
 - Short conclusion of the work
 - No background material!
 - After reading the abstract, the reader decides to read the work or not
 - The structure must show the central theme
- Introduction:
 - Motivation, problem description and aim of your work
 - Research areas, which are important for your work and there meaning
 - goal
 - approach
- Structure of your work
 - Main part
 o Important fundamentals for your work
 o "State of the art" / "State-of-practice"
 o Own approach
 o Practical example/Implementation etc.
 o Evaluation of the results
 - Structure:
 o Content discussed with advisor
 o Connection for each section
 - Introduction, Content, Conclusion
 o Section in each chapter to show connections
 - Subheading
 - Three or max. 4 levels of subsection
 o Formalism:
 - Decimal number
 - Chapters (and only those) always start on a new page
 o Double page → New chapter on the right side

- Related work
 o Fundamentals: Gives an overview of other related works, which are important for an exact dealing with your topic
 - Only in short way
 o Discuss the related work in a critical way in contrast to your own work
 - Describe advantages and disadvantages of the work, different assumptions, similarities etc.
 o Often last part, before the conclusion, but can also find before the basic foundations
 - Advantage: You can discuss the other work on a better knowledge of the reader
 - Disadvantage: Classification of the topic sometimes more difficult

- Conclusion
 o Conclusion of all results
 - Only results!
 o Discusses the results from a bigger point of you, shows bigger connections
 o Can make recommendations if applicable
 o Shows the amount of your work
 o Discusses limitations of your work
 o Important chapter after the abstract!
How to write a good scientific work?

- There exists no patent remedy- but a good article of Prof. Hal Varian (from Berkeley) related to this topics
- Varian has five tips (for beginners and advanced learners)
 o 1. Look for ideas in the world, not in the journals!
 ▪ You don’t find ideas in an article or book
 ▪ Your live shows you the ideas, talking with others, reading the newspaper
 ▪ Go through your live with open eyes!
 o 2. First make your model as simple as possible, and then generalize it!
 ▪ Try to describe your idea in your own words, so that another person, “not related to your subject” understand it.
 ▪ Reduce to the essential parts, what you need to explain it.
 ▪ May be you can generalize it.
 o 3. Look at the literature later, not sooner!
 ▪ Only than when you form your own idea
 ▪ Take time to formulate your own point of view
 o 4. Model your paper after your seminar!
 ▪ Take every chance to present your ideas to other people
 ▪ They force you to come to the point
 ▪ The audience penalize redundancy, unclarity etc.
 ▪ Take the chance to use feedback for your written work. What was difficult to understand? Are there addtional ideas? Literature?
 o 5. Stop, when you’ve made the point!
 ▪ When there exists no more questions (during your presentation) stop to think about
 ▪ You are finished with your work
 ▪ (Or: Your topic was not good ;))

More tips:

- Helpful techniques for structuring are mind mapping and clustering
- Talk with your advisor regularly
- If you have questions, ask your advisor or come to the learning center!
Resources (in German):

http://plm.in.tu-clausthal.de/PCP/documents/wernigerode/mueller_einfuehrung_wiss_arbeiten.pdf

http://groups.uni-paderborn.de/matiker/index.php?action=download_resource&id=45&module=resources_module&src=%40random46cda89ab5569