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1 Introduction

1.1 Motivation

An n-dimensional lattice is a discrete, additive subgroup of Rn. Such a lattice can
also be represented as the set of all integer linear combinations of some linearly
independent vectors in Rn, where the linearly independent vectors are called a
basis of the lattice. There are many famous problems on lattices, including the
shortest vector problem (SVP) and the closest vector problem (CVP). In the SVP,
one is asked to find a shortest nonzero vector in a lattice generated by a given
basis. In the CVP, one is given a basis as well as an arbitrary target vector x ∈ Rn,
and needs to find a vector in the lattice generated by the basis that is closest to
the target x. Both problems have been shown to be NP-hard (under randomized
reductions in the case of SVP) [2, 12].

Micciancio and Voulgaris gave an algorithm for both problems having 2O(n) time
and space complexity with respect to the Euclidean norm [13]. The central part of
their algorithm is solving a variant of the CVP where additionally to a lattice basis
and a target vector one is given a description of the Voronoi cell of the lattice,
i.e., the set of all points in Rn that are at least as close to 0 as to any other lattice
vector. It is clear that the Voronoi cell can be described as the intersection of all
halfspaces H≤‖·‖2(0, v) for all lattice vectors v, where H≤‖·‖2(0, v) denotes the set of
all points in Rn that are at least as close to 0 as to v. Using the Euclidean norm, it
is sufficient to consider all Voronoi-relevant vectors when taking this intersection.
A lattice vector v 6= 0 is called Voronoi-relevant if there is some x ∈ Rn having the
same distance to 0 as to v but a strictly larger distance to all other lattice vectors.
The algorithm by Micciancio and Voulgaris uses the set of Voronoi-relevant vectors
as a description of the Voronoi cell and thus relies on the fact that there are at
most 2(2n − 1) Voronoi-relevant vectors in a lattice when the Euclidean norm
is used. This was shown in [1] with the crucial parallelogram identity that holds
exactly for norms induced by a scalar product, e.g., the Euclidean norm. The open
problems sections in [13] asks for an extension of the algorithm by Micciancio and
Voulgaris to all p-norms, but for this one needs to find an adequate upper bound
for the number of Voronoi-relevant vectors with respect to arbitrary p-norms.

1.2 Summary of results

The main goal of this thesis is to analyze the number of Voronoi-relevant vectors
in a lattice with respect to norms other than the Euclidean norm.
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1 Introduction

First, it will be shown that the upper bound 2(2n − 1) shown in [1] still holds
for strictly convex norms in the case n = 2, i.e., that a two-dimensional lattice has
at most six Voronoi-relevant vectors with respect to an arbitrary strictly convex
norm. A norm ‖ · ‖ is called strictly convex if for all x, y ∈ Rn with x 6= y
and ‖x‖ = ‖y‖ and all 0 < τ < 1 it holds that ‖τx + (1 − τ)y‖ < ‖x‖. For
non-strictly convex norms an example of a two-dimensional lattice will be given
where the Voronoi-relevant vectors are not sufficient to determine the Voronoi
cell. Thus, the notion of generalized Voronoi-relevant vectors will be introduced.
For two-dimensional lattices with non-strictly convex norms it will be shown that
the number of generalized Voronoi-relevant vectors is not bounded by a constant,
which yields that there is no generalization of the upper bound 2(2n − 1) shown
in [1] for non-strictly convex norms.

Unfortunately, the same holds for strictly convex norms in dimensions higher
than two. The main statement of this thesis is that an upper bound, solely
depending on the lattice dimension, for the number of Voronoi-relevant vectors
does not exist for general dimensions and general strictly convex norms. For this, a
family of three-dimensional lattices will be constructed whose number of Voronoi-
relevant vectors is not bounded by a constant with respect to the 3-norm. Hence,
the algorithm by Micciancio and Voulgaris in [13] cannot be easily extended to
general p-norms, since they require that the upper bound 2(2n − 1) shown in [1]
only depends on the dimension n. Moreover, it will be shown for an arbitrary norm

‖ ·‖ that there are at most
(

1 + 4 µ(Λ,‖·‖)
λ1(Λ,‖·‖)

)n
(generalized) Voronoi-relevant vectors

in an n-dimensional lattice Λ, where µ(Λ, ‖ · ‖) denotes the minimal d ∈ R>0

such that every x ∈ span(Λ) has at most distance d to some lattice vector and
λ1(Λ, ‖ · ‖) is the length of a shortest nonzero lattice vector. This bound, while
depending exponentially on the dimension, is obviously also affected by other
lattice properties. The number of (generalized) Voronoi-relevant vectors of the
lattice families constructed for the three-dimensional, strictly convex case as well
as for the two-dimensional, non-strictly convex case will be compared with this
bound.

All these investigations raised the question how Voronoi cells and their facets
look with respect to norms other than the Euclidean norm. Therefore, the last
part of this thesis examines the set of vectors which is sufficient to determine
the Voronoi cell of a given lattice as well as the (n − 1)-dimensional facets of
the Voronoi cell and their connectedness. Two conjectures will be stated which
have important implications: One conjecture yields that the Voronoi cell of a
lattice with respect to a strictly convex norm is determined completely by the
Voronoi-relevant vectors, and the other conjecture implies that under sufficiently
nice norms there exists a bijection between the (n − 1)-dimensional facets of the
Voronoi cell and the Voronoi-relevant vectors. The latter statement will be shown
for two-dimensional lattices without using the conjectures. For two-dimensional
lattices it also holds that these facets are connected, which is probably not true
for higher dimensions, since there exist Voronoi cells of finite sets of points with
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1.3 Problem definition

unconnected facets when a p-norm for p ∈ N, p ≥ 3 is used. Additionally, one of
the two conjectures leads to a fundamental result about bisectors : The bisector
between two given points a, b ∈ Rn with a 6= b is defined as the set of all x ∈ Rn

having the same distance to a as to b. Under sufficiently nice norms and the
assumption of the mentioned conjecture, it holds that the bisector between a
and b intersected with the bisector between b and c is homeomorphic to Rn−2 as
long as a, b, c are non-collinear. To the best of my knowledge, this result is only
known for at most three dimensions [10] and it is known that each such bisector
is homeomorphic to Rn−1 [6].

1.3 Problem definition

Throughout this work the following notation will be used:

• N denotes the set of all strictly positive integers.

• For a ring R, elements in Rn are column vectors. For x ∈ Rn, the transposed
row vector is denoted by xT . Analogously for x1, . . . , xn ∈ R, the transposed
(x1, . . . , xn)T ∈ Rn is a column vector.

• The dot product on Rn is denoted by

〈·, ·〉 : Rn × Rn −→ R,
(x, y) 7−→ xTy.

• For p ∈ R with p ≥ 1,

‖ · ‖p : Rn −→ R≥0,

(x1, . . . , xn)T 7−→
(∑

|xi|p
)1/p

denotes the p-norm on Rn. The ∞-norm on Rn is given by

‖ · ‖∞ : Rn −→ R≥0,

(x1, . . . , xn)T 7−→ max {|xi| | i ∈ {1, . . . , n}} .

• Let V ⊆ Rn be a subspace with norm ‖ · ‖ : V → R≥0. For r ∈ R≥0 and
c ∈ V define

B‖·‖,r(c) := {x ∈ V | ‖x− c‖ < r} and

B‖·‖,r(c) := {x ∈ V | ‖x− c‖ ≤ r}.

• For a subset S ⊆ Rn and λ ∈ R as well as t ∈ Rn, let λS := {λx | x ∈ S}
and S + t := {x+ t | x ∈ S}.

3



1 Introduction

• For a subset S ⊆ Rn, the linear span of S is denoted by

span(S) :=

{
m∑
i=1

λivi

∣∣∣∣∣ m ∈ N, vi ∈ S, λi ∈ R

}
.

• For a subspace V ⊆ Rn let dim(V ) denote its dimension.

• For a submanifold X ⊆ Rn of dimension m ≤ n with M ⊆ X measurable,

volm(M) :=

∫
X

χM(x) dx

denotes the m-dimensional volume of M , where

χM : X → {0, 1}, x 7→
{

1 , if x ∈M
0 , if x ∈ X \M

is the indicator function of M .

• An adjusted version of the signum function will be used which is given by

sgn : R −→ {1,−1},

x 7−→
{

1 , if x ≥ 0
−1 , if x < 0

.

• Whenever m elements a1, . . . , am are listed, it is assumed that m ∈ N.

The main object of study are lattices.

Definition 1.1 Let b1, . . . , bm ∈ Rn be linearly independent. Then

L(b1, . . . , bm) :=

{
m∑
i=1

zibi

∣∣∣∣∣ z1, . . . , zm ∈ Z

}

is a lattice with basis (b1, . . . , bm). In addition, n is called the dimension and m
the rank of the lattice.

A classical result – e.g., shown in [4] – is that a subset Λ ⊆ Rn is a lattice if
and only if it is a non-trivial discrete subgroup of (Rn,+). To state this formally,
one needs to introduce the notion of a discrete subset of Rn.

Definition 1.2 A subset Λ ⊆ Rn is called discrete if there exists ε ∈ R>0 such
that for every x, y ∈ Λ with x 6= y it holds that ‖x− y‖2 ≥ ε.

Proposition 1.3 Let Λ ⊆ Rn. There exist linearly independent b1, . . . , bm ∈ Rn

with Λ = L(b1, . . . , bm) if and only if (Λ,+) is a discrete subgroup of (Rn,+) with
Λ 6= {0}.
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1.3 Problem definition

Commonly investigated quantities of lattices are their successive minima as
well as their covering radius. Here, mostly the first successive minimum is needed,
which equals the length of a shortest nonzero lattice vector. The covering radius
is the smallest d ∈ R≥0 such that all vectors in the linear span of the given lattice
are at most of distance d from a lattice vector.

Definition 1.4 Let ‖ · ‖ : Rn → R≥0 be a norm and let Λ ⊆ Rn be a lattice of
rank m. For i ∈ {1, . . . ,m}, the i-th successive minimum of Λ with respect to ‖ · ‖
is

λi(Λ, ‖ · ‖) := inf
{
r ∈ R≥0

∣∣ dim
(
span

(
Λ ∩ B‖·‖,r(0)

))
≥ i
}
.

The covering radius of Λ with respect to ‖ · ‖ is

µ(Λ, ‖ · ‖) := inf{d ∈ R≥0 | ∀x ∈ span(Λ)∃v ∈ Λ : ‖x− v‖ ≤ d}.

Apart from these classical notions, this thesis is mostly concerned with the
Voronoi cell of a lattice. Such a Voronoi cell can be defined for every element from
a given discrete set of points as the set of all vectors that are at least as close to
this element as to any other point of the given set. If the given set of points forms
a lattice, all Voronoi cells for the lattice points will be translates of the Voronoi
cell of the lattice origin such that is enough to consider this specific Voronoi cell.

Definition 1.5 Let ‖ · ‖ : Rn → R≥0 be a norm and let P ⊆ Rn be a discrete
subset. The Voronoi cell of a ∈ P is defined as

V‖·‖,P(a) := {x ∈ span(P) | ∀b ∈ P : ‖x− a‖ ≤ ‖x− b‖}.

If P is a lattice, V(P , ‖ · ‖) := V‖·‖,P(0) denotes the Voronoi cell of the origin.

Maybe the most important definition for this thesis is the notion of Voronoi-
relevant vectors since the main task of this work is to analyze the number of these
vectors.

Definition 1.6 Let ‖ · ‖ : Rn → R≥0 be a norm and let Λ ⊆ Rn be a lattice. A
lattice vector v ∈ Λ\{0} is a Voronoi-relevant vector if there is some x ∈ span(Λ)
such that ‖x‖ = ‖x− v‖ < ‖x− w‖ holds for all w ∈ Λ \ {0, v}.

The idea behind this notion is that one does not need to consider all lattice
vectors in Definition 1.5 of the Voronoi cell when the Euclidean norm is used.
Instead, the Voronoi cell of the origin of a lattice is already specified as the set
of points in the linear span of the lattice which are at least as close to 0 as to
all Voronoi-relevant vectors. This connection between Voronoi cell and Voronoi-
relevant vectors will be formally examined in Section 4.3.

For both concepts it is natural to consider them in terms of bisectors and half-
spaces.

Definition 1.7 Let V ⊆ Rn be a subspace with norm ‖ · ‖ : V → R≥0. For

5



1 Introduction

a, b ∈ V , the bisector of a and b with respect to ‖ · ‖ is defined as

H=
‖·‖(a, b) := {x ∈ V | ‖x− a‖ = ‖x− b‖}.

The corresponding strict and non-strict halfspaces are denoted by

H<
‖·‖(a, b) := {x ∈ V | ‖x− a‖ < ‖x− b‖} and

H≤‖·‖(a, b) := H<
‖·‖(a, b) ∪H

=
‖·‖(a, b).

With this, the Voronoi cell of the origin of a lattice Λ can be written as

V(Λ, ‖ · ‖) = span(Λ) ∩

(⋂
v∈Λ

H≤‖·‖(0, v)

)
,

and a lattice vector v ∈ Λ \ {0} is Voronoi-relevant if and only if

span(Λ) ∩H=
‖·‖(0, v) ∩

 ⋂
w∈Λ\{0,v}

H<
‖·‖(0, w)

 6= ∅.
During the investigations of all these geometrical objects, it will be differentiated
if the underlying norm is strictly convex or not. As seen in the following chapters,
strictly convex norms – e.g., the Euclidean norm – have a lot of nice properties.

Definition 1.8 Let V ⊆ Rn be a subspace. A norm ‖ · ‖ : V → R≥0 is called
strictly convex if for all x, y ∈ V with x 6= y and ‖x‖ = ‖y‖ and all τ ∈ (0, 1) it
holds that ‖τx+ (1− τ)y‖ < ‖x‖.

Note that for every norm it holds for all x, y ∈ V with x 6= y and ‖x‖ = ‖y‖
and all τ ∈ [0, 1] that ‖τx + (1 − τ)y‖ ≤ ‖x‖. For strictly convex norms, this
inequality is an equality if and only if τ ∈ {0, 1}.

6



2 Two-dimensional lattices

Already in two dimensions, some different properties of strictly convex and non-
strictly convex norms will become clear. Whereas, every two-dimensional lattice
has at most six Voronoi-relevant vectors with respect to every strictly convex
norm, the Voronoi-relevant vectors are in general not sufficient in the case of a
non-strictly convex norm to determine the Voronoi cell completely, such that a lit-
tle broader notion needs to be introduced: Generalized Voronoi-relevant vectors.
Moreover, it will be shown that every lattice of rank two has at most eight gener-
alized Voronoi-relevant vectors with respect to every strictly convex norm, but the
number of generalized Voronoi-relevant vectors is generally not upper bounded by
a constant in lattices of rank two when a non-strictly convex norm is used.

2.1 Strictly convex norms

The ideas for this section were developed in collaboration with Prof. Dr. Johannes
Blömer and David Teusner. It will be proven that every two-dimensional lattice
has at most six Voronoi-relevant vectors with respect to arbitrary strictly convex
norms. This is a direct consequence of Theorem 2.4 below and the following
Proposition.

Proposition 2.1 Let Λ ⊆ Rn be a lattice of rank one with basis (b1), and let
‖ · ‖ : Rn → R≥0 be an arbitrary norm. Then ±b1 are Voronoi-relevant vectors.
All other lattice vectors are not Voronoi-relevant.

The proof of this proposition uses a lemma which holds for lattices of every
rank.

Lemma 2.2 Let ‖ · ‖ : Rn → R≥0 be a norm an let Λ ⊆ Rn be a lattice. For every
v ∈ Λ and every k ∈ N, k ≥ 2 it holds that kv is not Voronoi-relevant.

Proof. Assume for contradiction that kv is Voronoi-relevant for some k ≥ 2. Then
there exists some x ∈ span(Λ) such that ‖x− kv‖ = ‖x‖ < ‖x− w‖ holds for all
w ∈ Λ \ {0, kv}. This yields the contradiction

‖x‖ < ‖x− v‖ =
1

k
‖kx− kv‖ =

1

k
‖x− kv + (k − 1)x‖

≤ 1

k
(‖x− kv‖+ (k − 1)‖x‖) =

1

k
(‖x‖+ (k − 1)‖x‖) = ‖x‖.

7



2 Two-dimensional lattices

Proof of Proposition 2.1. For every z1 ∈ Z \ {0, 1} it holds that∥∥∥∥b1

2
− z1b1

∥∥∥∥ =

∣∣∣∣12 − z1

∣∣∣∣ ‖b1‖ ≥
3

2
‖b1‖ >

1

2
‖b1‖.

Thus, b1 is Voronoi-relevant, which directly implies that −b1 is Voronoi-relevant.
By Lemma 2.2, kb1 and −kb1 are not Voronoi-relevant for every k ∈ N, k ≥ 2.

For Theorem 2.4, one needs the notion of a Gauss-reduced basis.

Definition 2.3 Let ‖ · ‖ : Rn → R≥0 be a norm and let Λ ⊆ Rn be a lattice of
rank two. A basis (b1, b2) of Λ is called Gauss-reduced with respect to ‖ · ‖ if it
holds that

‖b1‖ ≤ ‖b2‖ ≤ ‖b1 − b2‖ ≤ ‖b1 + b2‖.

In [7], Kaib and Schnorr show for an arbitrary norm that every lattice of rank
two has a Gauss-reduced basis. In fact, they give and analyze an algorithm which
computes a Gauss-reduced basis out of a given lattice basis. Hence, it can be
assumed that a lattice of rank two is already given by a Gauss-reduced basis.

Theorem 2.4 Let Λ ⊆ Rn be a lattice of rank two with Gauss-reduced basis
(b1, b2), and let ‖ · ‖ : Rn → R≥0 be a strictly convex norm. Then ±b1 and ±b2 are
Voronoi-relevant vectors. In addition, ±(b1 − b2) are Voronoi-relevant vectors if
and only if ‖b1−b2‖ < ‖b1 +b2‖. All other lattice vectors are not Voronoi-relevant.

The proof of this theorem is based on multiple lemmata, which will be discussed
below. Lemma 2.9 gives a superset of all Voronoi-relevant vectors under the same
assumptions as in the above theorem. Furthermore, Lemmata 2.13, 2.14 and 2.15
consider all elements in this superset and determine if they are Voronoi-relevant
or not.

To prove these four lemmata, some further helpful statements will be shown.
The first two of these statements are basic properties of Gauss-reduced bases and
strictly convex norms.

Remark 2.5 Let Λ ⊆ Rn be a lattice of rank two with Gauss-reduced basis (b1, b2),
and let r ∈ R with r 6= 0. Then (rb1, rb2) is a Gauss-reduced basis for |r|Λ.

Lemma 2.6 Let ‖ · ‖ : Rn → R≥0 be a strictly convex norm. Moreover, let
x, y ∈ Rn with x 6= y and ‖x‖ ≤ ‖y‖, and let τ ∈ R with 0 < τ < 1. Then it holds
that ‖τx+ (1− τ)y‖ < ‖y‖.

Proof. For ‖x‖ = ‖y‖, the desired inequality is directly given by the definition of
strict convexity. If ‖x‖ < ‖y‖, then it holds that

‖τx+ (1− τ)y‖ ≤ τ‖x‖+ (1− τ)‖y‖ < ‖y‖.

8



2.1 Strictly convex norms

The next lemma shows that a vector that lies “above-right”, “above-left”,
“below-right” or “below-left” of the parallelogram

P(b1, b2) := {r1b1 + r2b2 | r1, r2 ∈ [−1, 1]}

is longer than the corresponding corner vector of this parallelogram if a strictly
convex norm is used and (b1, b2) is a Gauss-reduced basis.

Lemma 2.7 Let Λ ⊆ Rn be a lattice of rank two with Gauss-reduced basis (b1, b2),
and let ‖ · ‖ : Rn → R≥0 be a strictly convex norm. Moreover, let r1, r2 ∈ R. If
|r1|, |r2| ≥ 1 and max{|r1|, |r2|} > 1, then ‖b1 + sgn(r1r2)b2‖ < ‖r1b1 + r2b2‖.

Proof. Let r1, r2 ∈ R with |r1|, |r2| ≥ 1, and distinguish the following two cases.

1. |r1| ≥ |r2| and |r1| > 1:

Using b1 +sgn(r1r2)b2 = 1
r1

(r1b1 +r2b2)+sgn(r1r2)
(

1− |r2||r1|
)
b2, |r2| ≥ 1 and

‖b2‖ ≤ ‖b1 + sgn(r1r2)b2‖ leads to

‖b1 + sgn(r1r2)b2‖ ≤
1

|r1|
‖r1b1 + r2b2‖+

(
1− |r2|
|r1|

)
‖b2‖

≤ 1

|r1|
‖r1b1 + r2b2‖+

(
1− 1

|r1|

)
‖b1 + sgn(r1r2)b2‖.

This shows ‖b1 + sgn(r1r2)b2‖ ≤ ‖r1b1 + r2b2‖. If ‖b2‖ < ‖b1 + sgn(r1r2)b2‖
or |r2| > 1, then this inequality is even strict, i.e., ‖b1 + sgn(r1r2)b2‖ <
‖r1b1 + r2b2‖.
For |r2| = 1 and ‖b2‖ = ‖b1 + sgn(r1r2)b2‖, Lemma 2.6 yields

‖b1 + sgn(r1r2)b2‖ =

∥∥∥∥sgn(r1)
1

|r1|
(r1b1 + r2b2) + sgn(r1r2)

(
1− 1

|r1|

)
b2

∥∥∥∥
< ‖r1b1 + r2b2‖.

2. |r2| ≥ |r1| and |r2| > 1:

Using b1 + sgn(r1r2)b2 = sgn(r1r2) 1
r2

(r1b1 + r2b2) +
(

1− |r1||r2|
)
b1, |r1| ≥ 1 and

‖b1‖ ≤ ‖b1 + sgn(r1r2)b2‖, analog arguments lead to the same conclusion.

Using the above property for vectors outside of the parallelogram P(b1, b2), it
can be easily deduced in the next lemma that every vector having 0 as one of
its closest lattice vectors must lie inside of P(b1, b2). From this it follows that
for every Voronoi-relevant vector v the parallelograms P(b1, b2) and v + P(b1, b2)
intersect in their interior, which gives the superset of all Voronoi-relevant vectors
as specified and formally proven in Lemma 2.9.
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2 Two-dimensional lattices

Lemma 2.8 Let Λ ⊆ Rn be a lattice of rank two with Gauss-reduced basis (b1, b2),
and let ‖ · ‖ : Rn → R≥0 be a strictly convex norm. Moreover, let r1, r2 ∈ R. If
‖r1b1 + r2b2‖ ≤ ‖r1b1 + r2b2 − v‖ holds for all v ∈ Λ, then r1, r2 ∈ (−1, 1).

Proof. Let r1, r2 ∈ R with r1 /∈ (−1, 1) or r2 /∈ (−1, 1). The rest of this proof
shows that there is some v ∈ Λ with ‖r1b1 + r2b2‖ > ‖r1b1 + r2b2 − v‖.

If r2 = 0, then ‖r1b1 − sgn(r1)b1‖ = |r1 − sgn(r1)|‖b1‖ < |r1|‖b1‖ = ‖r1b1‖
follows due to r1 /∈ (−1, 1). If r1 = 0, then it holds analogously that r2 /∈ (−1, 1)
and ‖r2b2 − sgn(r2)b2‖ < ‖r2b2‖. If |r1| = |r2| ≥ 1, then

‖r1b1 + r2b2 − sgn(r1)b1 − sgn(r2)b2‖ = |r1 − sgn(r1)|‖b1 + sgn(r1r2)b2‖
< |r1|‖b1 + sgn(r1r2)b2‖ = ‖r1b1 + r2b2‖

holds. Hence, it can be assumed that r1 6= 0 6= r2 and that |r1| 6= |r2|, and only
two remaining cases need to be considered.

1. |r1| > |r2| and |r1| ≥ 1:

By Remark 2.5, (r2b1, r2b2) is a Gauss-reduced basis for |r2|Λ. Together with
Lemma 2.7 applied to this basis, it follows that

‖r2b2‖ ≤
∥∥∥∥r2b1 + sgn

(
r1

r2

· 1
)
r2b2

∥∥∥∥ < ‖r1b1 + r2b2‖.

If |r1| = 1, then ‖r1b1 + r2b2 − sgn(r1)b1‖ = ‖r2b2‖ < ‖r1b1 + r2b2‖ holds.
For |r1| > 1, Lemma 2.6 yields

‖r1b1 + r2b2 − sgn(r1)b1‖

=

∥∥∥∥r1 − sgn(r1)

r1

(r1b1 + r2b2) +

(
1− r1 − sgn(r1)

r1

)
r2b2

∥∥∥∥ < ‖r1b1 + r2b2‖.

2. |r2| > |r1| and |r2| ≥ 1:

Analog arguments lead to ‖r1b1‖ < ‖r1b1 + r2b2‖ as well as
‖r1b1 + r2b2 − sgn(r2)b2‖ < ‖r1b1 + r2b2‖.

Lemma 2.9 Let Λ ⊆ Rn be a lattice of rank two with Gauss-reduced basis (b1, b2),
and let ‖ · ‖ : Rn → R≥0 be a strictly convex norm. Then all Voronoi-relevant
vectors are contained in {±b1,±b2,±(b1 − b2),±(b1 + b2)}.

Proof. Let z1, z2 ∈ Z and let z1b1 + z2b2 be a Voronoi-relevant vector. Then there
are r1, r2 ∈ R with ‖r1b1+r2b2‖ = ‖r1b1+r2b2−z1b1−z2b2‖ ≤ ‖r1b1+r2b2−v‖ for all
v ∈ Λ. In particular, Lemma 2.8 implies r1, r2 ∈ (−1, 1) as well as r1−z1, r2−z2 ∈
(−1, 1). This leads to z1, z2 ∈ (−2, 2) and thus to z1, z2 ∈ {−1, 0, 1}. Hence,
z1b2 + z2b2 ∈ {±b1,±b2,±(b1 − b2),±(b1 + b2)} follows.

10



2.1 Strictly convex norms

Now it is already shown that every lattice of rank two has at most eight Voronoi-
relevant vectors with respect to a strictly convex norm. Some of these eight
candidates can be excluded, such that only four or six Voronoi-relevant vectors
remain. For this, some further statements are needed, e.g., the next lemma shows
that in every bisector between 0 and some x 6= 0 the vector x

2
is the unique shortest

vector.

Lemma 2.10 Let ‖ · ‖ : Rn → R≥0 be a strictly convex norm. Moreover, let
x ∈ Rn with x 6= 0, and let y ∈ Rn with y 6= x

2
and ‖y‖ = ‖y − x‖. Then∥∥x

2

∥∥ < ‖y‖ holds.

Proof. Let x, y ∈ Rn with 2y 6= x 6= 0 and ‖y‖ = ‖y − x‖, and assume for
contradiction that

∥∥x
2

∥∥ ≥ ‖y‖. Consider w := 1
2
y + 1

2
x
2
. Then it follows from

Lemma 2.6 that ‖w‖ <
∥∥x

2

∥∥. With this, distinguish the following two cases.

1. ‖w − x‖ ≤ ‖w‖:
The estimate

‖x‖ = ‖x− w + w‖

≤ ‖w − x‖+ ‖w‖ ≤ 2‖w‖ =
∥∥∥y +

x

2

∥∥∥ ≤ ‖y‖+
∥∥∥x

2

∥∥∥ ≤ ‖x‖
shows that 2‖w‖ = ‖x‖, which contradicts ‖w‖ <

∥∥x
2

∥∥.

2. ‖w − x‖ > ‖w‖:
Now it follows that

‖x‖ ≤ ‖w − x‖+ ‖w‖

< 2‖w − x‖ =
∥∥∥(y − x)− x

2

∥∥∥ ≤ ‖y − x‖+
∥∥∥x

2

∥∥∥ ≤ ‖x‖,
which is a contradiction.

Analogously to Lemma 2.7, it will be shown in the next lemma that a vector
lying inside of the “upper-right”, “upper-left”, “lower-right” or “lower-left” quar-
ter of the parallelogram P(b1, b2) is shorter than the corresponding corner vector
of P(b1, b2).

Lemma 2.11 Let Λ ⊆ Rn be a lattice of rank two with Gauss-reduced basis (b1, b2),
and let ‖ · ‖ : Rn → R≥0 be a strictly convex norm. Moreover, let r1, r2 ∈ R. If
0 < |r1|, |r2| ≤ 1 and min{|r1|, |r2|} < 1, then ‖r1b1 + r2b2‖ < ‖b1 + sgn(r1r2)b2‖.

Proof. Let r1, r2 ∈ R with 0 < |r1|, |r2| ≤ 1.
If |r1| < 1 = |r2|, it holds by Lemma 2.6 that

‖r1b1 + r2b2‖ = ‖|r1|(sgn(r1)b1 + r2b2) + (1− |r1|)r2b2‖
< ‖ sgn(r1)b1 + r2b2‖ = ‖b1 + sgn(r1r2)b2‖.

(2.1)
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2 Two-dimensional lattices

For |r2| < 1 = |r1|, the roles of r1 and r2 can be exchanged in (2.1) to get
‖r1b1 + r2b2‖ < ‖b1 + sgn(r1r2)b2‖.

If |r1|, |r2| < 1, Lemma 2.6 implies

‖r1b1 + r2b2‖ = ‖|r2|(r1b1 + sgn(r2)b2) + (1− |r2|)r1b1‖
< max{‖r1b1 + sgn(r2)b2‖, ‖r1b1‖}.

By (2.1), ‖r1b1 + sgn(r2)b2‖ < ‖b1 + sgn(r1r2)b2‖. Since moreover it holds that
‖r1b1‖ < ‖b1‖ ≤ ‖b1+sgn(r1r2)b2‖, it follows that ‖r1b1+r2b2‖ < ‖b1+sgn(r1r2)b2‖.

The next lemma gives an easy upper bound for the covering radius. With this
bound at hand, the remaining three lemmata of this section will investigate the
conditions under which the eight candidates for Voronoi-relevant vectors stated in
Lemma 2.9 are indeed Voronoi-relevant.

Lemma 2.12 Let Λ ⊆ Rn be a lattice of rank two with Gauss-reduced basis (b1, b2),
and let ‖ · ‖ : Rn → R≥0 be a strictly convex norm. Then for every x ∈ span(Λ)
there exists v ∈ Λ such that ‖x− v‖ ≤

∥∥ b1+b2
2

∥∥.

Proof. Let r1, r2 ∈ R and x := r1b1 + r2b2. Rounding the coefficients to the
nearest integer yields z1, z2 ∈ Z and s1, s2 ∈ R with |s1|, |s2| ≤ 1

2
and x =

(z1 + s1)b1 + (z2 + s2)b2. Defining v := z1b1 + z2b2 leads to x− v = s1b1 + s2b2.
If s1 = 0, then ‖x− v‖ = |s2|‖b2‖ ≤ 1

2
‖b1 + b2‖. If s2 = 0, ‖x− v‖ ≤ 1

2
‖b1 + b2‖

follows analogously. Hence, it can be assumed that s1 6= 0 6= s2.
If |s1| = |s2| = 1

2
, then ‖x − v‖ = 1

2
‖ sgn(s1)b1 + sgn(s2)b2‖ ≤ 1

2
‖b1 + b2‖. If

min{|s1|, |s2|} < 1
2
, Lemma 2.11 yields

2‖x− v‖ = ‖2s1b1 + 2s2b2‖ < ‖b1 + sgn(s1s2)b2‖ ≤ ‖b1 + b2‖.

Lemma 2.13 Let Λ ⊆ Rn be a lattice of rank two with Gauss-reduced basis (b1, b2),
and let ‖ · ‖ : Rn → R≥0 be a strictly convex norm. Then the vectors ±(b1 + b2)
are not Voronoi-relevant.

Proof. Assume for contradiction that b1 + b2 is Voronoi-relevant. Then there is
some x ∈ span(Λ) with ‖x‖ = ‖x− b1 − b2‖ < ‖x− v‖ for all v ∈ Λ \ {0, b1 + b2}.

If x = b1+b2
2

, then

‖x− b1‖ =

∥∥∥∥−b1 + b2

2

∥∥∥∥ =
1

2
‖b1 − b2‖ ≤

1

2
‖b1 + b2‖ = ‖x‖ < ‖x− b1‖,

which is a contradiction.
If x 6= b1+b2

2
, Lemma 2.10 implies

∥∥ b1+b2
2

∥∥ < ‖x‖. On the other hand, Lemma 2.12

shows that there is some v ∈ Λ with ‖x− v‖ ≤
∥∥ b1+b2

2

∥∥ < ‖x‖, which is a contra-
diction.
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2.1 Strictly convex norms

Hence, b1 + b2 cannot be Voronoi-relevant, which furthermore implies that
−b1 − b2 is not Voronoi-relevant.

Lemma 2.14 Let Λ ⊆ Rn be a lattice of rank two with Gauss-reduced basis (b1, b2),
and let ‖ · ‖ : Rn → R≥0 be a strictly convex norm. Then the vectors ±b1 and ±b2

are Voronoi-relevant.

Proof. To show that b1 is Voronoi-relevant, it is sufficient to prove that
∥∥ b1

2

∥∥ <∥∥v − b1
2

∥∥ holds for all v ∈ Λ \ {0, b1}. Hence, consider (z1, z2) ∈ Z2 \ {(0, 0), (1, 0)}
and v := z1b1 + z2b2.

If z2 6= 0, then it follows from Lemma 2.7 that∥∥∥∥v − b1

2

∥∥∥∥ =
1

2
‖(2z1 − 1)b1 + 2z2b2‖ >

1

2
‖b1 + sgn((2z1 − 1)z2)b2‖ ≥

∥∥∥∥b1

2

∥∥∥∥ .
If z2 = 0, then it is z1 /∈ {0, 1}, which implies that∥∥∥∥v − b1

2

∥∥∥∥ =
1

2
|2z1 − 1|‖b1‖ ≥

3

2
‖b1‖ >

∥∥∥∥b1

2

∥∥∥∥ .
Therefore, b1 and −b1 are Voronoi-relevant. By exchanging the roles of z1 and

z2 in the above inequalities, it follows analogously that
∥∥ b2

2

∥∥ < ∥∥v − b2
2

∥∥ holds for
all v ∈ Λ \ {0, b2}, yielding that b2 and −b2 are Voronoi-relevant.

Lemma 2.15 Let Λ ⊆ Rn be a lattice of rank two with Gauss-reduced basis (b1, b2),
and let ‖ · ‖ : Rn → R≥0 be a strictly convex norm. Then the vectors ±(b1 − b2)
are Voronoi-relevant if and only if ‖b1 − b2‖ < ‖b1 + b2‖.

Proof. First assume that b1 − b2 is Voronoi-relevant. Then there is some
x ∈ span(Λ) with ‖x‖ = ‖x − b1 + b2‖ < ‖x − v‖ for all v ∈ Λ \ {0, b1 − b2}. If
x 6= b1−b2

2
, then it holds by Lemmata 2.10 and 2.12 that

∥∥ b1−b2
2

∥∥ < ‖x‖ ≤ ∥∥ b1+b2
2

∥∥,

which implies ‖b1 − b2‖ < ‖b1 + b2‖. If x = b1−b2
2

, then it follows that
‖b1 − b2‖ = 2‖x‖ < 2‖x− b1‖ = ‖b1 + b2‖.

Now assume ‖b1 − b2‖ < ‖b1 + b2‖ and show that b1 − b2 as well as −b1 + b2

are Voronoi-relevant. For this it is enough to prove that
∥∥ b1−b2

2

∥∥ < ∥∥v − b1
2

+ b2
2

∥∥
holds for all v ∈ Λ \ {0, b1 − b2}. For v ∈ {b1,−b2} it holds that

∥∥v − b1
2

+ b2
2

∥∥ =∥∥ b1+b2
2

∥∥ > ∥∥ b1−b2
2

∥∥. Hence, consider (z1, z2) ∈ Z2 \ {(0, 0), (1,−1), (1, 0), (0,−1)}
and v := z1b1 + z2b2. Then it follows that z1 /∈ {0, 1} or z2 /∈ {−1, 0}, leading to
|2z1 − 1| ≥ 3 or |2z2 + 1| ≥ 3. Thus, Lemma 2.7 implies∥∥∥∥v − b1

2
+
b2

2

∥∥∥∥ =
1

2
‖(2z1 − 1)b1 + (2z2 + 1)b2‖

>
1

2
‖b1 + sgn((2z1 − 1)(2z2 + 1))b2‖ ≥

∥∥∥∥b1 − b2

2

∥∥∥∥ .
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2 Two-dimensional lattices

Proof of Theorem 2.4. This proof follows directly from Lemmata 2.9, 2.13, 2.14
and 2.15.

2.2 Non-strictly convex norms

Consider the lattice L(b1, b2) spanned by b1 := (1, 1)T and b2 := (0, 3)T together
with the 1-norm ‖ · ‖1. In the following, the Voronoi cell V(L(b1, b2), ‖ · ‖1) of
the origin will be constructed illustratively and afterwards a formal proof will be
given. For the illustrative construction one can investigate the bisectors between
0 and all generalized Voronoi-relevant vectors v ∈ L(b1, b2).

Definition 2.16 Let ‖ · ‖ : Rn → R≥0 be a norm and let Λ ⊆ Rn be a lattice. A
lattice vector v ∈ Λ \ {0} is a generalized Voronoi-relevant vector if there is some
x ∈ span(Λ) such that ‖x‖ = ‖x− v‖ ≤ ‖x− w‖ holds for all w ∈ Λ.

The next lemma is helpful to determine which lattice vectors are generalized
Voronoi-relevant vectors since it shows that these vectors cannot be too far away
from the origin.

Lemma 2.17 Let ‖ · ‖ : Rn → R≥0 be a norm and let Λ ⊆ Rn be a lattice. For
every generalized Voronoi-relevant vector v ∈ Λ it holds that ‖v‖ ≤ 2µ(Λ, ‖ · ‖).

Proof. Let v ∈ Λ \ {0} and x ∈ span(Λ) with ‖x‖ = ‖x − v‖ ≤ ‖x − w‖ for all
w ∈ Λ. Then it holds that ‖x‖ = ‖x− v‖ ≤ µ(Λ, ‖ · ‖) and thus

‖v‖ = ‖v − x+ x‖ ≤ ‖x− v‖+ ‖x‖ ≤ 2µ(Λ, ‖ · ‖).

Next, a calculation of the covering radius of L(b1, b2) with respect to ‖ · ‖1 is
needed in order to use the above lemma.

Lemma 2.18 µ(L(b1, b2), ‖ · ‖1) = 3
2
.

Proof. First prove µ(L(b1, b2), ‖ · ‖1) ≤ 3
2
. For this, let x = (x1, x2)T ∈ R2, and

show that ‖x−v‖1 ≤ 3
2

holds for some v ∈ L(b1, b2). There are m ∈ Z and r ∈ [0, 1)
with x1 = m+ r. Moreover, there is k ∈ Z such that m+ 3k ≤ x2 < m+ 3(k+ 1)
holds. Now, show in each of the following four cases that x has distance at most
3
2

to some lattice vector.

1. x2 ≤ m+ 3k + 1 and r ≤ 1
2
:

‖x−mb1 − kb2‖ = |x1 −m|+ |x2 −m− 3k| = r + (x2 −m− 3k)

≤ 1

2
+ 1 =

3

2

2. x2 ≤ m+ 3k + 1 and r > 1
2
:

‖x− (m+ 1)b1 − kb2‖ = |x1 −m− 1|+ |x2 −m− 1− 3k|

14



2.2 Non-strictly convex norms

= (1− r) + (m+ 1 + 3k − x2) <
1

2
+ 1 =

3

2

3. x2 > m+ 3k + 1 and x2 ≤ x1 + 3k + 3
2
:

‖x− (m+ 1)b1 − kb2‖ = |x1 −m− 1|+ |x2 −m− 1− 3k|
= (1 +m− x1) + (x2 −m− 1− 3k)

= x2 − x1 − 3k ≤ 3

2

4. x2 > m+ 3k + 1 and x2 > x1 + 3k + 3
2
:

‖x−mb1 − (k + 1)b2‖ = |x1 −m|+ |x2 −m− 3(k + 1)|
= (x1 −m) + (m+ 3k + 3− x2)

= x1 − x2 + 3k + 3 <
3

2

To prove µ(L(b1, b2), ‖ · ‖1) ≥ 3
2
, consider x := 3

4
(1,−1)T and compute all

v ∈ L(b1, b2) with ‖x − v‖1 ≤ 3
2
. For this, let z1, z2 ∈ Z and v := z1b1 + z2b2.

Then it holds that ‖x− v‖1 =
∣∣3

4
− z1

∣∣+ ∣∣−3
4
− z1 − 3z2

∣∣. Assuming ‖x− v‖1 ≤ 3
2

implies
∣∣3

4
− z1

∣∣ ≤ 3
2
, leading to z1 ∈ {0, 1, 2}. According to this, distinguish the

following three cases.

1. z1 = 0:

From 3
2
≥ ‖x−v‖1 = 3

4
+
∣∣3

4
+ 3z2

∣∣ it follows that |1+4z2| ≤ 1, which implies
z2 = 0.

2. z1 = 1:

Here, 3
2
≥ ‖x− v‖1 = 1

4
+
∣∣7

4
+ 3z2

∣∣ yields |7 + 12z2| ≤ 5 and thus z2 = −1.

3. z2 = 2:

In this case, 3
2
≥ ‖x − v‖1 = 5

4
+
∣∣11

4
+ 3z2

∣∣ must hold. This shows
|11 + 12z2| ≤ 1 and z2 = −1.

In all three cases it holds that ‖x− v‖ = 3
2
, which shows that every lattice vector

has distance at least 3
2

to x.

By combining both lemmata, it is enough to consider the bisectors between 0
and all v ∈ L(b1, b2) \ {0} with ‖v‖1 ≤ 3 in order to compute the desired Voronoi
cell. An excerpt of the lattice L(b1, b2) together with the boundary of B‖·‖1,3(0)
is depicted in Figure 2.1, and the next lemma determines formally which lattice
vectors have norm at most three.
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2 Two-dimensional lattices

Figure 2.1: L(b1, b2) with boundary of B‖·‖1,3(0).

Lemma 2.19 Let z1, z2 ∈ Z. Then it holds that ‖z1b1 + z2b2‖1 ≤ 3 if and only if

(z1, z2) ∈ {(−3, 1), (−2, 1), (−1, 0), (−1, 1), (0,−1), (0, 0),

(0, 1), (1,−1), (1, 0), (2,−1), (3,−1)} =: I.

Proof. If (z1, z2) ∈ I, easy calculation shows ‖z1b1 + z2b2‖1 = |z1|+ |z1 + 3z2| ≤ 3.

Hence, it is left to consider z1, z2 ∈ Z with ‖z1b1 + z2b2‖1 ≤ 3. From this it
directly follows that |z1| ≤ 3 holds. Due to symmetry, one can further assume
that z1 ≥ 0. Now distinguish the remaining cases.

1. z1 = 3:

In this case, z1 + 3z2 = 0 follows, which implies z2 = −1.

2. z1 = 2:

From |z1 + 3z2| ≤ 1 one deduces 3z2 ∈ {−3,−2,−1}, leading to z2 = −1.

3. z1 = 1:

Since |z1 + 3z2| ≤ 2 must hold, 3z2 ∈ {−3,−2,−1, 0, 1} follows, yielding
z2 ∈ {−1, 0}.

4. z1 = 0:

Now 3|z2| ≤ 3 needs to holds, which implies z2 ∈ {−1, 0, 1}.
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2.2 Non-strictly convex norms

When computing the bisectors between 0 and the lattice vectors specified in
the above lemma, it follows from the symmetry that only three different kinds
of bisectors need to be examined. These are shown in Figure 2.2. Since these
bisectors are at the moment only used for illustration, a formal proof stating that
the bisectors look exactly as depicted in the figure is omitted.

Figure 2.2: H=
‖·‖1(0, b1), H=

‖·‖1(0, b2) and H=
‖·‖1(0, b2 − b1).

Intersecting these bisectors suggests that V(L(b1, b2), ‖ · ‖1) looks as given in
Figure 2.3, where the Voronoi cell is partitioned into two parts

V(L(b1, b2), ‖ · ‖1) = V(i)(L(b1, b2), ‖ · ‖1) ·∪ V(o)(L(b1, b2), ‖ · ‖1).

Definition 2.20 Let ‖ · ‖ : Rn → R≥0 be a norm and let Λ ⊆ Rn be a lattice.

V(i)(Λ, ‖ · ‖) := {x ∈ span(Λ) | ∀v ∈ Λ \ {0} : ‖x‖ < ‖x− v‖}

denotes the strict Voronoi cell of the origin of Λ with respect to ‖ · ‖. In addition,
define

V(o)(Λ, ‖ · ‖) := V(Λ, ‖ · ‖) \ V(i)(Λ, ‖ · ‖).

Additionally to these figurative ideas, a formal proof to specify the Voronoi cell
and its two parts will be given now.

Proposition 2.21 It holds that

V(i)(L(b1, b2), ‖ · ‖1)

=

{(
x1

x2

)
∈ R2

∣∣∣∣ |x1| < 1, |x2| < 1, |x1 + x2| < 1, |x1 − x2| <
3

2

}
=: S(i)

and V(o)(L(b1, b2), ‖ · ‖1) = S(o)
1 ∪ S

(o)
2 ∪ S

(o)
3 ∪ S

(o)
4 , where

S(o)
1 :=

{
±
(
x1

x2

)
∈ R2

∣∣∣∣ x1 + x2 = 1, x1 ∈ (0, 1)

}
,

17



2 Two-dimensional lattices

Figure 2.3: V(i)(L(b1, b2), ‖·‖1) (light gray) and V(o)(L(b1, b2), ‖·‖1) (darker gray).

S(o)
2 :=

{
±
(
x1

x2

)
∈ R2

∣∣∣∣ x1 − x2 =
3

2
, x1 ∈

(
1

2
, 1

)}
,

S(o)
3 :=

{
±
(
x1

x2

)
∈ R2

∣∣∣∣ x1 ≥ 1, x2 ≤ 0, x1 − x2 ≤
3

2

}
,

S(o)
4 :=

{
±
(
x1

x2

)
∈ R2

∣∣∣∣ x1 ≥ 0, x2 ≤ −1, x1 − x2 ≤
3

2

}
.

The proof of this proposition is split up in the three following lemmata.

Lemma 2.22 V(L(b1, b2), ‖ · ‖1) ⊆ S(i) ∪ S(o)
1 ∪ S

(o)
2 ∪ S

(o)
3 ∪ S

(o)
4 .

Proof. Let x = (x1, x2)T ∈ R2 with x /∈ S(i) ∪ S(o)
1 ∪ S

(o)
2 ∪ S

(o)
3 ∪ S

(o)
4 . It is left to

show that x /∈ V(L(b1, b2), ‖ · ‖1), i.e., that there is some v ∈ L(b1, b2) such that
‖x− v‖1 < ‖x‖1.

Due to symmetry, one can assume that x1 ≥ 0. Now distinguish the three
following cases.

1. x2 ≤ 0:

Assume for contradiction that x1 − x2 ≤ 3
2
. Then it follows from x /∈ S(o)

3

that x1 < 1. Analogously, x /∈ S(o)
4 implies x2 > −1. Hence, it holds that

|x1| < 1, |x2| < 1 and |x1 + x2| < 1. Since x /∈ S(i), x1 − x2 = |x1 − x2| ≥ 3
2

must hold, which implies x1 = 3
2

+ x2 >
1
2
. But now it follows that x ∈ S(o)

2 ,
which is a contradiction.

Therefore it holds that ‖x‖1 = x1 − x2 >
3
2
, and Lemma 2.18 shows that

‖x− v‖1 ≤ 3
2
< ‖x‖1 must hold for some v ∈ L(b1, b2).
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2.2 Non-strictly convex norms

2. x2 > 0 and x1 + x2 >
3
2
:

In this case it directly follows from Lemma 2.18 that for some v ∈ L(b1, b2)
it is ‖x‖1 = x1 + x2 >

3
2
≥ ‖x− v‖1.

3. x2 > 0 and x1 + x2 ≤ 3
2
:

First, assume for contradiction that x1 = 0. Since x /∈ S(i), it must hold
that x2 ≥ 1, but then x ∈ S(o)

4 would follow, which is a contradiction. Thus,
x1 > 0 holds.

Secondly, assume for contradiction that x1 + x2 ≤ 1. From x1 > 0 and
x2 > 0 it follows that x1 < 1 and x2 < 1. This further implies |x1− x2| < 1.

Furthermore, x /∈ S(i) yields x1 + x2 ≥ 1. Hence, x1 + x2 = 1 and x ∈ S(o)
1

follow, where the latter is a contradiction.

Thus, ‖x‖1 = x1 + x2 > 1 and x1 > 0 hold. The rest of this proof shows
that ‖x− b1‖1 = |x1 − 1|+ |x2 − 1| < ‖x‖1.

If x1 < 1 and x2 < 1, then ‖x− b1‖1 = 2− x1 − x2 < 1 < ‖x‖1 holds.

For x1 ≥ 1, x1 + x2 ≤ 3
2

implies x2 ≤ 1
2

and thus it follows due to x2 > 0
that ‖x− b1‖1 = x1 − x2 < x1 + x2 = ‖x‖1.

For x2 ≥ 1, one shows analogously ‖x− b1‖1 = −x1 + x2 < x1 + x2 = ‖x‖1.

Lemma 2.23 S(i) ⊆ V(i)(L(b1, b2), ‖ · ‖1).

Proof. Let x = (x1, x2)T ∈ S(i), and assume for contradiction that
x /∈ V(i)(L(b1, b2), ‖ · ‖1), i.e., that there is some v ∈ L(b1, b2) \ {0} such that
‖x− v‖1 ≤ ‖x‖1. In addition, let z1, z2 ∈ Z with v = z1b1 + z2b2.

Due to symmetry, one can assume that x1 ≥ 0. Depending on x2, two cases
need to be distinguished.

1. x2 ≥ 0:

In this case, it is |x1− z1|+ |x2− z1− 3z2| = ‖x− v‖1 ≤ ‖x‖1 = x1 + x2 < 1
and thus |x1 − z1| < 1, which implies z1 ∈ {0, 1}. Examine both of these
cases independently as follows.

a) z1 = 0:

|x2 − 3z2| < 1 leads to z2 = 0, which is a contradiction to v 6= 0.

b) z1 = 1:

Again, it follows from |x2 − 1 − 3z2| < 1 that z2 = 0, but this further
implies that ‖x− v‖1 = |x1 − 1|+ |x2 − 1| = 2− x1 − x2 > 1. This is a
contradiction to ‖x− v‖1 < 1.
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2 Two-dimensional lattices

2. x2 < 0:

It holds that |x1 − z1| + |x2 − z1 − 3z2| = ‖x − v‖1 ≤ ‖x‖1 = x1 − x2 <
3
2
.

Hence, it is |x1 − z1| < 3
2

and |x2 − z1 − 3z2| < 3
2
, and these two inequalities

yield z1,−z1 − 3z2 ∈ {−1, 0, 1, 2}. According to z1, these four cases will be
distinguished.

a) z1 = −1 :

Then, it is −3z2 ∈ {−2,−1, 0, 1}, which leads to z2 = 0. Therefore,
x2 > −1 yields the contradiction ‖x − v‖1 = |x1 + 1| + |x2 + 1| =
2 + x1 + x2 > x1 − x2 = ‖x‖1.

b) z1 = 0 :

In this case, −3z2 ∈ {−1, 0, 1, 2} holds, which shows that z2 = 0, but
this is a contradiction to v 6= 0.

c) z1 = 1 :

Now, −3z ∈ {0, 1, 2, 3} must hold, yielding z2 ∈ {−1, 0}. If z2 = −1,
then x1 − x2 < 3

2
leads to ‖x − v‖1 = |x1 − 1| + |x2 + 2| =

3 − x1 + x2 > x1 − x2 = ‖x‖1. If z2 = 0, then it follows from x1 < 1
that ‖x − v‖1 = |x1 − 1| + |x2 − 1| = 2 − x1 − x2 > x1 − x2 = ‖x‖1.
Hence, both cases contradict ‖x− v‖1 ≤ ‖x‖1.

d) z1 = 2 :

Here, −3z2 ∈ {1, 2, 3, 4} holds, which implies z2 = −1, but this gives the
contradiction ‖x−v‖1 = |x1−2|+|x2+1| = 3−x1+x2 > x1−x2 = ‖x‖1.

Lemma 2.24 S(o)
1 ∪ S

(o)
2 ∪ S

(o)
3 ∪ S

(o)
4 ⊆ V(o)(L(b1, b2), ‖ · ‖1). In addition, for

all (z1, z2) ∈ I \ {(0, 0)} it holds that z1b1 + z2b2 is a generalized Voronoi-relevant
vector with respect to ‖ · ‖1.

Proof. Let x = (x1, x2)T ∈ S(o)
1 ∪ S(o)

2 ∪ S(o)
3 ∪ S(o)

4 . It is left to show that
‖x − v‖1 ≥ ‖x‖1 holds for all v ∈ L(b1, b2), and that there is some w ∈ L(b1, b2)
with w 6= 0 and ‖x − w‖1 = ‖x‖1. For this, consider all v ∈ L(b1, b2) with
‖x− v‖1 ≤ ‖x‖1 and show that ‖x− v‖1 = ‖x‖1 needs to hold. The proof distin-

guishes four cases according to the four sets S(o)
j for j = 1, 2, 3, 4, and finds in every

case at least one lattice vector w 6= 0 with ‖x − w‖1 = ‖x‖1, which in particular
shows that these lattice vectors are generalized Voronoi-relevant vectors.

Hence, let z1, z2 ∈ Z and v := z1b1 + z2b2 with |x1 − z1| + |x2 − z1 − 3z2| =
‖x− v‖1 ≤ ‖x‖1, and consider the four following cases.

1. x ∈ S(o)
1 =

{
±
(
x1

x2

)
∈ R2

∣∣∣∣ x1 + x2 = 1, x1 ∈ (0, 1)

}
:

Due to symmetry, one can assume that x1 ∈ (0, 1). Then it follows that
‖x‖1 = x1 + x2 = 1, implying |x1 − z1| ≤ ‖x − v‖1 ≤ 1. Thus, it is
z1 ∈ {0, 1}. Now distinguish these two cases as well.
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2.2 Non-strictly convex norms

a) z1 = 0:

Since |x2 − 3z2| ≤ ‖x− v‖1 ≤ 1, it holds that z2 = 0 and v = 0.

b) z1 = 1:

Now, |x2−1−3z2| ≤ 1 needs to hold, which implies again z2 = 0. This
time it follows that v = b1 and that ‖x − v‖1 = |x1 − 1| + |x2 − 1| =
2 − x1 − x2 = 1 = ‖x‖1. Additionally, the vectors ±b1 are generalized
Voronoi-relevant.

2. x ∈ S(o)
2 =

{
±
(
x1

x2

)
∈ R2

∣∣∣∣ x1 − x2 = 3
2
, x1 ∈

(
1
2
, 1
)}

:

Due to symmetry, one can assume that x1 ∈
(

1
2
, 1
)
. Then it follows that

‖x‖1 = x1 − x2 = 3
2
. This yields |x1 − z1| ≤ ‖x − v‖1 ≤ 3

2
and analogously

|x2 − z1 − 3z2| ≤ 3
2
, which implies z1,−z1 − 3z2 ∈ {0, 1, 2}. With this,

distinguish the cases according to z1.

a) z1 = 0:

−3z2 ∈ {0, 1, 2} leads to z2 = 0 and v = 0.

b) z1 = 1:

Here, it must hold that −3z2 ∈ {1, 2, 3} and thus z2 = −1. Then, it is
v = b1− b2 and ‖x− v‖1 = |x1− 1|+ |x2 + 2| = 3−x1 +x2 = 3

2
= ‖x‖1.

c) z1 = 2:

From −3z2 ∈ {2, 3, 4} it follows again that z2 = −1. Hence, it is
v = 2b1−b2 and ‖x−v‖1 = |x1−2|+ |x2 +1| = 3−x1 +x2 = 3

2
= ‖x‖1.

Additionally, this case and the upper case show that ±(b1 − b2) and
±(2b1 − b2) are generalized Voronoi-relevant vectors.

3. x ∈ S(o)
3 =

{
±
(
x1

x2

)
∈ R2

∣∣∣∣ x1 ≥ 1, x2 ≤ 0, x1 − x2 ≤ 3
2

}
:

Due to symmetry, one can assume that x1 ≥ 1. Then it is ‖x‖1 = x1−x2 ≤ 3
2
.

This yields |x1 − z1| ≤ ‖x − v‖1 ≤ 3
2

and analogously |x2 − z1 − 3z2| ≤ 3
2
,

which implies z1 ∈ {0, 1, 2, 3} and −z1 − 3z2 ∈ {−1, 0, 1, 2}. With this,
distinguish the cases according to z1.

a) z1 = 0:

−3z2 ∈ {−1, 0, 1, 2} gives z2 = 0 and v = 0.

b) z1 = 1:

−3z2 ∈ {0, 1, 2, 3} implies z2 ∈ {−1, 0}. If z2 = −1, then x2 ≥ −1
2

yields together with x1 − x2 = ‖x‖1 ≥ ‖x− v‖1 = |x1 − 1|+ |x2 + 2| =
1 + x1 + x2 that x2 = −1

2
, and from this it follows x1 = 1 as well as

‖x−v‖1 = 3
2

= ‖x‖1. If z2 = 0, then it is ‖x−v‖1 = |x1−1|+ |x2−1| =
x1 − x2 = ‖x‖1 for every x ∈ S(o)

3 with x1 ≥ 1.
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2 Two-dimensional lattices

c) z1 = 2:

Here, it must hold that −3z2 ∈ {1, 2, 3, 4}, which leads to z2 = −1.
Furthermore, x1 − x2 ≤ 3

2
and x1 − x2 = ‖x‖1 ≥ ‖x − v‖1 =

|x1 − 2| + |x2 + 1| = 3 − x1 + x2 imply x1 − x2 = 3
2
, which gives

‖x− v‖1 = 3
2

= ‖x‖1.

d) z1 = 3:

Now −3z2 ∈ {2, 3, 4, 5} holds, which implies z2 = −1 and v = 3b1 − b2.
Moreover, it follows from x1 ≤ 3

2
and x1 − x2 = ‖x‖1 ≥ ‖x − v‖1 =

|x1 − 3| + |x2| = 3 − x1 − x2 that x1 = 3
2

holds. Hence, x2 = 0 and
‖x − v‖1 = 3

2
= ‖x‖1. In addition, this shows that ±(3b1 − b2) are

generalized Voronoi-relevant vectors.

4. x ∈ S(o)
4 =

{
±
(
x1

x2

)
∈ R2

∣∣∣∣ x1 ≥ 0, x2 ≤ −1, x1 − x2 ≤ 3
2

}
:

Due to symmetry, one can assume that x2 ≤ −1. Then it is x + b1 ∈ S(o)
3

with x1 + 1 ≥ 1. Furthermore, it is ‖(x + b1) − (v + b1)‖1 = ‖x − v‖1 ≤
‖x‖1 = x1 − x2 = ‖x+ b1‖1. Hence, the above investigation for S(o)

3 already
shows that v + b1 ∈ {0, b1 − b2, b1, 2b1 − b2, 3b1 − b2} – which is equivalent
to v ∈ {−b1,−b2, 0, b1 − b2, 2b1 − b2} – and that ‖x − v‖1 = ‖x‖ must hold
in every case according to v. Additionally, in the case v = −b1 it follows
that ‖x − v‖1 = ‖x‖1 holds for every x ∈ S(o)

4 with x2 ≤ −1, and the case
v = −b2 shows that ±b2 are generalized Voronoi-relevant vectors.

These three lemmata give proof of Proposition 2.21 as well as a direct corollary
specifying all generalized Voronoi-relevant vectors of L(b1, b2) with respect to ‖·‖1.

Proof of Proposition 2.21. The proof follows directly from combining Lemmata
2.22, 2.23 and 2.24 since V(i)(L(b1, b2), ‖ · ‖1) and V(o)(L(b1, b2), ‖ · ‖1) are disjoint
by definition.

Corollary 2.25 Let z1, z2 ∈ Z. Then it holds that z1b1 + z2b2 is a generalized
Voronoi-relevant vector with respect to ‖ · ‖1 if and only if (z1, z2) ∈ I \ {(0, 0)}.

Proof. This statement is a direct consequence of Lemmata 2.17, 2.18, 2.19 and
2.24.

Moreover, all Voronoi-relevant vectors can be computed as follows.

Lemma 2.26 v ∈ L(b1, b2) is Voronoi-relevant with respect to ‖ · ‖1 if and only if
v = ±b1.

Proof. Since every Voronoi-relevant vector is a generalized Voronoi-relevant vec-
tor, it holds for every Voronoi-relevant vector z1b1 + z2b2 ∈ L(b1, b2) by Corol-
lary 2.25 that (z1, z2) ∈ I \ {(0, 0)}. Due to symmetry, only five different values
for (z1, z2) need to be considered.
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2.2 Non-strictly convex norms

1. (z1, z2) = (0, 1):

In this case, it will be shown that the vectors ±b2 are not Voronoi-relevant
because for every x ∈ R2 with ‖x‖1 = ‖x− b2‖1 it is ‖x+ b1 − b2‖1 ≤ ‖x‖1.

To see this, let x = (x1, x2)T ∈ R2 such that |x1|+ |x2| = ‖x‖1 = ‖x−b2‖1 =
|x1|+ |x2− 3|. Consequently, x2 = 3

2
holds (cf. Figure 2.2). Now distinguish

the following three cases.

a) x1 ≥ 0:

Here, even the following equality

‖x+ b1 − b2‖1 = x1 +
3

2
= ‖x‖1 = ‖x− b2‖1 (2.2)

holds.

b) −1 < x1 < 0:

It follows that ‖x+ b1 − b2‖1 = x1 + 3
2
< −x1 + 3

2
= ‖x‖1.

c) x1 ≤ −1:

Then it holds that ‖x+ b1 − b2‖1 = −x1 − 1
2
< −x1 + 3

2
= ‖x‖1.

2. (z1, z2) = (3,−1):

In this case, it will be shown that the vectors ±(3b1 − b2) are not Voronoi-
relevant because for every x ∈ R2 with ‖x‖1 = ‖x− 3b1 + b2‖1 it holds that
‖x− 2b1 + b2‖1 ≤ ‖x‖1.

This can be seen completely analogously to the case (z1, z2) = (0, 1) above
by exchanging the roles of x1 and x2. In particular, it holds for x2 ≥ 0 that

‖x− 2b1 + b2‖1 = x2 +
3

2
= ‖x‖1 = ‖x− 3b1 + b2‖1. (2.3)

3. (z1, z2) = (−1, 1):

In this case, it will be shown that the vectors ±(b1 − b2) are not Voronoi-
relevant because for every x ∈ R2 with ‖x‖1 = ‖x + b1 − b2‖1 there is some
v ∈ {b1, b2,−2b1 + b2} such that ‖x− v‖1 ≤ ‖x‖1 holds.

To see this, let x = (x1, x2)T ∈ R2 such that |x1| + |x2| = ‖x‖1 =
‖x+ b1− b2‖1 = |x1 + 1|+ |x2−2|. Now distinguish the following three cases
(cf. Figure 2.2).

a) x1 ≥ 0:

Then it must hold that |x2|−1 = |x2−2|, which leads to x2 = 3
2
. Thus,

in this case (2.2) holds as well.

b) −1 < x1 < 0:
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2 Two-dimensional lattices

From ‖x‖1 = ‖x+ b1− b2‖1 it follows that |x2| − 2x1− 1 = |x2− 2| and
thus x2− x1 = 3

2
. Hence, ‖x‖1 = −x1 + x2 = 3

2
holds. If x1 < −1

2
, then

it holds that ‖x + 2b1 − b2‖1 = 3 + x1 − x2 = 3
2

= ‖x‖1. If x1 ≥ −1
2
,

then it is ‖x− b1‖1 = −x1 + x2 = 3
2

= ‖x‖1.

c) x1 ≤ −1:

Then it follows that |x2| + 1 = |x2 − 2|, which implies x2 = 1
2
. Due

to x1 ≤ −1, it moreover holds that ‖x + 2b1 − b2‖1 = |x1 + 2| + 1
2
≤

−x1 + 1
2

= ‖x‖1.

4. (z1, z2) = (2,−1):

In this case, it will be shown that the vectors ±(2b1 − b2) are not Voronoi-
relevant because for every x ∈ R2 with ‖x‖1 = ‖x− 2b1 + b2‖1 there is some
v ∈ {b1, b1 − b2, 3b1 − b2} such that ‖x− v‖1 ≤ ‖x‖1 holds.

This can be seen completely analogously to the case (z1, z2) = (−1, 1) above
by exchanging the roles of x1 and x2, and using (2.3).

5. (z1, z2) = (1, 0):

This final case will show that ±b1 are Voronoi-relevant. For this, let
x := 1

2
b1 to get ‖x‖1 = 1 = ‖x − b1‖1, and assume for contradiction that

there is some v ∈ L(b1, b2) \ {0, b1} with ‖x − v‖1 ≤ 1. Let z1, z2 ∈ Z
such that v = z1b1 + z2b2. From ‖x − v‖1 =

∣∣1
2
− z1

∣∣ +
∣∣1

2
− z1 − 3z2

∣∣ it
follows that

∣∣1
2
− z1

∣∣ ≤ 1, which shows z1 ∈ {0, 1}. Thus it needs to hold
that

∣∣1
2
− 3z2

∣∣ ≤ 1 or
∣∣−1

2
− 3z2

∣∣ ≤ 1, but both cases imply z2 = 0 and
v ∈ {0, b1}, which is a contradiction.

This lemma as well as the above Voronoi cell lead to the observation that the
Voronoi-relevant vectors are in general not sufficient to determine the Voronoi cell
of the origin of a two-dimensional lattice completely when a non-strictly convex
norm is used. This is expressed by the following corollary, and leads to the con-
clusion that all generalized Voronoi-relevant vectors need to be considered under
the usage of a non-strictly convex norm. The relation between the Voronoi cell of
the origin and the (generalized) Voronoi-relevant vectors will be examined more
formally in Section 4.3.

Corollary 2.27 It holds that (7
8
,−7

8
)T /∈ V(L(b1, b2), ‖ · ‖1), although∥∥∥∥∥

(
7

8
,−7

8

)T
− v

∥∥∥∥∥
1

>

∥∥∥∥∥
(

7

8
,−7

8

)T∥∥∥∥∥
1

holds for all v ∈ L(b1, b2) that are Voronoi-relevant with respect to ‖ · ‖1.
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Proof. (7
8
,−7

8
)T /∈ V(L(b1, b2), ‖·‖1) is a direct consequence from Proposition 2.21.

Simple calculation shows
∥∥(7

8
,−7

8
)T − b1

∥∥
1

= 2 =
∥∥(7

8
,−7

8
)T + b1

∥∥
1

as well as∥∥(7
8
,−7

8
)T
∥∥

1
= 7

4
, and the statement follows by Lemma 2.26.

Unfortunately, for generalized Voronoi-relevant vectors in two-dimensional lat-
tices under non-strictly convex norms one cannot find an analogous result to
Voronoi-relevant vectors in two-dimensional lattices under strictly convex norms.
In fact, the number of generalized Voronoi-relevant vectors is not upper bounded
by a constant in this setting.

Theorem 2.28 For every m ∈ N there is a lattice Λm ⊆ R2 of rank two with at
least 2

(
2
⌊
m
2

⌋
+ 1
)

generalized Voronoi-relevant vectors with respect to ‖ · ‖1.

Proof. Let Λm := L(bm,1, bm,2), where bm,1 = (1, 1)T and bm,2 = (0,m)T . Further-
more, consider x := 1

2
bm,2. The rest of this proof shows that for every v ∈ Λm

it holds that ‖x − v‖1 ≥ m
2

, and that there are exactly 2
⌊
m
2

⌋
+ 2 lattice vectors

fulfilling the equality ‖x− v‖1 = m
2

.
Hence, consider additionally v = z1bm,1 + z2bm,2 with z1, z2 ∈ Z as well as

m
2
≥ ‖x − v‖1 = |z1| +

∣∣z1 +m
(
z2 − 1

2

)∣∣. This implies both |z1| ≤ m
2

and∣∣z1 +m
(
z2 − 1

2

)∣∣ ≤ m
2
− |z1|. With this, distinguish the following four cases.

1. z1 ≥ 0 and z2 ≥ 1:

In this case, z1 +m
(
z2 − 1

2

)
≤ m

2
−z1 holds, which implies m ≥ 2z1 +mz2 ≥

mz2 ≥ m and thus z2 = 1 as well as z1 = 0 follow. Therefore, ‖x− v‖1 = m
2

holds.

2. z1 ≥ 0 and z2 ≤ 0:

Assume for contradiction that z1 +m
(
z2 − 1

2

)
> 0. Then z1 > m

(
1
2
− z2

)
≥

m
2

holds, which contradicts |z1| ≤ m
2

.

Hence, it holds that z1 +m
(
z2 − 1

2

)
≤ 0, which leads to −z1 +m

(
1
2
− z2

)
≤

m
2
− z1. Thus, z2 ≥ 0 follows, yielding z2 = 0. For all z1 ∈

[
0, m

2

]
it now

holds that ‖x− v‖1 = m
2

.

3. z1 < 0 and z2 ≤ 0:

In this case, −z1+m
(

1
2
− z2

)
≤ m

2
+z1 holds, which leads to the contradiction

0 < −2z1 ≤ −2z1 −mz2 ≤ 0. Therefore, this case cannot occur.

4. z1 < 0 and z2 ≥ 1:

Assume for contradiction that z1 +m
(
z2 − 1

2

)
< 0. Then z1 < m

(
1
2
− z2

)
≤

−m
2

holds, which contradicts |z1| ≤ m
2

.

Hence, it holds that z1 + m
(
z2 − 1

2

)
≥ 0, which yields z1 + m

(
z2 − 1

2

)
≤

m
2

+ z1. Thus, z2 ≤ 1 follows, leading to z2 = 1. For all z1 ∈
[
−m

2
, 0
)

it now
holds that ‖x− v‖1 = m

2
.
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2 Two-dimensional lattices

Summing up, these cases show that ‖x − v‖1 = m
2

holds if and only if z2 = 0
and z1 ∈

[
0, m

2

]
or z2 = 1 and z1 ∈

[
−m

2
, 0
]
, and that ‖x − v‖1 ≥ m

2
holds

for every v ∈ Λm. Therefore, z1bm,1 + z2bm,2 is a generalized Voronoi-relevant
vector if z2 = 0, z1 ∈

(
0, m

2

]
or z2 = 0, z1 ∈

[
−m

2
, 0
)

or z2 = 1, z1 ∈
[
−m

2
, 0
]

or
z2 = −1, z1 ∈

[
0, m

2

]
. In total, these are 2

(
2
⌊
m
2

⌋
+ 1
)

generalized Voronoi-relevant
vectors.

In contrast to that, Lemma 2.9 and its proof also hold for generalized Voronoi-
relevant vectors instead of Voronoi-relevant vectors, which shows that every lattice
of rank two has at most eight generalized Voronoi-relevant vectors with respect
to an arbitrary strictly convex norm, but – as shown in the above theorem –
the number of generalized Voronoi-relevant vectors for lattices of rank two is in
general not bounded from above by a constant when working with non-strictly
convex norms.
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3 Higher-dimensional lattices

Now one knows that the upper bound 2(2n−1) for the number of Voronoi-relevant
vectors holds for the Euclidean norm in every dimension n, and that it further
holds in the case n = 2 for every strictly convex norm. Unfortunately, this is not
true for arbitrary strictly convex norms in higher dimensions. Even worse, there
is no upper bound at all which only depends on the lattice dimension. This is
shown in the next section.

An upper bound that also depends on other lattice properties and not only on
the dimension is shown in Section 3.2. This section also points out the conse-
quences for the algorithm by Micciancio and Voulgaris [13] arising from the result
that no upper bound for the number of Voronoi-relevant vectors can only depend
on the lattice dimension when a general p-norm for p ∈ N, p ≥ 3 is considered.

3.1 Generalizations

In the following, a family of three-dimensional lattices of rank three will be con-
structed such that their number of Voronoi-relevant vectors with respect to the
3-norm ‖ · ‖3 is not bounded from above by a constant. The idea is to use a
lattice of the form L(e1, e2,Me3), where (e1, e2, e3) denotes the standard basis of
R3 and M ∈ N is chosen sufficiently large, and to apply some rotations to this
lattice. These rotations will depend on a parameter m ∈ N such that every lattice
in the family is rotated differently. The basis vectors of the rotated lattices will
be denoted by bm,1, bm,2 and bm,3 and will coincide with the rotated versions of e1,
e2 and Me3, respectively. The intuition is to rotate L(e1, e2,Me3) such that the
line between 0 and bm,1 + mbm,2 lies in an “edge” of a scaled and translated unit
ball of the 3-norm when intersecting the plane spanned by 0, bm,1 and bm,2 with
the ball.

Figure 3.1 shows the unit ball of the 3-norm with and without intersections with
different planes. Let the x-, y- and z-axis denote the axes of the standard three-
dimensional coordinate system which are spanned by e1, e2 and e3, respectively.
As seen in Figures 3.1c and 3.1d, the intersection of the ball with a plane which is
orthogonal to the z-axis (e.g., the plane spanned by 0, e1 and e2) yields a scaled
unit ball of the 3-norm in two dimensions. But when such a plane is rotated around
the y-axis by 45◦, as in Figures 3.1e to 3.1h, it intersects the three-dimensional
unit ball of the 3-norm at one of its “edges”. These kinds of intersections are
roughly speaking as less circular as possible, and the closer the plane is to the
“edge”, the less circular the intersection is. Due to this, the plane spanned by
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3 Higher-dimensional lattices

0, bm,1 and bm,2 should be of the form of the plane in Figures 3.1g and 3.1h.
Moreover, the line between 0 and bm,1 + mbm,2 should lie directly on the “edge”
of a scaled and translated unit ball such that all other lattice points in the plane
spanned by 0, bm,1 and bm,2 lie outside of the ball. This is illustrated in Figure 3.2
for the case m = 3. If M is now chosen large enough, every lattice point of the
form z1bm,1 + z2bm,2 + z3bm,3 with z1, z2, z3 ∈ Z, z3 6= 0 will be sufficiently far away
from the plane spanned by 0, bm,1 and bm,2 such that it will also lie outside of
the ball. Then 0 and bm,1 + mbm,2 are the only lattice points in the ball, and
if they in fact lie on the boundary of the ball, it follows that bm,1 + mbm,2 is a
Voronoi-relevant vector, where the center of the ball serves as x in Definition 1.6
of Voronoi-relevant vectors.

(a) B‖·‖3,1(0). (b) B‖·‖3,1(0). (c) B‖·‖3,1(0) and
plane orthogo-
nal to z-axis.

(d) Figure 3.1c
from perspec-
tive orthogonal
to plane.

(e) B‖·‖3,1(0) and
plane intersect-
ing the ball at
an “edge”.

(f) Figure 3.1e
from perspective
orthogonal to
plane.

(g) B‖·‖3,1(0) and
plane intersect-
ing the ball at
an “edge”.

(h) Figure 3.1g
from perspec-
tive orthogonal
to plane.

Figure 3.1: B‖·‖3,1(0) intersecting different planes.

With these figurative ideas at hand, the rotations of L(e1, e2,Me3) will now be
described formally. These modifications of the standard lattice are also illustrated
in Figures 3.3 to 3.6 for the case m = 3. First, L(e1, e2,Me3) is rotated around
the z-axis until e1 +me2 lies on the y-axis, because all “edges” of the unit ball are
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0
bm,1

bm,2

bm,1 +mbm,2

Figure 3.2: Plane spanned by 0, bm,1 and bm,2 intersects ball at an “edge” such that
line between 0 and bm,1 +mbm,2 lies on the “edge” (cf. Figure 3.1h).

parallel to the x-, y- or z-axis. This rotation is realized by the matrix

Rz :=

 m√
m2+1

− 1√
m2+1

0
1√

m2+1
m√
m2+1

0

0 0 1

 .

Secondly, the resulting lattice RzL(e1, e2,Me3) is rotated around the y-axis by 45◦

such that after the rotation the plane formerly spanned by 0, e1 and e2 intersects
translated unit balls of the 3-norm at one of their “edges”. The second rotation
is given by the matrix

Ry :=

 1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2

 .

The resulting lattice Λm := RyRzL(e1, e2,Me3) is spanned by bm,1 := RyRze1,
bm,2 := RyRze2 and bm,3 := MRyRze3. Using an appropriate scaling and trans-
lation of the unit ball, the situation in Figure 3.2 can be reached. As already
mentioned, this can be used to show that bm,1 + mbm,2 is Voronoi-relevant if
M is sufficiently large. Actually, Λm has considerably more Voronoi-relevant
vectors: In the following it is shown that choosing M := 5

√
2m5 implies that

λi(Λm, ‖ · ‖3) = ‖bm,i‖3 holds for i ∈ {1, 2, 3} and that bm,1 + mbm,2 as well as
bm,1 + kbm,2 for all k ∈ N, k ∈ [2,

√
m] are Voronoi-relevant with respect to ‖ · ‖3.

For this, two easy lemmata are shown first.

Lemma 3.1 Let C,D ∈ R with D 6= −C. The function

f : R −→ R≥0,

x 7−→ |C + x|3 + |D − x|3
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3 Higher-dimensional lattices

   0 e1

e2

e3 e1 +me2

Figure 3.3: L(e1, e2, e3).

has a global minimum at D−C
2

with function value 1
4
|D + C|3.

Proof. Since f ′(x) = 3 sgn(C+x)(C+x)2−3 sgn(D−x)(D−x)2, f ′(x) = 0 holds
if and only if sgn(C + x)(C + x)2 = sgn(D − x)(D − x)2. Now distinguish the
following cases.

1. sgn(C + x) = sgn(D − x): Then f ′(x) = 0 holds if and only if (C + x)2 =
(D − x)2, which is equivalent to C + x = D − x since X 7→ X2 is bijective
on R≥0 and R<0, respectively. Hence, f ′(x) = 0 if and only if x = D−C

2
.

2. sgn(C + x) = − sgn(D− x): Then f ′(x) = 0 holds if and only if (C + x)2 =
−(D−x)2, which is equivalent to C+x = 0 = D−x and thus toD = x = −C.
Since this contradicts the assumption D 6= −C, there is no x ∈ R with
f ′(x) = 0 and sgn(C + x) = − sgn(D − x).

Hence, f ′(x) = 0 if and only if x = D−C
2

. Since f ′′(x) = 6|C + x| + 6|D − x|
is everywhere strictly positive, D−C

2
is a global minimum of f with f

(
D−C

2

)
=

1
4
|D + C|3.

The next lemma computes the distance between some v ∈ R3 and the plane
spanned by 0, e1 and e2 after this plane is translated along the z-axis and rotated
around the y-axis by 45◦.
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0 e1

e2

Me3

e1 +me2

Figure 3.4: L(e1, e2,Me3): Note that M is so large that this figure is not scaled
properly.

Lemma 3.2 Let C ∈ R, v = (α, β, γ)T ∈ R3 and

EC := Ry

R

 1
0
0

+ R

 0
1
0

+ C

 0
0
1

 .

If v /∈ EC, then ‖v − EC‖3
3 =

∥∥∥∥∥∥v −Ry

 α−γ√
2

β
C

∥∥∥∥∥∥
3

3

= 1
4
|
√

2C − α− γ|3.
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3 Higher-dimensional lattices

0 Rze1

Rze2

Me3

Rz(e1 +me2)

Figure 3.5: RzL(e1, e2,Me3).

Proof. First note that v ∈ EC is equivalent to α
β
γ

 =

 1√
2
(C + A)

B
1√
2
(C − A)


for some A,B ∈ R, which holds if and only if C−

√
2α = −C+

√
2γ. Hence under

the assumptions v /∈ EC , Lemma 3.1 can be applied as follows:

‖v − EC‖3
3 = min

A,B∈R

(∣∣∣∣ C√2
+

A√
2
− α

∣∣∣∣3 + |B − β|3 +

∣∣∣∣ C√2
− A√

2
− γ
∣∣∣∣3
)

= min
B∈R
|B − β|3 +

1
√

2
3 min
A∈R

(
|C −

√
2α + A|3 + |C −

√
2γ − A|3

)
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0

bm,1

bm,2

bm,3

bm,1 +mbm,2

Figure 3.6: Λm = RyRzL(e1, e2,Me3).

=
1
√

2
3

1

4
|2C −

√
2α−

√
2γ|3 =

1

4
|
√

2C − α− γ|3.

Moreover, it follows from Lemma 3.1 that the minima in the above equality are
reached for B = β and A = α−γ√

2
.

With this, it will be shown that the lengths of the basis vectors of Λm coincide
with the successive minima and that bm,1 +mbm,2 is Voronoi-relevant in Λm. This
yields for general strictly convex norms that the coefficients of Voronoi-relevant
vectors, when they are represented in a successive minima basis, are not bounded
from above by a bound that depends only on the lattice dimension. Note that
this shows that Lemma 2.9 cannot be generalized to ranks higher than two.
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3 Higher-dimensional lattices

Proposition 3.3 For every m ∈ N,m ≥ 2 and every i ∈ {1, 2, 3} it holds that

λi(Λm, ‖ · ‖3) = ‖bm,i‖3.

Proof. This statement follows from the following four intermediate steps:

1. ‖bm,1‖3 < ‖bm,2‖3:

First note that

bm,1 = RyRz

 1
0
0

 =


m√

2
√
m2+1
1√

m2+1

− m√
2
√
m2+1

 and

bm,2 = RyRz

 0
1
0

 =

−
1√

2
√
m2+1

m√
m2+1

1√
2
√
m2+1

 .

Hence, ‖bm,1‖3
3 = m3+

√
2√

2
√
m2+1

3 and ‖bm,2‖3
3 =

√
2m3+1√

2
√
m2+1

3 . Since m ≥ 2, it holds

that m3 > 1 and thus
√

2m3+1 > m3+
√

2, which implies ‖bm,2‖3 > ‖bm,1‖3.

2. ‖bm,2‖3 < ‖z1bm,1 + z2bm,2 + z3bm,3‖3 for all z1, z2, z3 ∈ Z, z3 6= 0:

For all z1, z2, z3 ∈ Z with z3 6= 0 it holds that z1bm,1 +z2bm,2 +z3bm,3 ∈ EMz3

using the notation in Lemma 3.2. Thus by the same lemma and the choice
M = 5

√
2m5,

‖z1bm,1 + z2bm,2 + z3bm,3‖3
3 ≥ ‖0− EMz3‖3

3 =
1

4
|
√

2Mz3|3 ≥ 250m15. (3.1)

The desired inequality follows since ‖bm,2‖3
3 <
√

2m3 + 1 < (
√

2 + 1)m3.

3. ‖bm,2‖3 < ‖v‖3 for all v ∈ Λm \ {0, bm,1,−bm,1, bm,2,−bm,2}:

By the above estimate, only v ∈ Λm of the form v = z1bm,1 + z2bm,2 for
z1, z2 ∈ Z are left to be considered. Assume that for such a v it holds that
‖v‖3 ≤ ‖bm,2‖3.

Since

v =


z1m−z2√
2
√
m2+1

z2m+z1√
m2+1

− z1m−z2√
2
√
m2+1

 ,

it is ‖v‖3
3 = 1√

m2+1
3

(
1√
2
|z1m− z2|3 + |z2m+ z1|3

)
. Hence ‖v‖3 ≤ ‖bm,2‖3
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implies that

1√
2
|z1m− z2|3 + |z2m+ z1|3 ≤ m3 +

1√
2
. (3.2)

In particular it holds that |z2m+ z1| ≤ m due to z1, z2 ∈ Z.

If z2 ≥ 2, |z2m + z1| ≤ m implies z1 ≤ −m. Thus it follows |z1m − z2|3 ≥
(m2 + 2)3 > m6 > (

√
2 + 1)m3 >

√
2m3 + 1, which contradicts (3.2). For

z2 ≤ −2, it is z1 ≥ m, which yields the same estimate with the same
contradiction.

If z2 = 1, |m + z1| ≤ m implies z1 ≤ 0. Thus it holds that −z3
1m

3 <
|z1m − 1|3 ≤

√
2m3 + 1 < (

√
2 + 1)m3, which leads to z1 ∈ {−1, 0}. Since

3(
√

2 − 1) < m, it follows 3(
√

2 − 1)m2 +
√

2 < m3 + 3(
√

2 + 1)m, which
implies

√
2m3 + 1 < (m + 1)3 +

√
2(m − 1)3 = | − m − 1|3 +

√
2|m − 1|3.

This contradicts (3.2) for the case z1 = −1, yielding z1 = 0. For z2 = −1, it
is z1 ≥ 0, and z3

1m
3 < |z1m+ 1|3 leads as above to z1 ∈ {0, 1}, but the case

z1 = 1 contradicts (3.2) using the same estimate as above. Hence it follows
for |z2| = 1 that z1 = 0, i.e., v ∈ {−bm,2, bm,2}.
If z2 = 0, (3.2) implies |z1|3m3 ≤

√
2m3 + 1 < (

√
2 + 1)m3. Hence it holds

that z1 ∈ {−1, 0, 1}, i.e., v ∈ {−bm,1, 0, bm,1}.

4. ‖bm,3‖3 ≤ ‖z1bm,1 + z2bm,2 + z3bm,3‖3 for all z1, z2, z3 ∈ Z, z3 6= 0:

Since bm,3 = MRyRz(0, 0, 1)T = (5m5, 0, 5m5)T , ‖bm,3‖3
3 = 250m15. To-

gether with (3.1), this shows the desired inequality.

Proposition 3.4 For every m ∈ N,m ≥ 2 it holds that bm,1 +mbm,2 is Voronoi-
relevant in Λm with respect to ‖ · ‖3.

Proof. Define

x :=

 m5
√
m2+1

2

m5

 .

Then ‖x‖3
3 = 2m15 + 1

8

√
m2 + 1

3
= ‖bm,1 + mbm,2 − x‖3

3, and the following two
estimates show that ‖x‖3 < ‖x − v‖3 for all v ∈ Λm \ {0, bm,1 + mbm,2}, which
completes the proof.

1. ‖x‖3 < ‖z1bm,1 + z2bm,2 + z3bm,3 − x‖3 for all z1, z2, z3 ∈ Z, z3 6= 0:

By Lemma 3.2 it follows for all z1, z2, z3 ∈ Z with z3 6= 0 that

‖z1bm,1 + z2bm,2 + z3bm,3 − x‖3
3 ≥ ‖x− EMz3‖3

3
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=
1

4
|
√

2Mz3 − 2m5|3 =
1

4
m15|10z3 − 2|3

≥ 1

4
m15 · 83 = 128m15.

The desired inequality follows since ‖x‖3
3 < 2m15 + 1

8
(2m2)3 < 3m15.

2. ‖x‖3 < ‖x− v‖3 for all v ∈ Λm \ {0, bm,1 +mbm,2}:

By the first estimate, only v ∈ Λm of the form v = z1bm,1 + z2bm,2 for
z1, z2 ∈ Z have to be considered. Assume that for such a v it holds that
‖x− v‖3 ≤ ‖x‖3.

Define Z := z1m−z2√
m2+1

. Then

v =


Z√
2

z2m+z1√
m2+1
−Z√

2


and ‖x− v‖3

3 ≥
∣∣∣m5 − Z√

2

∣∣∣3 +
∣∣∣m5 + Z√

2

∣∣∣3.

If m5 − Z√
2
< 0, then Z >

√
2m5 and ‖x − v‖3

3 ≥ (m5 + Z√
2
)3 > 8m15. If

m5 + Z√
2
< 0, then Z < −

√
2m5 and ‖x− v‖3

3 ≥ (m5 − Z√
2
)3 > 8m15. Both

cases lead to the contradiction 8m15 < ‖x− v‖3
3 ≤ ‖x‖3

3 < 3m15.

Hence it can be assumed that ‖x − v‖3
3 ≥ (m5 − Z√

2
)3 + (m5 + Z√

2
)3 =

2m15 + 3Z2m5. Using ‖x‖3
3 = 2m15 + 1

8

√
m2 + 1

3
implies the inequality

3Z2m5 ≤ 1
8

√
m2 + 1

3
. This leads to 576Z4m10 ≤ (m2 + 1)3 and thus to

|Z| ≤ 4

√
(m2+1)3

576m10 . By definition of Z, it holds that |z1m − z2| ≤ 4

√
(m2+1)5

576m10 .

Since (m2 + 1)5 = m10 + 5m8 + 10m6 + 10m4 + 5m2 + 1 < 32m10 < 576m10,
it follows that |z1m − z2| < 1. Thus z1m − z2 = 0 due to z1, z2 ∈ Z. With

this, v = (0, z1

√
m2 + 1, 0)T and ‖x− v‖3

3 = 2m15 +
√
m2+1

3

8
|2z1 − 1|3. From

‖x− v‖3 ≤ ‖x‖3 it directly follows that |2z1− 1| ≤ 1, which is equivalent to
z1 ∈ {0, 1}, i.e., v ∈ {0, bm,1 +mbm,2}.

The most important statement of this thesis will now be formulated: The above
defined lattices Λm do not only have bm,1 +mbm,2 as a Voronoi-relevant vector but
also bm,1 + kbm,2 for all k ∈ N, k ∈ [2,

√
m]. Hence, it holds for the 3-norm that

every Λm has Ω(
√
m) Voronoi-relevant vectors, and that for every k ∈ N one can

find a lattice that has at least k Voronoi-relevant vectors. This will be formalized
in Corollary 3.6.
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Theorem 3.5 For every k ∈ N, k ≥ 2 and all m ∈ N,m ≥ k2 it holds that
bm,1 + kbm,2 is Voronoi-relevant in Λm with respect to ‖ · ‖3.

Proof. For k,m ∈ N with m ≥ k ≥ 2 define

xm,k :=
1

2
(bm,1 + kbm,2) +


(
k2

4
+ 1

3

)
m

0(
k2

4
+ 1

3

)
m

 =


m−k√

2
3√

m2+1
+
(
k2

4
+ 1

3

)
m

km+1
2
√
m2+1

k−m√
2

3√
m2+1

+
(
k2

4
+ 1

3

)
m

 .

Since 1
4

+ 1
3
≥ 1√

2
3 , it holds that

(
k2

4
+ 1

3

)
m ≥ 1√

2
3 ≥ m−k√

2
3√

m2+1
, which implies

that

‖xm,k‖3
3 =

(
m− k

√
2

3√
m2 + 1

+

(
k2

4
+

1

3

)
m

)3

+

(
k −m

√
2

3√
m2 + 1

+

(
k2

4
+

1

3

)
m

)3

+

(
km+ 1

2
√
m2 + 1

)3

= 2

(
k2

4
+

1

3

)3

m3 + 6

(
k2

4
+

1

3

)
m

(
m− k

√
2

3√
m2 + 1

)2

+

(
km+ 1

2
√
m2 + 1

)3

= ‖bm,1 + kbm,2 − xm,k‖3
3.

To complete this proof, the following three estimates show ‖xm,k‖3 < ‖xm,k − v‖3

for all v ∈ Λm \ {0, bm,1 + kbm,2} and all m ≥ k2.

1. ‖xm,k‖3 < ‖z1bm,1 + z2bm,2 + z3bm,3 − xm,k‖3 for all all m ≥ k and all
z1, z2, z3 ∈ Z, z3 6= 0:

On the one hand, it is z1bm,1+z2bm,2+z3bm,3 ∈ EMz3 for all z1, z2, z3 ∈ Z. On

the other hand, xm,k /∈ EMz3 , because otherwise 2Mz3 = 2
√

2m
(
k2

4
+ 1

3

)
would hold, which is equivalent to 60m4z3 = 3k2+4 and hence implies z3 > 0
leading to z3 ≥ 1 and the contradiction 60m4z3 ≥ 60k4 > 4k2 ≥ 3k2 + 4 =
60m4z3. By Lemma 3.2 it follows that

‖z1bm,1 + z2bm,2 + z3bm,3 − xm,k‖3
3 ≥ ‖xm,k − EMz3‖3

3

=
1

4

∣∣∣∣√2Mz3 − 2

(
k2

4
+

1

3

)
m

∣∣∣∣3
=

1

4
· 1000m15

∣∣∣∣z3 −
1

5m4

(
k2

4
+

1

3

)∣∣∣∣3 .
The prerequisite m ≥ k ≥ 2 yields 1

5m4

(
k2

4
+ 1

3

)
∈
(
0, 1

60

]
. This shows for
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z3 ∈ Z\{0} that the inequality z3− 1
5m4

(
k2

4
+ 1

3

)
≥ 0 is equivalent to z3 ≥ 1,

and that

‖z1bm,1 + z2bm,2 + z3bm,3 − xm,k‖3
3 ≥ 250m15

(
1− 1

5m4

(
k2

4
+

1

3

))3

≥ 250m15

(
59

60

)3

> 200m15.

The desired inequality follows since m2

4
+ 1

3
≤ m2 implies

‖xm,k‖3
3 ≤ 2m9 + 6m3

(
m

√
2

3√
m2 + 1

)2

+

(
m2 + 1

2
√
m2 + 1

)3

≤ 2m9 +
3

4
m3 +m3 < 4m15.

2. ‖xm,k‖3 < ‖z1bm,1 + z2bm,2 − xm,k‖3 for all m ≥ k and all
(z1, z2) ∈ Z2 \ (({0, 1} × {1, . . . , k − 1}) ∪ {(0, 0), (1, k)}):

For v := z1bm,1 + z2bm,2 with z1, z2 ∈ Z it holds that

‖v − xm,k‖3
3 =

∣∣∣∣∣
(
k2

4
+

1

3

)
m− (2z1 − 1)m− (2z2 − k)

√
2

3√
m2 + 1

∣∣∣∣∣
3

+

∣∣∣∣∣
(
k2

4
+

1

3

)
m+

(2z1 − 1)m− (2z2 − k)
√

2
3√
m2 + 1

∣∣∣∣∣
3

+

∣∣∣∣(2z2 − k)m+ (2z1 − 1)

2
√
m2 + 1

∣∣∣∣3 .
If
(
k2

4
+ 1

3

)
m − (2z1−1)m−(2z2−k)

√
2

3√
m2+1

< 0 or
(
k2

4
+ 1

3

)
m + (2z1−1)m−(2z2−k)

√
2

3√
m2+1

< 0,

then ‖v − xm,k‖3
3 > 8

(
k2

4
+ 1

3

)3

m3. Assume in this case for contradic-

tion that ‖v − xm,k‖3 ≤ ‖xm,k‖3. This implies that 6
(
k2

4
+ 1

3

)3

m3 <

6
(
k2

4
+ 1

3

)
m
(

m−k√
2

3√
m2+1

)2

+
(

km+1
2
√
m2+1

)3

. Dividing by 6
(
k2

4
+ 1

3

)
m and mul-

tiplying by 8
√
m2 + 1

3
yields 8

(
k2

4
+ 1

3

)2

m2
√
m2 + 1

3

< (m − k)2
√
m2 + 1 + 2(km+1)3

m(3k2+4)
. Using m <

√
m2 + 1 <

√
2m and

2(km+1) < m(3k2+4) leads to 8k
4

16
m5 <

√
2m3+(km+1)2 <

√
2m3+4k2m2.

Hence 16m3 ≤ k4m3 < 2
√

2m + 8k2 < 4m + 8m2 follows, leading to
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0 > 4m2 − 2m− 1 = 4
(
m− 1+

√
5

4

)(
m− 1−

√
5

4

)
, but this is a contradiction

since 1−
√

5
4

< 1+
√

5
4

< 1 and m ≥ 2. This shows ‖v−xm,k‖3 > ‖xm,k‖3 in case

that
(
k2

4
+ 1

3

)
m− (2z1−1)m−(2z2−k)

√
2

3√
m2+1

< 0 or
(
k2

4
+ 1

3

)
m+ (2z1−1)m−(2z2−k)

√
2

3√
m2+1

< 0.

Hence it can be assumed in the following that

‖v − xm,k‖3
3 =

((
k2

4
+

1

3

)
m− (2z1 − 1)m− (2z2 − k)

√
2

3√
m2 + 1

)3

+

((
k2

4
+

1

3

)
m+

(2z1 − 1)m− (2z2 − k)
√

2
3√
m2 + 1

)3

+

∣∣∣∣(2z2 − k)m+ (2z1 − 1)

2
√
m2 + 1

∣∣∣∣3
=

∣∣∣∣(2z2 − k)m+ (2z1 − 1)

2
√
m2 + 1

∣∣∣∣3 + 2

(
k2

4
+

1

3

)3

m3

+ 6

(
k2

4
+

1

3

)
m

(
(2z1 − 1)m− (2z2 − k)

√
2

3√
m2 + 1

)2

.

(3.3)

Thus, ‖v − xm,k‖3 > ‖xm,k‖3 is equivalent to

6

(
k2

4
+

1

3

)
m

(
(2z1 − 1)m− (2z2 − k)

√
2

3√
m2 + 1

)2

+

∣∣∣∣(2z2 − k)m+ (2z1 − 1)

2
√
m2 + 1

∣∣∣∣3

> 6

(
k2

4
+

1

3

)
m

(
m− k

√
2

3√
m2 + 1

)2

+

(
km+ 1

2
√
m2 + 1

)3

and consequently to

f(m, k, z1, z2)

:= 6

(
k2

4
+

1

3

)
m
√
m2 + 1

(
((2z1 − 1)m− (2z2 − k))2 − (m− k)2

)
+ |(2z2 − k)m+ (2z1 − 1)|3 − (km+ 1)3

> 0.

With this, the following six cases can be distinguished:

a) z1 ≥ 2:
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3 Higher-dimensional lattices

If (2z1 − 1)m− (2z2 − k) ≤ m− k, then 2z2 − k ≥ 2m+ k and

f(m, k, z1, z2) ≥ −6

(
k2

4
+

1

3

)
m
√
m2 + 1(m− k)2

+ ((2m+ k)m+ 3)3 − (km+ 1)3

≥ −12

(
k2

4
+

1

3

)
m4 + ((km+ 1) + 2(m2 + 1))3

− (km+ 1)3

= −3k2m4 − 4m4 + 6(km+ 1)2(m2 + 1)

+ 12(km+ 1)(m2 + 1)2 + 8(m2 + 1)3

≥ −3k2m4 − 4m4 + 6k2m4 + 12km5 + 8m6

> 0.

(3.4)

If (2z2 − k)m + (2z1 − 1) ≤ km + 1, then 2z2 − k ≤ k − 2
m
< k holds,

implying z2 ≤ k − 1 and 2z2 − k ≤ k − 2, which shows

f(m, k, z1, z2) ≥ 6

(
k2

4
+

1

3

)
m
√
m2 + 1

(
(3m− k + 2)2 − (m− k)2

)
− (km+ 1)3

≥ 6
k2

4
m2
(
((m− k) + 2(m+ 1))2 − (m− k)2

)
− (km+ 1)3

= 6k2m2((m− k)(m+ 1) + (m+ 1)2)− (km+ 1)3

≥ 12k2m4 + 12k2m3 + 3k2m2 − 7k3m3 − 3km− 1

≥ 5k2m4 + 12k2m3 + 8km

> 0.

(3.5)

If (2z1− 1)m− (2z2−k) > m−k and (2z2−k)m+ (2z1− 1) > km+ 1,
then it follows directly from the definition of f that f(m, k, z1, z2) > 0.
Thus it holds for every z1 ≥ 2 that f(m, k, z1, z2) > 0 and this shows
‖v − xm,k‖3 > ‖xm,k‖3.

b) z1 ≤ −1:

If −(2z1 − 1)m+ (2z2 − k) ≤ m− k, then 2z2 − k ≤ −2m− k and the
same estimate as in (3.4) holds.

If −(2z2 − k)m − (2z1 − 1) ≤ km + 1, then −(2z2 − k) ≤ k − 2
m
< k

holds, implying z2 ≥ 1 and 2z2 − k ≥ 2 − k, which leads to the same
estimate as in (3.5).

If −(2z1−1)m+(2z2−k) > m−k and −(2z2−k)m−(2z1−1) > km+1,
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3.1 Generalizations

then it follows directly from the definition of f that f(m, k, z1, z2) > 0.

c) z1 = 0 and z2 ≥ k:

It holds that 2z2 − k ≥ k and this implies

f(m, k, z1, z2) ≥ 6

(
k2

4
+

1

3

)
m
√
m2 + 1

(
(m+ k)2 − (m− k)2

)
+ (km− 1)3 − (km+ 1)3

≥ 6k3m3 − 6k2m2 − 2

> 0.

(3.6)

d) z1 = 0 and z2 ≤ −1:

In this case, it is z2 = −a for some a ∈ N. This yields

f(m, k, z1, z2) = 6

(
k2

4
+

1

3

)
m
√
m2 + 1

(
(−m+ k + 2a)2 − (m− k)2

)
+ ((2a+ k)m+ 1)3 − (km+ 1)3

= m3(6ak2 + 12a2k + 8a3)

+m2
√
m2 + 1(−6ak2 − 8a) +m2(12ak + 12a2)

+m
√
m2 + 1(6ak3 + 8ak + 6a2k2 + 8a2) +m · 6a

> m2a
(
m(6k2 + 12ak + 8a2)−

√
m2 + 1(6k2 + 8)

)
.

(3.7)

Because of m ≥ k, it is obvious that m2(24k(6k2 + 8) + 144k2) =
m2(144k3 + 192k + 144k2) ≥ 36k4 + 96k2 + 64 = (6k2 + 8)2, and this
is equivalent to m2((6k2 + 8) + 12k)2 ≥ (m2 + 1)(6k2 + 8)2. Hence,
m(6k2 + 12ak + 8a2) ≥ m(6k2 + 12k + 8) ≥

√
m2 + 1(6k2 + 8) and

f(m, k, z1, z2) > 0 follow.

e) z1 = 1 and z2 ≤ 0:

It holds that 2z2 − k ≤ −k, yielding the same estimate as in (3.6).

f) z1 = 1 and z2 ≥ k + 1:

In this case, it is z2 = k + a for some a ∈ N. This yields the same
estimate as in (3.7) and thus f(m, k, z1, z2) > 0.

3. ‖xm,k‖3 < ‖z1bm,1 + z2bm,2 − xm,k‖3 for all m ≥ k2 and all
(z1, z2) ∈ {0, 1} × {1, . . . , k − 1}:
For (z1, z2) ∈ {0, 1} × {1, . . . , k − 1} it holds that (2z1 − 1)m− (2z2 − k) ≤
m − (2 − k) < m + k < 4

(
k2

4
+ 1

3

)
m <

√
2

3
(
k2

4
+ 1

3

)
m
√
m2 + 1. More-

over, (2z1 − 1)m− (2z2 − k) ≥ −m− (k − 2) > −
√

2
3
(
k2

4
+ 1

3

)
m
√
m2 + 1
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3 Higher-dimensional lattices

follows. These two inequalities show that ‖z1bm,1 + z2bm,2 − xm,k‖3 can be
computed as in (3.3), and that ‖z1bm,1 + z2bm,2− xm,k‖3 > ‖xm,k‖3 is equiv-
alent to f(m, k, z1, z2) > 0. In addition, (2z2 − k)m + (2z1 − 1) < 0 is
equivalent to z2 <

1
2

(
k − 2z1−1

m

)
, such that the following four cases need to

be distinguished to show f(m, k, z1, z2) > 0:

a) z1 = 1 and 1
2

(
k − 1

m

)
≤ z2 < k:

In this case, it follows with m <
√
m2 + 1 < m+ 1 that

f(m, k, z1, z2) = 6

(
k2

4
+

1

3

)
m
√
m2 + 1(4z2

2 − 4mz2 + 4km− 4kz2)

+ 8m3z3
2 − k3m3 + 1− 12km3z2

2 + 6k2m3z2

+ 12m2z2
2 + 6mz2 + 3k2m2 − 3km

− 12km2z2 − k3m3 − 3k2m2 − 3km− 1

≥ (6k2 + 8)m2(z2
2 + km)− (6k2 + 8)m(m+ 1)(m+ k)z2

+ 8m3z3
2 + (12m2 − 12km3)z2

2

+ (6k2m3 − 12km2 + 6m)z2 − 2k3m3 − 6km

= 8m3z3
2 + (−12km3 + 6k2m2 + 20m2)z2

2

+ (−8m3 − 6k3m2 − 6k2m2 − 20km2 − 8m2)z2

+ (−6k3m− 8km+ 6m)z2 + 4k3m3 + 8km3 − 6km

=: ϕ
(m,k)
1 (z2) =: ϕ1(z2).

Hence, it is enough to show that ϕ
(m,k)
1 (z2) > 0. For this consider x ∈ R

with 0 < x ≤ k − 1 and m ≥ k2 to get the estimate

ϕ′1(x) = 24m3x2 + (−24km3 + 12k2m2 + 40m2)x− 8m3 − 6k3m2

− 6k2m2 − 20km2 − 8m2 − 6k3m− 8km+ 6m

≤ (−24m3 + 12k2m2 + 40m2)x− 8m3 − 6k3m2

− 6k2m2 − 20km2 − 8m2 − 6k3m− 8km+ 6m

≤ (−12k2m2 + 40m2)x− 8m3 − 6k3m2

− 6k2m2 − 20km2 − 8m2 − 6k3m− 8km+ 6m

≤ −12k2m2x+ 20km2 − 8m3 − 6k3m2

− 6k2m2 − 8m2 − 6k3m− 8km+ 6m

≤ −12k2m2x− 4km2 − 8m3

− 6k2m2 − 8m2 − 6k3m− 8km+ 6m

≤ −12k2m2x− 4km2 − 8m3 − 6k2m2 − 8m2 − 6k3m− 10m

< 0.
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This shows that ϕ
(m,k)
1 is strictly decreasing on (0, k − 1] and thus

ϕ
(m,k)
1 (z2) ≥ ϕ

(m,k)
1 (k − 1)

= (8(k − 1)3 − 12k(k − 1)2 − 8(k − 1) + 4k3 + 8k)m3

+ (6k2(k − 1)2 + 20(k − 1)2 − 6k3(k − 1))m2

+ (−6k2(k − 1)− 20k(k − 1)− 8(k − 1))m2

+ (−6k3(k − 1)− 8k(k − 1) + 6(k − 1)− 6k)m

= 12km3 + (−12k3 + 12k2 − 28k + 28)m2

+ (−6k4 + 6k3 − 8k2 + 8k − 6)m.

Thus it is enough to show ψ1(m) := ψ
(k)
1 (m) := 1

2m
ϕ

(m,k)
1 (k − 1) > 0.

Since it holds for y ∈ R with y ≥ k2 that

ψ′1(y) = 12ky − 6k3 + 6k2 − 14k + 14

≥ 6k3 + 6k2 − 14k + 14 ≥ 6k2 + 10k + 14 > 0,

ψ
(k)
1 is strictly increasing on [k2,∞) and thus

ψ
(k)
1 (m) ≥ ψ

(k)
1 (k2) = 3k4 − 11k3 + 10k2 + 4k − 3

= 3k2

(
k − 5

3

)
(k − 2) + 4k − 3 ≥ 4k − 3 > 0.

b) z1 = 1 and 1 ≤ z2 <
1
2

(
k − 1

m

)
:

Now, f can be estimated as

f(m, k, z1, z2) = 6

(
k2

4
+

1

3

)
m
√
m2 + 1(4z2

2 − 4mz2 + 4km− 4kz2)

− 8m3z3
2 + k3m3 − 1 + 12km3z2

2 − 6k2m3z2

− 12m2z2
2 − 6mz2 − 3k2m2 + 3km

+ 12km2z2 − k3m3 − 3k2m2 − 3km− 1

≥ (6k2 + 8)m2(z2
2 + km)− (6k2 + 8)m(m+ 1)(m+ k)z2

− 8m3z3
2 + (12km3 − 12m2)z2

2

+ (−6k2m3 + 12km2 − 6m)z2 − 6k2m2 − 2

= −8m3z3
2 + (12km3 + 6k2m2 − 4m2)z2

2

+ (−12k2m3 − 8m3 − 6k3m2 − 6k2m2 + 4km2)z2

+ (−8m2 − 6k3m− 8km− 6m)z2

+ 6k3m3 + 8km3 − 6k2m2 − 2

=: ϕ
(m,k)
2 (z2) =: ϕ2(z2).
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3 Higher-dimensional lattices

Therefore it is enough to show that ϕ
(m,k)
2 (z2) > 0. For this consider

x ∈ R with 0 < x ≤ k
2

to get the estimate

ϕ′2(x) = −24m3x2 + (24km3 + 12k2m2 − 8m2)x

− 12k2m3 − 8m3 − 6k3m2 − 6k2m2 + 4km2

− 8m2 − 6k3m− 8km− 6m

≤ −24m3x2 − 8m2x− 8m3 − 6k2m2 + 4km2

− 8m2 − 6k3m− 8km− 6m

≤ −24m3x2 − 8m2x− 8m3 − 8km2 − 8m2 − 6k3m− 8km− 6m

< 0.

This shows that ϕ
(m,k)
2 is strictly decreasing on

(
0, k

2

]
and thus

ϕ
(m,k)
2 (z2) ≥ ϕ

(m,k)
2

(
k

2

)
= (−k3 + 3k3 − 6k3 − 4k + 6k3 + 8k)m3

+

(
3

2
k4 − k2 − 3k4 − 3k3 − 4k + 2k2 − 6k2

)
m2

+ (−3k4 − 4k2 − 3k)m− 2

= (2k3 + 4k)m3 +

(
−3

2
k4 − 3k3 − 5k2 − 4k

)
m2

+ (−3k4 − 4k2 − 3k)m− 2.

With

ψ2(m) := ψ
(k)
2 (m)

:= (4k3 + 8k)m2 + (−3k4 − 6k3 − 10k2 − 8k)m

− 6k4 − 8k2 − 6k

it holds that ϕ
(m,k)
2

(
k
2

)
= m

2
ψ

(k)
2 (m) − 2. Moreover, for every y ∈ R

with y ≥ k2 it is

ψ′2(y) = (8k3 + 16k)y − 3k4 − 6k3 − 10k2 − 8k

≥ 8k5 − 3k4 + 10k3 − 10k2 − 8k

≥ 13k4 + 10k2 − 8k > 0,

which implies that ψ
(k)
2 is strictly increasing on [k2,∞). Thus,

ψ
(k)
2 (m) ≥ ψ

(k)
2 (k2) = 4k7 − 3k6 + 2k5 − 16k4 − 8k3 − 8k2 − 6k

≥ 5k6 − 12k4 − 8k3 − 8k2 − 6k ≥ 8k4 − 8k3 − 8k2 − 6k
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≥ 8k3 − 8k2 − 6k ≥ 8k2 − 6k ≥ 10k

holds, yielding ϕ
(m,k)
2 (z2) ≥ ϕ

(m,k)
2

(
k
2

)
= m

2
ψ

(k)
2 (m)− 2 ≥ 5k3 − 2 > 0.

c) z1 = 0 and 1 ≤ z2 <
1
2

(
k + 1

m

)
:

In this case, it is

f(m, k, z1, z2) = 6

(
k2

4
+

1

3

)
m
√
m2 + 1(4z2 + 4m− 4k)z2

− 8m3z3
2 + k3m3 + 1 + 12km3z2

2 − 6k2m3z2

+ 12m2z2
2 − 6mz2 + 3k2m2 + 3km

− 12km2z2 − k3m3 − 3k2m2 − 3km− 1

≥ (6k2 + 8)m2(z2 +m)z2 − (6k2 + 8)m(m+ 1)kz2

− 8m3z3
2 + (12m2 + 12km3)z2

2

+ (−6k2m3 − 12km2 − 6m)z2

= −8m3z3
2 + (12km3 + 6k2m2 + 20m2)z2

2

+ (8m3 − 6k3m2 − 20km2 − 6k3m− 8km− 6m)z2.

Hence, it is enough to show that

ϕ3(z2) := ϕ
(m,k)
3 (z2) : = −8m3z2

2 + (12km3 + 6k2m2 + 20m2)z2 + 8m3

− 6k3m2 − 20km2 − 6k3m− 8km− 6m

> 0.

For this consider x ∈ R with 0 < x ≤ k+1
2

to get the estimate

ϕ′3(x) = −16m3x+ 12km3 + 6k2m2 + 20m2

≥ 4km3 − 8m3 + 6k2m2 + 20m2 ≥ 6k2m2 + 20m2 > 0.

This shows that ϕ
(m,k)
3 is strictly increasing on

(
0, k+1

2

]
and thus

ϕ
(m,k)
3 (z2) ≥ ϕ

(m,k)
3 (1)

= 12km3 + (−6k3 + 6k2 − 20k + 20)m2 + (−6k3 − 8k − 6)m

≥ ϕ
(m,k)
1 (k − 1) > 0.

d) z1 = 0 and 1
2

(
k + 1

m

)
≤ z2 < k:

Now, f can be estimated as

f(m, k, z1, z2) = 6

(
k2

4
+

1

3

)
m
√
m2 + 1(4z2 + 4m− 4k)z2

+ 8m3z3
2 − k3m3 − 1− 12km3z2

2 + 6k2m3z2
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− 12m2z2
2 + 6mz2 − 3k2m2 − 3km

+ 12km2z2 − k3m3 − 3k2m2 − 3km− 1

≥ (6k2 + 8)m2(z2 +m)z2 − (6k2 + 8)m(m+ 1)kz2

+ 8m3z3
2 + (−12m2 − 12km3)z2

2

+ (6k2m3 + 12km2 + 6m)z2

− 2k3m3 − 6k2m2 − 6km− 2

= 8m3z3
2 + (−12km3 + 6k2m2 − 4m2)z2

2

+ (12k2m3 + 8m3 − 6k3m2 + 4km2 − 6k3m)z2

+ (−8km+ 6m)z2 − 2k3m3 − 6k2m2 − 6km− 2

=: ϕ
(m,k)
4 (z2) =: ϕ4(z2).

Therefore it is enough to show that ϕ
(m,k)
4 (z2) > 0. For this consider

x ∈ R with k
2
≤ x ≤ k − 1 and m ≥ k2 ≥ 4 to get the estimate

ϕ′4(x) = 24m3x2 + (−24km3 + 12k2m2 − 8m2)x+ 12k2m3 + 8m3

− 6k3m2 + 4km2 − 6k3m− 8km+ 6m

≥ (−12km3 + 12k2m2 − 8m2)x+ 12k2m3 + 8m3

− 6k3m2 + 4km2 − 6k3m− 8km+ 6m

≥ (−12km3 + 40m2)x+ 12k2m3 + 8m3

− 6k3m2 + 4km2 − 6k3m− 8km+ 6m

≥ 40m2x+ 12km3 + 8m3 − 6k3m2 + 4km2 − 6k3m− 8km+ 6m

≥ 40m2x+ 6k3m2 + 8m3 + 4km2 − 6k3m− 8km+ 6m

≥ 40m2x+ 18k3m+ 8m3 + 4km2 − 8km+ 6m

≥ 40m2x+ 18k3m+ 8m3 + 8km+ 6m

> 0.

This shows that ϕ
(m,k)
4 is strictly increasing on

[
k
2
, k − 1

]
and thus

ϕ
(m,k)
4 (z2) ≥ ϕ

(m,k)
4

(
k

2

)
= (k3 − 3k3 + 6k3 + 4k − 2k3)m3

+

(
3

2
k4 − k2 − 3k4 + 2k2 − 6k2

)
m2

+ (−3k4 − 4k2 + 3k − 6k)m− 2

= (2k3 + 4k)m3 +

(
−3

2
k4 − 5k2

)
m2

+ (−3k4 − 4k2 − 3k)m− 2

46



3.2 Consequences and comparisons

≥ ϕ
(m,k)
2

(
k

2

)
> 0.

All these different cases together show that ‖xm,k‖3 < ‖xm,k − v‖3 holds for
all v ∈ Λm \ {0, bm,1 + kbm,2} and all m ≥ k2. Combined with ‖xm,k‖3 =
‖bm,1 + kbm,2 − xm,k‖3, this implies that bm,1 + kbm,2 is Voronoi-relevant in Λm

with respect to ‖ · ‖3 if m ≥ k2.

Corollary 3.6 1. For every m ∈ N,m ≥ 2 it holds that Λm has at least 2b
√
mc

Voronoi-relevant vectors with respect to ‖ · ‖3.

2. For every k ∈ N, k ≥ 3 it holds that Λd k2e
2 has at least k Voronoi-relevant

vectors with respect to ‖ · ‖3.

Proof. Since the second statement is a direct consequence of the first one, it is
sufficient to show the first part of this corollary. For this, let m ∈ N with m ≥ 2.
For all k ∈ N with 2 ≤ k ≤ b

√
mc it holds by Theorem 3.5 that bm,1 + kbm,2

is Voronoi-relevant in Λm with respect to ‖ · ‖3. Then −bm,1 − kbm,2 is also
Voronoi-relevant for all 2 ≤ k ≤ b

√
mc. In addition, Proposition 3.4 gives that

±(bm,1 +mbm,2) are Voronoi-relevant vectors, and the first statement follows.

3.2 Consequences and comparisons

In the following, an upper bound for the number of (generalized) Voronoi-relevant
vectors in an arbitrary lattice with respect to an arbitrary norm is shown. This
bound depends on the lattice dimension as well as the ratio of the covering radius
to the length of a shortest non-zero lattice vector.

Proposition 3.7 Let ‖ · ‖ : Rn → R≥0 be a norm and let Λ ⊆ Rn be a lattice.

Then Λ has at most
(

1 + 4 µ(Λ,‖·‖)
λ1(Λ,‖·‖)

)n
generalized Voronoi-relevant vectors with

respect to ‖ · ‖.

Proof. From Lemma 2.17 it follows that

R(Λ, ‖ · ‖) := {v ∈ Λ | v generalized Voronoi-relevant w.r.t. ‖ · ‖}
⊆B‖·‖,2µ(Λ,‖·‖)(0).

Since for every two lattice vectors v, w ∈ Λ with v 6= w it holds that ‖v − w‖ ≥
λ1(Λ, ‖ · ‖), it follows that B‖·‖,λ1(Λ,‖·‖)

2

(v) ∩ B‖·‖,λ1(Λ,‖·‖)
2

(w) = ∅. Moreover, for

every v ∈ R(Λ, ‖ · ‖) and every x ∈ B‖·‖,λ1(Λ,‖·‖)
2

(v) it is ‖x‖ ≤ ‖x − v‖ + ‖v‖ <
λ1(Λ,‖·‖)

2
+ 2µ(Λ, ‖ · ‖). Thus

·⋃
v∈R(Λ,‖·‖)

B‖·‖,λ1(Λ,‖·‖)
2

(v) ⊆ B‖·‖,2µ(Λ,‖·‖)+λ1(Λ,‖·‖)
2

(0)
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3 Higher-dimensional lattices

holds, which implies

|R(Λ, ‖ · ‖)| voln

(
B‖·‖,λ1(Λ,‖·‖)

2

(0)
)

=
∑

v∈R(Λ,‖·‖)

voln

(
B‖·‖,λ1(Λ,‖·‖)

2

(v)
)

= voln

 ·⋃
v∈R(Λ,‖·‖)

B‖·‖,λ1(Λ,‖·‖)
2

(v)


≤ voln

(
B‖·‖,2µ(Λ,‖·‖)+λ1(Λ,‖·‖)

2

(0)
)
.

Since 2µ(Λ, ‖·‖)+ λ1(Λ,‖·‖)
2

=
(

1 + 4 µ(Λ,‖·‖)
λ1(Λ,‖·‖)

)
λ1(Λ,‖·‖)

2
, it is B‖·‖,2µ(Λ,‖·‖)+λ1(Λ,‖·‖)

2

(0) =(
1 + 4 µ(Λ,‖·‖)

λ1(Λ,‖·‖)

)
B‖·‖,λ1(Λ,‖·‖)

2

(0). For any positive constant r ∈ R>0 and any mea-

surable M ⊆ Rn, integration by substitution for multiple variables yields

voln(rM) =

∫
Rn

χrM(x) dx =

∫
Rn

χM

(x
r

)
dx = rn

∫
Rn

χM

(x
r

) 1

rn
dx

= rn
∫
Rn

χM(y) dy = rn voln(M).

Thus it follows that

|R(Λ, ‖ · ‖)| voln

(
B‖·‖,λ1(Λ,‖·‖)

2

(0)
)
≤
(

1 + 4
µ(Λ, ‖ · ‖)
λ1(Λ, ‖ · ‖)

)n
voln

(
B‖·‖,λ1(Λ,‖·‖)

2

(0)
)
,

which implies |R(Λ, ‖ · ‖)| ≤
(

1 + 4 µ(Λ,‖·‖)
λ1(Λ,‖·‖)

)n
.

Corollary 3.8 Let ‖ · ‖ : Rn → R≥0 be a norm and let Λ ⊆ Rn be a lattice. Then

Λ has at most
(

6 µ(Λ,‖·‖)
λ1(Λ,‖·‖)

)n
generalized Voronoi-relevant vectors with respect to

‖ · ‖.

Proof. Assume for contradiction that µ(Λ, ‖ · ‖) < λ1(Λ,‖·‖)
2

. Then exists some
x ∈ span(Λ) such that

x ∈ B‖·‖,λ1(Λ,‖·‖)
2

(0) \ B‖·‖,µ(Λ,‖·‖)(0).

Due to the definition of the covering radius, there exists some v ∈ Λ \ {0} with

‖x− v‖ < ‖x‖ < λ1(Λ,‖·‖)
2

. This gives the contradiction

λ1(Λ, ‖ · ‖) ≤ ‖v‖ ≤ ‖v − x‖+ ‖x‖ < λ1(Λ, ‖ · ‖).

Hence, µ(Λ, ‖ · ‖) ≥ λ1(Λ,‖·‖)
2

must hold, which implies 1 ≤ 2 µ(Λ,‖·‖)
λ1(Λ,‖·‖) . Plugging

this into Proposition 3.7 yields the desired upper bound.

48



3.2 Consequences and comparisons

As seen in the last section, there is no upper bound for the number of Voronoi-
relevant vectors with respect to the 3-norm that only depends on the lattice di-
mension. Nevertheless, at least the upper bounds from Proposition 3.7 and Corol-
lary 3.8 hold. Unfortunately, this does not help for the algorithm by Micciancio
and Voulgaris [13] since they rely on the fact that the number of Voronoi-relevant
vectors with respect to the Euclidean norm is in 2O(n), which is not true for the
3-norm. Hence, this algorithm cannot be easily extended to general p-norms, not
even when only strictly convex p-norms – i.e., for p ∈ (1,∞) – are considered.

The rest of this section will compare the upper bound in Proposition 3.7 with
the number of (generalized) Voronoi-relevant vectors in the lattices that have
been constructed to show that no upper bound for the number of (generalized)
Voronoi-relevant vectors can only depend on the lattice dimension. First, the
two-dimensional lattices of Theorem 2.28 will be considered which do not have
a constant number of generalized Voronoi-relevant vectors with respect to a non-
strictly convex norm. Secondly, the three-dimensional lattices of Corollary 3.6 will
be investigated which do not have a constant number of Voronoi-relevant vectors
with respect to a strictly convex norm.

For m ∈ N, let Λ
(2)
m := L(b

(2)
m,1, b

(2)
m,2), where b

(2)
m,1 := (1, 1)T and b

(2)
m,2 := (0,m)T .

Since ‖b(2)
m,1‖1 = 2, it follows that λ1(Λ

(2)
m , ‖ · ‖1) ≤ 2. The following calculation

shows that

λ1(Λ(2)
m , ‖ · ‖1) =

{
2, if m ≥ 2
1, if m = 1

. (3.8)

Consider (z1, z2) ∈ Z2\{(0, 0)} with 2 > ‖z1b
(2)
m,1+z2b

(2)
m,2‖1 = |z1|+|z1+mz2|. Then

it is clear that |z1| ≤ 1. If |z1| = 1 would hold, z1 +mz2 = 0 would follow, leading
to 1 = m|z2| and thus to m = 1 and z2 = −z1. For z1 = 0 it follows from z2 6= 0
that 1 = m|z2|, which implies m = 1 and |z2| = 1. Both cases together show (3.8).

The proof of Theorem 2.28 shows in particular that for every v ∈ Λ
(2)
m it holds

‖1
2
b

(2)
m,2 − v‖1 ≥ m

2
. This yields that µ(Λ

(2)
m , ‖ · ‖1) ≥ m

2
. An easy upper bound for

the covering radius follows from the fact that for every r ∈ R there exists some
z ∈ Z with |r − z| ≤ 1

2
: For every y ∈ span(Λ

(2)
m ) there exists some v ∈ Λ

(2)
m such

that ‖y−v‖1 ≤ 1
2
‖b(2)
m,1‖1 + 1

2
‖b(2)
m,2‖ = m

2
+ 1. Hence, µ(Λ

(2)
m , ‖ · ‖1) ∈ Θ(m) and the

upper bound in Proposition 3.7 or Corollary 3.8, respectively, is in Θ(m2), which
is asymptotically larger than the number of generalized Voronoi-relevant vectors
in Theorem 2.28.

An even bigger asymptotical gap is obtained from the lattices of Corollary 3.6.
For m ∈ N with m ≥ 2, let Λ

(3)
m := L(b

(3)
m,1, b

(3)
m,2, b

(3)
m,3) with

b
(3)
m,1 :=


m√

2
√
m2+1
1√

m2+1

− m√
2
√
m2+1

 , b
(3)
m,2 :=

−
1√

2
√
m2+1

m√
m2+1

1√
2
√
m2+1

 , b
(3)
m,3 :=

5m5

0
5m5

 .
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3 Higher-dimensional lattices

It was shown in Proposition 3.3 that λ1(Λ
(3)
m , ‖·‖3) = ‖b(3)

m,1‖3 = 3

√
m3+

√
2√

2
√
m2+1

3 . From

(
√

2− 1)m3 ≥ (
√

2− 1)8 ≥
√

2 it follows that
√

2
√
m2 + 1

3 ≥
√

2m3 ≥ m3 +
√

2,

which shows λ1(Λ
(3)
m , ‖ · ‖3) ≤ 1. A lower bound for the first successive minimum

can be derived as follows: It holds that

(8−
√

2)m3 + 7
√

2 > (8−
√

2)m3 ≥ (8−
√

2)2m2 ≥ 6
√

2m2 ≥ 3
√

2m(m+ 1),

which implies 8(m3 +
√

2) ≥
√

2(m+ 1)3 ≥
√

2
√
m2 + 1

3
and λ1(Λ

(3)
m , ‖ · ‖3) ≥ 1

2
.

Moreover, the proof of Proposition 3.4 shows that for every v ∈ Λ
(3)
m it holds that

‖x − v‖3 ≥ ‖x‖3 =
3

√
2m15 + 1

8

√
m2 + 1

3
, where x := (m5,

√
m2+1

2
,m5)T . This

shows that µ(Λ
(3)
m , ‖ · ‖3) ≥ ‖x‖3 ≥ 3

√
2m5. As above for Λ

(2)
m , one can deduce

that for every y ∈ span(Λ
(3)
m ) there exists some v ∈ Λ

(3)
m such that ‖y − v‖3 ≤

1
2
‖b(3)
m,1‖3 + 1

2
‖b(3)
m,2‖3 + 1

2
‖b(3)
m,3‖3 ≤ 3

2
‖b(3)
m,3‖3 = 3

2
3
√

250m5, where the last inequality

follows from Proposition 3.3. Hence, µ(Λ
(3)
m , ‖ · ‖3) ∈ Θ(m5) and the upper bound

in Proposition 3.7 or Corollary 3.8, respectively, is in Θ(m15), whereas the lower
bound from Corollary 3.6 is only in Θ(

√
m).

In both families of lattices discussed above, the number of (generalized) Voronoi-
relevant vectors grows with the ratio of the covering radius to the first successive
minimum, but there might be still room for a better upper bound than the one
given in Proposition 3.7.
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4 General shape of bisectors,
Voronoi cells and their facets

As seen in Section 2.2, it is not immediately clear which lattice vectors completely
determine the Voronoi cell of a given lattice when arbitrary norms are considered.
This general question will be discussed in Section 4.3. Moreover, such an n-
dimensional Voronoi cell is bounded by its (n − 1)-dimensional facets, and for
understanding the complexity of a Voronoi cell it is important to know the number
of these facets. In Section 4.4, it will be examined how many (n− 1)-dimensional
facets an n-dimensional Voronoi cell has, and if these facets are connected or
not. To comprehend how Voronoi cells and their facets look like, it is inevitable
to investigate bisectors and their intersections, since these facets are subsets of
bisectors. This is done in Section 4.2. In particular, a proof idea – relying on some
conjecture – for the following fundamental (and hopefully true) statement is given:
The bisector of a and b intersected with the bisector of b and c is homeomorphic
to Rn−2 as long as a, b, c ∈ Rn are non-collinear and a sufficiently nice norm is
used. This statement is already known for the case n ≤ 3 [10], and is further
motivated by Horváth’s result that bisectors are homeomorphic to Rn−1 under a
strictly convex norm [6]. The next section gives properties and definitions that
are needed for the above mentioned sufficiently nice norms.

4.1 Norms

In this section, it will be shown that every symmetric convex body in Rn defines a
norm, where its closed unit ball is the given body itself, and that the closed unit
ball of a given norm in Rn is a symmetric convex body such that its corresponding
norm coincides with the given norm. Based on this, smooth norms will be defined
and alternative definitions for strict convexity will be given. An intermediate
result will be that all norms in Rn are continuous with respect to the Euclidean
norm.

Definition 4.1 K ⊆ Rn is a convex body with center point c ∈ K if K is
compact and convex, and c lies in the interior of K.

K is symmetric (with respect to c) if for every x ∈ K it holds that 2c−x ∈ K.

In the subsequent sections, convex bodies will be translated and scaled.

Definition 4.2 Let K ⊆ Rn be a convex body with center point c ∈ K. K̃ ⊆ Rn

is called a uniformly scaled copy of K, if r ∈ R>0 with K̃ = r(K − c) + c exists.

51



4 General shape of bisectors, Voronoi cells and their facets

K̃ ⊆ Rn is called a translated copy of K, if t ∈ Rn with K̃ = K + t exists.

Every convex body defines a convex distance function, which is a metric if and
only if the body is symmetric. This is shown in Lemmata 4.4 and 4.5. Further-
more – as stated in Proposition 4.6 – a symmetric convex body defines a norm
such that its closed unit ball coincides with the convex body.

Definition 4.3 Let K ⊆ Rn be a convex body with center point c ∈ K. For
p, q ∈ Rn with p 6= q, let xp,q ∈ Rn denote the unique intersection
point of the boundary of K − c + p and the ray from p through q, i.e.,
xp,q ∈ {sq + (1 − s)p | s ∈ R≥0}. The convex distance function based on K
and c is defined as

dK,c : Rn × Rn −→ R≥0,

(p, q) 7−→

{
‖q−p‖2
‖xp,q−p‖2 , if p 6= q

0 , if p = q
.

Lemma 4.4 Let K ⊆ Rn be a convex body with center point c ∈ K. The convex
distance function dK,c satisfies the following properties:

1. For every p, q ∈ Rn it is dK,c(p, q) ≥ 0, and dK,c(p, q) = 0 if and only if
p = q.

2. For every p ∈ Rn it holds that

• p lies the interior of K if and only if dK,c(c, p) < 1,

• p lies on the boundary of K if and only if dK,c(c, p) = 1,

• p is not in K if and only if dK,c(c, p) > 1.

3. For every p, q, r ∈ Rn it is dK,c(p− r, q − r) = dK,c(p, q).

4. For every p ∈ Rn and every s ∈ R>0 it holds that dK,c(0, sp) = sdK,c(0, p).

5. For every p, q, r ∈ Rn it is dK,c(p, q) ≤ dK,c(p, r) + dK,c(r, q).

Proof. The first four assertions follow directly from Definition 4.3. For this, one
only needs to consider xp,q in the different cases: First, it holds for p 6= q that
xp,q 6= p such that dK,c(p, q) > 0 follows. Moreover, xp−r,q−r = xp,q − r and
x0,sp = x0,p.

For assertion five, note that for every b ∈ Rn, b 6= 0 it holds that

dK,c

(
0,

b

dK,c(0, b)

)
=

1

dK,c(0, b)
dK,c(0, b) = 1,

and thus b
dK,c(0,b)

lies on the boundary of K−c. Hence, the convexity of K yields for

a, b ∈ Rn \ {0} with µ :=
dK,c(0,a)

dK,c(0,a)+dK,c(0,b)
∈ (0, 1) that µ a

dK,c(0,a)
+ (1−µ) b

dK,c(0,b)
∈
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K − c, which shows

1 ≥ dK,c

(
0, µ

a

dK,c(0, a)
+ (1− µ)

b

dK,c(0, b)

)
= dK,c

(
0,

a

dK,c(0, a) + dK,c(0, b)
+

b

dK,c(0, a) + dK,c(0, b)

)
=

1

dK,c(0, a) + dK,c(0, b)
dK,c(0, a+ b).

Since assertion five is trivial as soon as some of the points p, q, r coincide, one can
assume that p, q, r are pairwise distinct. Using the above inequality for the case
a = r − p and b = q − r leads to

dK,c(p, q) = dK,c(0, (r − p) + (q − r))
≤ dK,c(0, r − p) + dK,c(0, q − r) = dK,c(p, r) + dK,c(r, q).

Lemma 4.5 Let K ⊆ Rn be a convex body with center point c ∈ K. Then it holds
that K is symmetric if and only if for every p, q ∈ Rn it is dK,c(p, q) = dK,c(q, p).

Proof. First, assume that K is symmetric. For p, q ∈ Rn with p 6= q, this property
implies that 2p− xp,q ∈ K − c+ p. Thus, q + p− xp,q ∈ K − c+ q lies on the ray
from q through p, which leads to

‖xq,p − q‖2 ≥ ‖(q + p− xp,q)− q‖2 = ‖xp,q − p‖2

and dK,c(q, p) ≤ dK,c(p, q). By exchanging the roles of p and q, the desired equality
follows.

Secondly, assume that dK,c(p, q) = dK,c(q, p) holds for every p, q ∈ Rn, and let
x ∈ K. Then 1 ≥ dK,c(c, x) = dK,c(x, c) = dK,c(c, 2c− x) implies 2c− x ∈ K.

Proposition 4.6 Let K ⊆ Rn be a symmetric convex body with center point
c ∈ K. Then

‖ · ‖K,c : Rn −→ R≥0,

x 7−→ dK,c(0, x)

is a norm with unit ball B‖·‖K,c,1(0) = K − c.

Proof. For s ∈ R<0 and x ∈ Rn it is

dK,c(0, sx) = dK,c(−sx, 0) = dK,c(0,−sx) = −sdK,c(0, x)

by Lemmata 4.4 and 4.5. The same lemmata yield the remaining norm properties
as well as B‖·‖K,c,1(0) = K − c.
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4 General shape of bisectors, Voronoi cells and their facets

Moreover, the unit ball of every norm in Rn is a symmetric convex body and
the norm defined by this body is the given norm. To prove this, it will be shown
beforehand that every norm in Rn is a continuous function with respect to the
Euclidean norm. This result will be very useful throughout this chapter.

Proposition 4.7 Every norm ‖ · ‖ : Rn → R≥0 is continuous with respect to the
Euclidean norm.

Proof. Let x = (x1, . . . , xn)T ∈ Rn and ε ∈ R>0. Denote by

R(x) :=
{

(y1, . . . , yn)T ∈ Rn | ∀i ∈ {1, . . . , n} : yi ∈ [xi − 1, xi + 1]
}

the n-dimensional cube with side length two and x in its center. Then it holds
that B‖·‖2,1(x) ⊆ R(x), because for every (y1, . . . , yn)T ∈ Rn \ R(x) there is some
i ∈ {1, . . . , n} such that yi /∈ [xi−1, xi+1], which implies ‖y−x‖2 ≥ |yi−xi| > 1.
In addition, it follows inductively that every y ∈ R(x) can be written as
y =

∑
u∈{−1,1}n

µu(x+u) with µu ∈ [0, 1] for every u ∈ {−1, 1}n and
∑

u∈{−1,1}n
µu = 1.

In fact, the definition of R(x) yields that for every y ∈ R(x) and every
i ∈ {1, . . . , n} there is τi ∈ [0, 1] such that yi = τi(xi − 1) + (1 − τi)(xi + 1),
which directly gives the induction basis for n = 1. If µ̃ũ ∈ [0, 1] for ũ ∈ {−1, 1}n−1

with
∑

ũ∈{−1,1}n−1

µ̃ũ = 1 and (y1, . . . , yn−1)T =
∑

ũ∈{−1,1}n−1

µ̃ũ
(
(x1, . . . , xn−1)T + ũ

)
are already found,

µ(u1,...,un)T :=

{
τnµ̃(u1,...,un−1)T , if un = −1,
(1− τn)µ̃(u1,...,un−1)T , if un = 1

gives the desired equalities. Hence, for every y ∈ R(x) it holds that

‖y‖ ≤
∑

u∈{−1,1}n
µu‖x+ u‖ ≤ max{‖x+ u‖ | u ∈ {−1, 1}n} =: Mx.

Define δ := 1
2

ε
Mx−‖x‖+ε ∈

(
0, 1

2

]
, and let y ∈ B‖·‖2,δ(x). It is left to show that

|‖x‖ − ‖y‖| < ε. Thus assume for contradiction that |‖x‖ − ‖y‖| ≥ ε. With this,
two cases can be distinguished.

1. ‖y‖ ≥ ‖x‖+ ε:

For z := 1
δ
y −

(
1
δ
− 1
)
x it holds that ‖z − x‖2 = 1

δ
‖y − x‖2 < 1, leading to

z ∈ B‖·‖2,1(x) ⊆ R(x). The reverse triangle inequality and the definition of
δ yield the contradiction

Mx ≥ ‖z‖ ≥
1

δ
‖y‖ −

(
1

δ
− 1

)
‖x‖ ≥ ‖x‖+

ε

δ
≥ ‖x‖+

(
1

δ
− 1

)
ε > Mx.

2. ‖y‖ ≤ ‖x‖ − ε:
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Consider z̃ := 1
δ
x−

(
1
δ
− 1
)
y. Then it follows ‖z̃−x‖2 =

(
1
δ
− 1
)
‖x−y‖2 ≤

1
δ
‖x − y‖2 < 1 and z̃ ∈ B‖·‖2,1(x) ⊆ R(x). Again, the reverse triangle

inequality can be applied to get the contradiction

Mx ≥ ‖z̃‖ ≥
1

δ
‖x‖ −

(
1

δ
− 1

)
‖y‖ ≥ ‖x‖+

(
1

δ
− 1

)
ε > Mx.

Corollary 4.8 Let ‖ · ‖ : Rn → R≥0 be a norm, and let a ∈ Rn. Then
Fa : Rn → R≥0, x 7→ ‖x− a‖ is continuous with respect to the Euclidean norm.

Proof. Let x ∈ Rn and ε ∈ R>0. Then it follows from Lemma 4.7 that there is
some δ ∈ R>0 such that |‖x − a‖ − ‖y‖| < ε holds for every y ∈ B‖·‖2,δ(x − a).
Since for every z ∈ B‖·‖2,δ(x) it holds that ‖(z − a)− (x− a)‖2 = ‖z − x‖2 < δ, it
is |Fa(x)− Fa(z)| = |‖x− a‖ − ‖z − a‖| < ε.

Definition 4.9 For n ∈ N ∪ {0}, the n-dimensional sphere is defined as

Sn :=
{
x ∈ Rn+1 | ‖x‖2 = 1

}
.

Proposition 4.10 Let ‖ ·‖ : Rn → R≥0 be a norm. Then B‖·‖,1(0) is a symmetric
convex body with center point 0, and for every p ∈ Rn it is

‖p‖B‖·‖,1(0),0 = ‖p‖.

Proof. Since Sn−1 is compact with respect to the Euclidean norm and for every
x ∈ Sn−1 it is ‖x‖ > 0, Proposition 4.7 implies the existence of m ∈ R>0 such that
‖x‖ ≥ m holds for every x ∈ Sn−1. Hence, for each x ∈ B‖·‖,1(0) with x 6= 0 it is

1 ≥ ‖x‖ = ‖x‖2

∥∥∥∥ x

‖x‖2

∥∥∥∥ ≥ m‖x‖2,

which shows B‖·‖,1(0) ⊆ B‖·‖2,1/m(0) and B‖·‖,1(0) is bounded.
For x = (x1, . . . , xn)T ∈ Rn with ‖x‖ > 1, let ε := ‖x‖ − 1 > 0. With e1, . . . , en

denoting the standard basis of Rn, define M := max {‖ei‖ | i ∈ {1, . . . , n}} and
δ := ε

M
√
n
> 0. Then it holds for each y = (y1, . . . , yn)T with ‖y − x‖2 < δ by the

Cauchy–Schwarz inequality

‖y − x‖ ≤
n∑
i=1

|yi − xi|‖ei‖ ≤M

n∑
i=1

|yi − xi| ≤M
√
n‖y − x‖2 < M

√
nδ = ε.

This yields that

B‖·‖2,δ(x) ⊆ B‖·‖,ε(x) ⊆ Rn \ B‖·‖,1(0),
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and thus B‖·‖,1(0) is closed and compact.
For every x ∈ Rn with ‖x‖ < 1, one can define ε := 1 − ‖x‖ as well as M and

δ as above to get analogously

B‖·‖2,δ(x) ⊆ B‖·‖,ε(x) ⊆ B‖·‖,1(0).

This shows that B‖·‖,1(0) is open, and in particular that 0 is in the interior of
B‖·‖,1(0). Moreover, B‖·‖,1(0) is convex due to the triangle inequality which is
satisfied by ‖ · ‖, and B‖·‖,1(0) is symmetric because ‖ − x‖ = ‖x‖ holds for every
x ∈ Rn.

For every x ∈ Rn with ‖x‖ = 1, and every ε ∈ R>0 it holds for

µ1 := max
{

1− ε
2‖x‖2 ,

1
2

}
that µ1x ∈ B‖·‖2,ε(x) as well as ‖µ1x‖ < 1, and for

µ2 := 1 + ε
2‖x‖2 that µ2x ∈ B‖·‖2,ε(x) as well as ‖µ2x‖ > 1. Therefore, the bound-

ary of B‖·‖,1(0) is {x ∈ Rn | ‖x‖ = 1}.
For every p ∈ Rn with p 6= 0 it now follows that x0,p = p

‖p‖ , where the notation

from Definition 4.3 is used for B‖·‖,1(0) with center point 0. This gives

‖p‖B‖·‖,1(0),0 =
‖p‖2

‖x0,p‖2

= ‖p‖.

Propositions 4.6 and 4.10 give two equivalent viewpoints on norms: Either
one can directly consider the norm and derive properties of the unit ball from
that, or one considers a symmetric convex body and deduces properties of the
corresponding norm. In the introduction of this thesis, it is already defined what
a strictly convex norm is. A convex body can also be strictly convex, and both
definitions are compatible for symmetric convex bodies.

Definition 4.11 Let K ⊆ Rn be a convex body with center point c ∈ K. K is
called strictly convex if for every x, y ∈ K with x 6= y and every τ ∈ (0, 1) it holds
that τx+ (1− τ)y lies in the interior of K.

Proposition 4.12 Let ‖ · ‖ : Rn → R≥0 be a norm. Then it holds that ‖ · ‖ is
strictly convex if and only if B‖·‖,1(0) is strictly convex.

Proof. First, assume that ‖·‖ is strictly convex, and let x, y ∈ B‖·‖,1(0) with x 6= y
as well as τ ∈ (0, 1). By Lemma 2.6, it is ‖τx + (1− τ)y‖ < max{‖x‖, ‖y‖} ≤ 1,
which gives τx+ (1− τ)y ∈ B‖·‖,1(0).

Secondly, assume the strict convexity of B‖·‖,1(0), and let x, y ∈ Rn with x 6= y
and ‖x‖ = ‖y‖ =: m > 0 as well as τ ∈ (0, 1). Then it follows that x

m
, y
m
∈ B‖·‖,1(0)

and the strict convexity of this unit ball implies that τ x
m

+ (1 − τ) y
m
∈ B‖·‖,1(0).

Therefore, ‖τx+ (1− τ)y‖ = m‖τ x
m

+ (1− τ) y
m
‖ < m.

Another possibility to define strict convexity of convex bodies is given in the
next statement. This variant is used in [10], and since this chapter refers several
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times to results in [10], it will be proven that this alternative definition is indeed
equivalent to Definition 4.11.

Proposition 4.13 Let K ⊆ Rn be a convex body with center point c ∈ K. Then
it holds that K is strictly convex if and only if the boundary of K does not contain
a line segment.

Proof. The strict convexity of K directly implies that the boundary of K cannot
contain a line segment. Thus, only the other direction needs to be shown.

For this, assume that the boundary of K does not contain a line segment, and
let x, y ∈ K with x 6= y as well as τ ∈ (0, 1). By the convexity of K, it follows
that a := τx+(1−τ)y ∈ K. Assume for contradiction that a lies on the boundary
of K. Then there exists some b1 on the line segment between x and a which lies
in the interior of K. In fact, this is trivially true for b1 = x if x itself is in the
interior of K. If x lies on the boundary of K, one finds b1 as described above,
since the boundary of K does not contain the line segment between x and a.
Analogously, there exists b2 on the line segment between y and a that lies in the
interior of K. Hence, dK,c(c, b1) < 1, dK,c(c, b2) < 1 and for some λ ∈ (0, 1) it is
a = λb1 + (1− λ)b2. This yields

dK,c(c, a) = dK,c(0, a− c) = dK,c (0, λ(b1 − c) + (1− λ)(b2 − c))
≤ dK,c (0, λ(b1 − c)) + dK,c (0, (1− λ)(b2 − c))
= λdK,c (c, b1) + (1− λ)dK,c (c, b2) < 1

and a lies in the interior of K, which contradicts the assumption that a lies on
the boundary of K.

Sometimes strict convexity of a given norm is not enough, and one also wants the
property that the unit ball has no “sharp corners”. Such a norm is called smooth.
To define this notion formally, one needs to introduce supporting hyperplanes.

Definition 4.14 Let S ⊆ Rn, and let s ∈ S lie on the boundary of S. A hyper-
plane H ⊆ Rn is a supporting hyperplane of S at s if s ∈ H and S is contained
in one of the two closed halfspaces bounded by H.

For every convex set it holds that each of its boundary points has a supporting
hyperplane. This result is known as the supporting hyperplane theorem and can
for example be found in [3].

Theorem 4.15 (Supporting hyperplane theorem) Let S ⊆ Rn be convex, and let
s ∈ S lie on the boundary of S. Then there exists a supporting hyperplane of S at
s.

In particular, every boundary point of a convex body has a supporting hyper-
plane, but these hyperplanes are not unique in general. The intuition is that
non-unique supporting hyperplanes occur at sharp corners of the convex body. If
a convex body has unique supporting hyperplanes everywhere on its boundary, it
is called smooth.
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4 General shape of bisectors, Voronoi cells and their facets

Definition 4.16 Let K ⊆ Rn be a convex body with center point c ∈ K. K is
called smooth if each point on its boundary has a unique supporting hyperplane.

A norm ‖ · ‖ : Rn → R≥0 is called smooth if B‖·‖,1(0) is smooth.

A convex body can be strictly convex and smooth at the same time, or it can be
neither strictly convex nor smooth, or it can have exactly one of the two properties.
Illustrations for this are shown in Figure 4.1.

(a) Strictly convex
and smooth.

(b) Strictly convex
but not smooth.

(c) Smooth but not
strictly convex.

(d) Neither smooth
nor strictly con-
vex.

Figure 4.1: Convex bodies in two dimensions with different properties.

4.2 Bisectors

In [6], Horváth shows that every bisector of two distinct points is homeomorphic
to a hyperplane if a strictly convex norm is used. In the following, the intersection
of two bisectors is examined, where one bisector is given by a1 and a2 and the
other bisector is given by a1 and a3. In other words, the set of all points having the
same distance to a1, a2, a3 ∈ Rn is analyzed. For the case n = 3, it is shown in [10]
(cf. Lemma 3.1.2.6 and Corollary 3.1.2.7) that such a set is homeomorphic to a
line under a strictly convex and smooth norm if a1, a2, a3 are non-collinear. For
strictly convex norms without smoothness it is also shown in [10] that this bisector
intersection might be disconnected, but that each component is still homeomor-
phic to a line. As long as the underlying norm is strictly convex and smooth, I
strongly conjecture for general dimension n that such a bisector intersection is
homeomorphic to Rn−2. One way to prove this relies on the following conjecture.

Conjecture 4.17 Let ‖ · ‖ : Rn → R≥0 be a strictly convex and smooth norm,
let a1, a2, a3 ∈ Rn be non-collinear, and let H be the plane spanned by a1, a2, a3.
Then it holds for every sequence (pk)k∈N ⊆ H=

‖·‖(a1, a2) ∩H=
‖·‖(a1, a3) with

lim
k→∞
‖pk − a1‖ =∞
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that

lim
k→∞

min{‖pk − h‖ | h ∈ H}
‖pk − a1‖

= 1.

The precise statement regarding the appearance of the considered bisector in-
tersection is formulated in the following theorem:

Theorem 4.18 Let ‖ · ‖ : Rn → R≥0 be a strictly convex and smooth norm,
and let V ⊆ Rn be a subspace of dimension m ≥ 2. If Conjecture 4.17 is true
and a1, a2, a3 ∈ V are non-collinear, then H=

‖·‖(a1, a2) ∩ H=
‖·‖(a1, a3) ∩ V is home-

omorphic to Rm−2. If a1, a2, a3 ∈ V are collinear and pairwise distinct, then
H=
‖·‖(a1, a2) ∩H=

‖·‖(a1, a3) = ∅.
The proof of this theorem uses some topological concepts which will be intro-

duced first.

Definition 4.19 For a given topological space (X, T ) and Y ⊆ X, the subspace
topology on Y is

TY := {O ∩ Y | O ∈ T }.

Lemma 4.20 Let (X, T ) be a topological space, and let Z ⊆ Y ⊆ X. Then it is
(TY )Z = TZ.

Proof. For O ∈ (TY )Z there exists OY ∈ TY such that O = OY ∩ Z. In addition,
there exists OX ∈ T with OY = OX ∩ Y . Thus, O = OX ∩ Y ∩Z = OX ∩Z ∈ TZ .

Given O ∈ TZ , one finds OX ∈ T with O = OX ∩Z = OX ∩Y ∩Z ∈ (TY )Z .

Definition 4.21 Let (X, T ) be a topological space, and let Y ⊆ X.

(X, T ) is compact if every open cover

X =
⋃
i∈I

Oi with Oi ∈ T

has a finite subcover

X = Oi1 ∪Oi2 ∪ . . . ∪Oin with i1, i2, . . . , in ∈ I.

Y is compact in (X, T ) if every open cover

Y ⊆
⋃
i∈I

Oi with Oi ∈ T

has a finite subcover

Y ⊆ Oi1 ∪Oi2 ∪ . . . ∪Oin with i1, i2, . . . , in ∈ I.
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Lemma 4.22 Let (X, T ) be a topological space, and let Y ⊆ X. Then Y is
compact in (X, T ) if and only if (Y, TY ) is compact.

Proof. Assume that Y is compact in (X, T ), and let Y =
⋃
i∈I
Oi with Oi ∈ TY be

an open cover. Then one finds for every i ∈ I an OX,i ∈ T such that Oi = OX,i∩Y ,
and Y can be written as

Y =
⋃
i∈I

(OX,i ∩ Y ) =

(⋃
i∈I

OX,i

)
∩ Y ⊆

⋃
i∈I

OX,i.

The compactness of Y as a subset of X gives i1, . . . , in ∈ I such that
Y ⊆ OX,i1 ∪ . . . ∪OX,in leading to

Y =

(
n⋃
j=1

OX,ij

)
∩ Y =

n⋃
j=1

(
OX,ij ∩ Y

)
=

n⋃
j=1

Oij .

Now assume that (Y, TY ) is compact, and let Y ⊆
⋃
i∈I
Oi with Oi ∈ T be an

open cover. This yields

Y =

(⋃
i∈I

Oi

)
∩ Y =

⋃
i∈I

(Oi ∩ Y ) with Oi ∩ Y ∈ TY .

The compactness of Y as a topological space gives i1, . . . , in ∈ I such that

Y =
n⋃
j=1

(
Oij ∩ Y

)
=

(
n⋃
j=1

Oij

)
∩ Y ⊆

n⋃
j=1

Oij .

Corollary 4.23 Let (X, T ) be a topological space, and let Z ⊆ Y ⊆ X. Then Z
is compact in (Y, TY ) if and only if Z is compact in (X, T ).

Proof. By Lemma 4.22, Z is compact in (Y, TY ) if and only if (Z, (TY )Z) is com-
pact, which is by Lemma 4.20 equivalent to (Z, TZ) being compact and thus –
again by Lemma 4.22 – equivalent to Z being compact in (X, T ).

Definition 4.24 For two given topological spaces (X, T ) and (Y,S), a function
f : X → Y is proper if for every C ⊆ Y compact in (Y,S) the preimage f−1(C)
is compact in (X, T ).

Additionally to these notions from topology, the proof needs orthogonal com-
plements of real subspaces and projections. Furthermore, the proof specifies a
homeomorphism (under the assumption of Conjecture 4.17) from the bisector in-
tersection to a projected open unit ball, such that it will be shown in advance that
such an open unit ball is homeomorphic to its whole embedding space.
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Definition 4.25 For a given subspace V ⊆ Rn, the orthogonal complement of V
is

V ⊥ := {w ∈ Rn | ∀v ∈ V : 〈v, w〉 = 0},

and the projection of Rn on V ⊥ is

PV ⊥ : Rn −→ V ⊥,

x 7−→ w such that x− w ∈ V.

Lemma 4.26 Let V ⊆ Rn be a subspace with orthogonal complement W := V ⊥.
Then PW is continuous with respect to the Euclidean norm.

Proof. Let x1 ∈ Rn, ε ∈ R>0 and x2 ∈ B‖·‖2,ε(x1). Then there are unique v1, v2 ∈ V
and w1, w2 ∈ W such that x1 = v1 + w1 and x2 = v2 + w2. This yields

‖PW (x1)− PW (x2)‖2
2 = ‖w1 − w2‖2

2 ≤ 〈w1 − w2, w1 − w2〉+ 〈v1 − v2, v1 − v2〉
= 〈x1 − x2, x1 − x2〉 = ‖x1 − x2‖2

2 < ε2.

Lemma 4.27 Let V ⊆ Rn be a subspace, and let ‖ · ‖ : V → R≥0 be a norm.
Then B‖·‖,1(0) is homeomorphic to V .

Proof. Define

h : B‖·‖,1(0) −→ V,

x 7−→ x

1− ‖x‖
.

First consider x1, x2 ∈ B‖·‖,1(0) with h(x1) = h(x2). Then it holds x1 = µx2 with

µ := 1−‖x1‖
1−‖x2‖ . In particular, ‖x1‖ = µ‖x2‖ which is equivalent to ‖x1‖(1− ‖x2‖) =

(1−‖x1‖)‖x2‖ and further to ‖x1‖ = ‖x2‖. Thus, µ = 1 and x1 = x2. This shows
that h is injective.

For y ∈ V it holds that
∥∥∥ y

1+‖y‖

∥∥∥ < 1, and due to 1 −
∥∥∥ y

1+‖y‖

∥∥∥ = 1
1+‖y‖ it is

h
(

y
1+‖y‖

)
= y. Hence, h is a bijection with inverse h−1 : V → B‖·‖,1(0), x 7→ x

1+‖x‖ .

In addition, Corollary 4.8 directly implies that h as well as h−1 are continuous.

Lemma 4.28 Let ‖ · ‖ : Rn → R be a norm, and let V ⊆ Rn be a subspace with
orthogonal complement W := V ⊥. Then

‖ · ‖W : W −→ R≥0,

w 7−→ min{‖w + v‖ | v ∈ V }

is a norm with unit ball B‖·‖W ,1(0) = PW
(
B‖·‖,1(0)

)
.
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Proof. First, one needs to consider why the above minimum is attained.
For this, let w ∈ W . By Corollary 4.8, gw : V → R≥0, v 7→ ‖w + v‖ is
continuous with respect to the Euclidean norm. This further implies that
Kw := {v ∈ V | ‖w + v‖ ≤ ‖w‖} is compact in (Rn, ‖ · ‖2) and thus by Corol-
lary 4.23 also compact in (V, ‖ · ‖2). Hence, gw attains its minimum on Kw, i.e.,
there exists some ṽ ∈ Kw such that gw(ṽ) ≤ gw(v) holds for all v ∈ Kw. Further-
more, for every v ∈ V \Kw it is ‖w+ v‖ > ‖w‖ = gw(0) ≥ gw(ṽ). This shows that
‖w + v‖ ≥ ‖w + ṽ‖ holds for every v ∈ V .

Secondly, it needs to be shown that ‖ · ‖W is indeed a norm. It is clear that
‖0‖W = 0. For every w ∈ W with ‖w‖W = 0 there exists some v ∈ V with
‖w + v‖ = 0, which implies w = −v ∈ W ∩ V and thus w = 0. For every w ∈ W
and every µ ∈ R \ {0} it holds

‖µw‖W = min{‖µw + v‖ | v ∈ V } = min{‖µw + µv‖ | v ∈ V }
= min{|µ|‖w + v‖ | v ∈ V } = |µ|min{‖w + v‖ | v ∈ V } = |µ|‖w‖W .

For the triangle inequality let w1, w2 ∈ W . For i ∈ {1, 2} there exists vi ∈ V such
that ‖wi‖W = ‖wi + vi‖, which yields

‖w1 + w2‖W ≤ ‖w1 + w2 + v1 + v2‖ ≤ ‖w1 + v1‖+ ‖w2 + v2‖ = ‖w1‖W + ‖w2‖W .

Finally, B‖·‖W ,1(0) = PW
(
B‖·‖,1(0)

)
can be shown as follows: On the one hand,

for every w ∈ B‖·‖W ,1(0) there exists some v ∈ V with ‖w + v‖ < 1 such that
w = PW (w + v) ∈ PW

(
B‖·‖,1(0)

)
. On the other hand, for x ∈ B‖·‖,1(0) with

w := PW (x) it holds that ‖w‖W ≤ ‖w + (x− w)‖ = ‖x‖ < 1.

Proof of Theorem 4.18. Let a1, a2, a3 ∈ V be pairwise distinct. If a1, a2, a3 are
collinear, one can assume without loss of generality that a2 is in the middle, i.e.,
there exists τ ∈ (0, 1) such that a2 = τa1 + (1− τ)a3. For every p ∈ H=

‖·‖(a1, a3) it

holds that ‖p−a2‖ = ‖τ(p−a1)+(1−τ)(p−a3)‖ < ‖p−a1‖ and so p /∈ H=
‖·‖(a1, a2).

This shows H=
‖·‖(a1, a2) ∩ H=

‖·‖(a1, a3) = ∅. Hence, in the following a1, a2, a3 are
assumed to be non-collinear.

For V one can choose an orthonormal basis (v1, . . . , vm) with respect to the dot
product on Rn. Let (e1, . . . , em) denote the standard basis of Rm. With this, one
can define

ψ : V −→ Rm,
m∑
i=1

αivi 7−→
m∑
i=1

αiei,

as well as a norm ‖ · ‖ψ : Rm → R≥0, x 7→ ‖ψ−1(x)‖, such that ψ is an isometric
isomorphism from (V, ‖ · ‖|V ) to (Rm, ‖ · ‖ψ) as well as an isometric isomorphism
from (V, ‖ · ‖2) to (Rm, ‖ · ‖2). Furthermore, ‖ · ‖ψ is a strictly convex and smooth
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norm with unit ball B‖·‖ψ ,1(0) = ψ
(
B‖·‖,1(0) ∩ V

)
satisfying

ψ
(
H=
‖·‖(a1, a2) ∩H=

‖·‖(a1, a3) ∩ V
)

= H=
‖·‖ψ(ψ(a1), ψ(a2)) ∩H=

‖·‖ψ(ψ(a1), ψ(a3)).

Thus, it is enough to show Theorem 4.18 for V = Rn, since then it can be applied
to ‖ · ‖ψ to get a homeomorphism from H=

‖·‖ψ(ψ(a1), ψ(a2)) ∩ H=
‖·‖ψ(ψ(a1), ψ(a3))

to Rm−2. Hence, assume in the following that V = Rn.

Now the desired homeomorphism will be first described informally and after-
wards defined formally: Let H be the plane spanned by a1, a2, a3, i.e.,

H := {a1 + s(a2 − a1) + t(a3 − a1) | s, t ∈ R} .

Then, H − a1 is a vector space with orthogonal complement W := (H − a1)⊥.
For p ∈ H=

‖·‖(a1, a2) ∩ H=
‖·‖(a1, a3) it holds that a1, a2, a3 are on the boundary of

B‖·‖,r(p), where r := ‖a1 − p‖ > 0. This is illustrated for three dimensions in
Figure 4.2. The homeomorphism considers the intersection of this ball with H,
and the relative position of this intersection in the unit ball. To be more specific,
K̃p := B‖·‖,r(p) ∩H and

Kp :=
1

r
(K̃p − p) = B‖·‖,1(0) ∩

(
(H − a1) +

a1 − p
r

)
are strictly convex and smooth, and the position of Kp in the unit ball is al-
ready determined by the projection of a1−p

r
on W . Therefore, the conjectured

homeomorphism – as depicted in Figure 4.3 – is

ϕ : H=
‖·‖(a1, a2) ∩H=

‖·‖(a1, a3) −→ W,

p 7−→ PW

(
a1 − p
‖a1 − p‖

)
.

First, the injectivity of ϕ will be shown. Let p1, p2 ∈ H=
‖·‖(a1, a2) ∩ H=

‖·‖(a1, a3)

with ϕ(p1) = ϕ(p2) =: w. Then it holds that

(H − a1) +
a1 − p1

‖a1 − p1‖
= (H − a1) + w = (H − a1) +

a1 − p2

‖a1 − p2‖
,

which shows Kp1 = Kp2 using the notation above. Lemma 2.1.1.1 and Theorem
2.1.2.3 in [10] show for strictly convex bodies in two-dimensions and for pairwise
distinct points a, b, c that there is at most one uniformly scaled and translated copy
of this body that has a, b, c on its boundary, and that exactly one such copy exists
if a, b, c are non-collinear and the given body is smooth. From this it follows that a
unique r ∈ R>0 and a unique p ∈ Rn exist such that rKp1 +p ⊆ H has a1, a2, a3 on
its boundary in H. Due to K̃p1 = ‖a1− p1‖Kp1 + p1 and K̃p2 = ‖a1− p2‖Kp1 + p2,
it must hold that ‖a1−p1‖ = r = ‖a1−p2‖ and p1 = p = p2. Hence, ϕ is injective.

Secondly, the image of ϕ will be calculated. It holds for every
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4 General shape of bisectors, Voronoi cells and their facets

(a) B‖·‖,1(0).

a3

a1

a2

(b) H.

a3

a1

a2

p

(c) p ∈ H=
‖·‖(a1, a2) ∩ H=

‖·‖(a1, a3)

with B‖·‖,‖a1−p‖(p) and H.

Figure 4.2: Intersection of scaled and translated unit ball with H in a1, a2 and a3

for the case n = 3.

p ∈ H=
‖·‖(a1, a2)∩H=

‖·‖(a1, a3) that ϕ(p) = PW

(
a1−p
‖a1−p‖

)
= PW

(
1

‖a1−p‖

(
a1+a2

2
− p
))

and ∥∥∥∥ 1

‖a1 − p‖

(
a1 + a2

2
− p
)∥∥∥∥ =

1

‖a1 − p‖

∥∥∥∥1

2
(a1 − p) +

1

2
(a2 − p)

∥∥∥∥ < 1,

such that ϕ(p) ∈ PW
(
B‖·‖,1(0)

)
. For every x ∈ B‖·‖,1(0) it holds that

K := B‖·‖,1(0)∩ ((H − a1) + x) is strictly convex and smooth. Therefore, Lemma
2.1.1.1 and Theorem 2.1.2.3 in [10] give unique r ∈ R>0 and p ∈ Rn such that
rK + p ⊆ H has a1, a2, a3 on its boundary in H. Because of rK + p =
B‖·‖,r(p)∩((H − a1) + rx+ p), it must hold that rK+p ⊆ H∩((H − a1) + rx+ p),
which implies H = (H − a1) + rx + p and thus rx + p − a1 ∈ H − a1. Thus,
x − a1−p

r
∈ H − a1 and PW (x) = PW (a1−p

r
) hold. Moreover, r = ‖a1 − p‖ =

‖a2−p‖ = ‖a3−p‖, which leads to p ∈ H=
‖·‖(a1, a2)∩H=

‖·‖(a1, a3) and PW (x) = ϕ(p).

This shows (cf. Figure 4.3) that ϕ(H=
‖·‖(a1, a2)∩H=

‖·‖(a1, a3)) = PW
(
B‖·‖,1(0)

)
such

that ϕ is a bijection

ϕ : H=
‖·‖(a1, a2) ∩H=

‖·‖(a1, a3) −→ PW
(
B‖·‖,1(0)

)
.

Combining Lemmata 4.27 and 4.28 yields that PW
(
B‖·‖,1(0)

)
is homeomorphic

to W and thus homeomorphic to Rn−2. Therefore, it is only left to show that ϕ and
ϕ−1 are continuous. The continuity of ϕ is a direct consequence of Corollary 4.8
and Lemma 4.26. Because of this, the rest of this proof will examine the continuity
of ϕ−1.

When assuming Conjecture 4.17, it can be shown that ϕ is proper: For this,
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PW (B‖·‖,1(0))

a1−p
‖a1−p‖

ϕ(p)

Figure 4.3: ϕ(p) for p as in Figure 4.2c with B‖·‖,1(0) and
(

(H − a1) + a1−p
‖a1−p‖

)
.

let C ⊆ PW
(
B‖·‖,1(0)

)
be compact in

(
PW

(
B‖·‖,1(0)

)
, ‖ · ‖2

)
. One needs to show

that ϕ−1(C) is compact in
(
H=
‖·‖(a1, a2) ∩H=

‖·‖(a1, a3), ‖ · ‖2

)
. To ease notation,

every topological space will have in the following the topology induced by ‖ · ‖2

when nothing else is stated explicitly. It can further be assumed that C 6= ∅.

Corollary 4.23 implies that C is compact in Rn, i.e., that C is closed and
bounded in Rn. Hence, C = C∩PW

(
B‖·‖,1(0)

)
is closed in PW

(
B‖·‖,1(0)

)
. Since ϕ

is continuous, ϕ−1(C) is closed in H=
‖·‖(a1, a2)∩H=

‖·‖(a1, a3), i.e., there exists some

C̃ ⊆ Rn closed in Rn such that ϕ−1(C) = C̃ ∩ H=
‖·‖(a1, a2) ∩ H=

‖·‖(a1, a3). Among

other things, Lemma 1 in [6] states that bisectors H=
‖·‖(a, b) for a, b ∈ Rn, a 6= b

are closed in Rn, which implies that ϕ−1(C) is closed in Rn. It is left to show that
ϕ−1(C) is bounded in Rn, because then ϕ−1(C) is compact in Rn and thus – by
Corollary 4.23 – compact in H=

‖·‖(a1, a2) ∩H=
‖·‖(a1, a3). Hence, assume for contra-

diction that ϕ−1(C) is not bounded in (Rn, ‖ · ‖2). Then ϕ−1(C) is not bounded
in (Rn, ‖ · ‖), and for every k ∈ N one finds pk ∈ ϕ−1(C) with

rk := ‖pk − a1‖ = ‖pk − a2‖ = ‖pk − a3‖ > k.

If Conjecture 4.17 is true, the equality

‖ϕ(pk)‖W =

∥∥∥∥PW (a1 − pk
rk

)∥∥∥∥
W

=

∥∥∥∥−1

rk
PW (pk − a1)

∥∥∥∥
W

=
1

rk
‖PW (pk − a1)‖W

65



4 General shape of bisectors, Voronoi cells and their facets

=
1

rk
min{‖pk − h‖ | h ∈ H}

and the conjecture would directly imply lim
k→∞
‖ϕ(pk)‖W = 1. But since C is

compact in Rn and w 7→ ‖w‖W is continuous by Corollary 4.8, there exists
w̃ ∈ C such that ‖w̃‖W ≥ ‖w‖W holds for all w ∈ C. Moreover, it follows
from w̃ ∈ PW

(
B‖·‖,1(0)

)
that ‖w̃‖W < 1. Hence, for every k ∈ N it must hold that

‖ϕ(pk)‖W ≤ ‖w̃‖W < 1, which contradicts lim
k→∞
‖ϕ(pk)‖W = 1. Therefore, ϕ−1(C)

is bounded in Rn, and ϕ is proper.

With the property of ϕ being proper one can deduce that ϕ−1 is continuous:
For this, the rest of this proof will show for ϕ−1 that preimages of closed sets in
H=
‖·‖(a1, a2) ∩ H=

‖·‖(a1, a3) are closed in PW
(
B‖·‖,1(0)

)
. Therefore, let

S ⊆ H=
‖·‖(a1, a2) ∩ H=

‖·‖(a1, a3) be closed in H=
‖·‖(a1, a2) ∩ H=

‖·‖(a1, a3), and show

that ϕ(S) is closed in PW
(
B‖·‖,1(0)

)
, i.e., that PW

(
B‖·‖,1(0)

)
\ ϕ(S) is open in

PW
(
B‖·‖,1(0)

)
.

Let w ∈ PW
(
B‖·‖,1(0)

)
\ϕ(S). Then it is ε := 1−‖w‖W > 0, and Corollary 4.8

implies the existence of δ ∈ R>0 such that for every y ∈ W ∩ B‖·‖2,δ(w) it holds
that |‖w‖W − ‖y‖W | < ε. Hence, for every such y it is ‖y‖W < ‖w‖W + ε = 1,
which implies

w ∈ W ∩ B‖·‖2, δ2 (w) ⊆ W ∩ B‖·‖2, δ2 (w) ⊆ W ∩ B‖·‖2,δ(w)

⊆ B‖·‖W ,1(0) = PW
(
B‖·‖,1(0)

)
,

where W ∩ B‖·‖2, δ2 (w) is open in PW
(
B‖·‖,1(0)

)
, and since W is closed in Rn,

W ∩ B‖·‖2, δ2 (w) is compact in Rn and thus compact in PW
(
B‖·‖,1(0)

)
by

Corollary 4.23. Therefore, N := W ∩ B‖·‖2, δ2 (w) is a compact neighborhood

of w in PW
(
B‖·‖,1(0)

)
. Because ϕ is proper, ϕ−1(N) is compact in

H=
‖·‖(a1, a2) ∩ H=

‖·‖(a1, a3). Now consider S̃ := S ∩ ϕ−1(N). By Corollary 4.23,

ϕ−1(N) is compact in Rn, which implies that S̃ ⊆ ϕ−1(N) is bounded in Rn. Fur-
thermore, there is T ⊆ Rn closed in Rn with S = T ∩H=

‖·‖(a1, a2) ∩H=
‖·‖(a1, a3).

From Lemma 1 in [6] it follows that S is closed in Rn. This yields that S̃ is closed
in Rn and thus compact in Rn as well as compact in H=

‖·‖(a1, a2) ∩H=
‖·‖(a1, a3) by

Corollary 4.23.

Using the continuity of ϕ one can show that ϕ(S̃) is compact in PW
(
B‖·‖,1(0)

)
:

Let ϕ(S̃) ⊆
⋃
i∈I
Oi with Oi ⊆ PW

(
B‖·‖,1(0)

)
open in PW

(
B‖·‖,1(0)

)
be an open

cover. The continuity of ϕ implies for every i ∈ I that ϕ−1(Oi) is open in
H=
‖·‖(a1, a2) ∩ H=

‖·‖(a1, a3), such that S̃ ⊆
⋃
i∈I
ϕ−1(Oi) is an open cover. The

compactness of S̃ in H=
‖·‖(a1, a2) ∩ H=

‖·‖(a1, a3) gives i1, . . . , in ∈ I such that

S̃ ⊆ ϕ−1(Oi1) ∪ . . . ∪ ϕ−1(Oin). Hence, ϕ(S̃) ⊆ Oi1 ∪ . . . ∪ Oin , and ϕ(S̃) is
compact in PW

(
B‖·‖,1(0)

)
.
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4.3 Voronoi cells

Using again Corollary 4.23 implies that ϕ(S̃) is compact in Rn and thus closed in
Rn. This further gives that ϕ(S̃) = ϕ(S̃)∩PW

(
B‖·‖,1(0)

)
is closed in PW

(
B‖·‖,1(0)

)
.

Therefore,
(
W ∩ B‖·‖2, δ2 (w)

)
\ ϕ(S̃) is open in PW

(
B‖·‖,1(0)

)
. Moreover, it is

w ∈
(
W ∩ B‖·‖2, δ2 (w)

)
\ ϕ(S̃) ⊆ PW

(
B‖·‖,1(0)

)
\ ϕ(S),

because if for some y ∈
(
W ∩ B‖·‖2, δ2 (w)

)
\ϕ(S̃) it would also hold that y ∈ ϕ(S),

then there must exist some x ∈ S with y = ϕ(x), i.e., x = ϕ−1(y) ∈ ϕ−1(N)
yielding x ∈ S̃ and y ∈ ϕ(S̃), which is a contradiction. Thus, it follows that(
W ∩ B‖·‖2, δ2 (w)

)
\ ϕ(S̃) is an open neighborhood of w which is contained in

PW
(
B‖·‖,1(0)

)
\ ϕ(S), and ϕ−1 is continuous.

4.3 Voronoi cells

In the case of non-strictly convex norms, the Voronoi-relevant vectors are not
sufficient to determine the Voronoi cell of a given lattice, i.e., for a given lattice
Λ and a non-strictly convex norm it might happen for some x ∈ span(Λ) that x
is strictly closer to 0 than to all Voronoi-relevant vectors, but some other lattice
vector is even closer to x. An example for this is given in Corollary 2.27. At least
it can be shown for arbitrary norms that the generalized Voronoi-relevant vectors
determine the Voronoi cell completely:

Theorem 4.29 Let ‖ ·‖ : Rn → R≥0 be a norm and let Λ ⊆ Rn be a lattice. Then
it holds that

V(Λ, ‖ · ‖) =

{
x ∈ span(Λ)

∣∣∣∣ ∀v ∈ Λ generalized Voronoi-relevant
with respect to ‖ · ‖ : ‖x‖ ≤ ‖x− v‖

}
=: Ṽ(g)(Λ, ‖ · ‖).

The proof of this statement uses the following easy lemma:

Lemma 4.30 Let ‖ · ‖ : Rn → R≥0 be a norm and let Λ ⊆ Rn be a lattice. Then
it holds for every x ∈ Ṽ(g)(Λ, ‖ · ‖) and every w ∈ Λ with ‖x−w‖ < ‖x‖ that there
is some τ ∈ (0, 1) with ‖τx− w‖ = τ‖x‖ and τx ∈ Ṽ(g)(Λ, ‖ · ‖).

Proof. Let x ∈ Ṽ(g)(Λ, ‖ · ‖) and w ∈ Λ such that ‖x − w‖ < ‖x‖. In particular,
it is w 6= 0. It follows from Corollary 4.8 that

f : [0, 1] −→ R,
τ 7−→ ‖τx− w‖ − τ‖x‖

is continuous with respect to the Euclidean norm. Because of f(0) = ‖w‖ > 0
and f(1) = ‖x − w‖ − ‖x‖ < 0, the intermediate value theorem implies the
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4 General shape of bisectors, Voronoi cells and their facets

existence of τ ∈ (0, 1) with f(τ) = 0, i.e., ‖τx−w‖ = τ‖x‖. For every generalized
Voronoi-relevant vector v ∈ Λ it holds by x ∈ Ṽ(g)(Λ, ‖ · ‖) that

τ‖x‖ ≤ ‖τx− τv‖ = ‖τ(τx− v) + (1− τ)(τx)‖ ≤ τ‖τx− v‖+ (1− τ)τ‖x‖,

which implies τ‖x‖ ≤ ‖τx− v‖. Thus it is τx ∈ Ṽ(g)(Λ, ‖ · ‖).

Proof of Theorem 4.29. It is clear that V(Λ, ‖·‖) ⊆ Ṽ(g)(Λ, ‖·‖). To show the other
inclusion, let x ∈ Ṽ(g)(Λ, ‖ · ‖) and assume for contradiction that x /∈ V(Λ, ‖ · ‖).
Then there exists some u ∈ Λ with ‖x − u‖ < ‖x‖. Since Λ is discrete, there
is some k ∈ N with k = |{u ∈ Λ | ‖x − u‖ < ‖x‖}| and one can write
{u ∈ Λ | ‖x − u‖ < ‖x‖} = {u1, . . . , uk}. Lemma 4.30 gives for every
i ∈ {1, . . . , k} some τi ∈ (0, 1) with ‖τix − ui‖ = τi‖x‖ and τix ∈ Ṽ(g)(Λ, ‖ · ‖).
Let j ∈ {1, . . . , k} with τj = min{τ1, . . . , τk}. Due to x ∈ Ṽ(g)(Λ, ‖ · ‖), uj cannot
be generalized Voronoi-relevant, which implies the existence of some v ∈ Λ with
‖τjx− v‖ < τj‖x‖. From

‖x− v‖ = ‖x− τjx+ τjx− v‖ ≤ (1− τj)‖x‖+ ‖τjx− v‖
< (1− τj)‖x‖+ τj‖x‖ = ‖x‖

(4.1)

follows that v = ui for some i ∈ {1, . . . , k}. Due to the minimal choice of j, one
gets the following contradiction

‖τix− v‖ = ‖τix− τjx+ τjx− v‖ ≤ (τi − τj)‖x‖+ ‖τjx− v‖
< (τi − τj)‖x‖+ τj‖x‖ = τi‖x‖ = ‖τix− v‖.

(4.2)

For the Euclidean norm, the authors of [1] argue that the Voronoi-relevant
vectors determine the Voronoi cell completely. I expect this to be true for every
strictly convex norm. Unfortunately, the subsequent proof for this statement relies
on a very plausible conjecture, which roughly states the following for a given lattice
Λ with strictly convex norm ‖ · ‖: If for some x ∈ span(Λ) the scaled, translated
unit ball B‖·‖,‖x‖(x) contains no lattice points in its interior, but contains 0 and
at least two additional lattice points on its boundary, then one can walk from x
within span(Λ) an arbitrarily short distance along one of the bisectors between 0
and some other lattice point on the boundary of the ball such that the resulting
point is strictly further away from all other boundary-lattice-points. Formally this
is expressed as follows.

Conjecture 4.31 Let ‖·‖ : Rn → R≥0 be a strictly convex norm and let Λ ⊆ Rn be
a lattice. Moreover, let x ∈ V(Λ, ‖·‖) with k := |{u ∈ Λ\{0} | ‖x−u‖ = ‖x‖}| ≥ 2.
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4.3 Voronoi cells

Then it holds for every δ ∈ R>0 that

span(Λ) ∩ B‖·‖2,δ(x) ∩

 k⋃
i=1

H=
‖·‖(0, ui) ∩

k⋂
j=1
j 6=i

H<
‖·‖(0, uj)


 6= ∅,

where {u ∈ Λ \ {0} | ‖x− u‖ = ‖x‖} = {u1, . . . , uk}.
Assuming this conjecture, one can proof that the Voronoi cell of a given lattice

is already determined by the Voronoi-relevant vectors when a strictly convex norm
is used. To do this, one can consider the partition of Voronoi cells into their inner
and outer parts.

Theorem 4.32 Let ‖ · ‖ : Rn → R≥0 be a strictly convex norm and let Λ ⊆ Rn be
a lattice. If Conjecture 4.31 is true, it holds that

V(Λ, ‖ · ‖) =

{
x ∈ span(Λ)

∣∣∣∣ ∀v ∈ Λ Voronoi-relevant with
respect to ‖ · ‖ : ‖x‖ ≤ ‖x− v‖

}
=: Ṽ(Λ, ‖ · ‖) and

V(i)(Λ, ‖ · ‖) =

{
x ∈ span(Λ)

∣∣∣∣ ∀v ∈ Λ Voronoi-relevant with
respect to ‖ · ‖ : ‖x‖ < ‖x− v‖

}
=: Ṽ(i)(Λ, ‖ · ‖).

The idea for the proof of this theorem is to reduce the problem further and
further until one gets to the statement of the above conjecture. The outline of the
proof is as follows:

• Starting with some x0 ∈ span(Λ) having to all Voronoi-relevant vectors a
distance at least as big as the distance to 0 and assuming that x0 is strictly
closer to some other lattice vector w, one walks along the line between x0

and 0 until a point x1 is found which has the same distance to w as to 0 and
a strictly larger distance to all Voronoi-relevant vectors. This new situation
is treated by Lemma 4.37.

• Lemma 4.37 is a little bit stronger, since it already shows that the Voronoi-
relevant vectors determine the strict Voronoi cell. Hence, it considers x1

having a strictly larger distance to all Voronoi-relevant vectors than to 0,
but w is closer to x than 0 or at the same distance than 0. If w is closer than
0, one walks again along the line between x1 and 0 such that the new point
x2 has the same distance to w as to 0 and a strictly larger distance to all
Voronoi-relevant vectors. This new scenario is considered by Lemma 4.36.

• For x2 as described above, one first considers the case of the existence of
some lattice vector u such that x2 is strictly closer to u than to 0 (and w).
Similar to the proof of Theorem 4.29, one walks again along the line between
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4 General shape of bisectors, Voronoi cells and their facets

x2 and 0 to find x3 having the same distance to some lattice vector w̃ as
to 0, but no other lattice vector is strictly closer and all Voronoi-relevant
vectors are strictly further away. This situation is analyzed in Lemma 4.34.

• Lemma 4.34 shows that there is a third lattice vector u such that x3 has the
same distance to 0, w̃ and u. With this, Lemma 4.33 can be applied.

• Now one has the situation where the ball around x3 with radius ‖x3‖ contains
no lattice points in its interior, at least three lattice points on its boundary
and all Voronoi-relevant vectors are strictly outside this ball. Lemma 4.33
shows that one can move a little bit away from x3 to some y such that
the ball around y with radius ‖y‖ contains no new lattice points except
the ones that where on the boundary before. Conjecture 4.31 finally yields
that y can be chosen in span(Λ) to be on the bisector between 0 and some
boundary-lattice-point ũ such that all other boundary-lattice-points are fur-
ther away. Hence, ũ must be Voronoi-relevant which contradicts that all
Voronoi-relevant vectors are strictly outside the ball around x3 with radius
‖x3‖.

Lemma 4.33 Let ‖ · ‖ : Rn → R≥0 be a strictly convex norm and let Λ ⊆ Rn be
a lattice. If Conjecture 4.31 is true, it holds that for every x ∈ V(Λ, ‖ · ‖) with
|{u ∈ Λ \ {0} | ‖x − u‖ = ‖x‖}| ≥ 2 there exists u ∈ Λ Voronoi-relevant with
respect to ‖ · ‖ such that ‖x− u‖ = ‖x‖.

Proof. Let k := |{u ∈ Λ \ {0} | ‖x − u‖ = ‖x‖}| and use the notation
{u ∈ Λ \ {0} | ‖x− u‖ = ‖x‖} = {u1, . . . , uk}. Since x ∈ V(Λ, ‖ · ‖), it holds that
B‖·‖,‖x‖(x) ∩ Λ = {0, u1, . . . , uk}. Because Λ is discrete, there is an ε ∈ R>0 such
that B‖·‖,‖x‖+ε(x) ∩ Λ = {0, u1, . . . , uk}. Due to Corollary 4.8, there is δ1 ∈ R>0

such that for every y ∈ B‖·‖2,δ1(x) it holds that |‖x‖ − ‖y‖| < ε
2
. Analogously,

one finds δ2 ∈ R>0 such that ‖y − x‖ = |‖x − x‖ − ‖y − x‖| < ε
2

holds for ev-
ery y ∈ B‖·‖2,δ2(x). If Conjecture 4.31 is true, it yields for δ := min{δ1, δ2} some
y ∈ span(Λ)∩B‖·‖2,δ(x) and some i ∈ {1, . . . , k} such that ‖y‖ = ‖y−ui‖ < ‖y−uj‖
holds for all j ∈ {1, . . . , k} \ {i}. For every z ∈ B‖·‖,‖y‖(y) one gets

‖z − x‖ ≤ ‖z − y‖+ ‖y − x‖ < ‖y‖+
ε

2
<
(ε

2
+ ‖x‖

)
+
ε

2
= ‖x‖+ ε,

which shows B‖·‖,‖y‖(y) ⊆ B‖·‖,‖x‖+ε(x). This implies B‖·‖,‖y‖(y)∩Λ ⊆ {0, u1, . . . , uk}.
Hence, ‖y − v‖ > ‖y‖ holds for all v ∈ Λ \ {0, ui}, and ui is Voronoi-relevant.

Lemma 4.34 Let ‖ · ‖ : Rn → R≥0 be a strictly convex norm and let Λ ⊆ Rn be a
lattice. If Conjecture 4.31 is true, it holds for every x ∈ Ṽ(i)(Λ, ‖ · ‖) ∩ V(Λ, ‖ · ‖)
and every w ∈ Λ \ {0} that ‖x− w‖ 6= ‖x‖.

Proof. Let x ∈ Ṽ(i)(Λ, ‖ · ‖) ∩ V(Λ, ‖ · ‖) and w ∈ Λ \ {0}, and assume for con-
tradiction that ‖x − w‖ = ‖x‖. Since x ∈ Ṽ(i)(Λ, ‖ · ‖), it follows that w is not
Voronoi-relevant, which further implies the existence of some u ∈ Λ \ {0, w} with
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‖x− u‖ ≤ ‖x‖. Moreover, x ∈ V(Λ, ‖ · ‖) yields that {u ∈ Λ | ‖x− u‖ ≤ ‖x‖} =
{u ∈ Λ | ‖x − u‖ = ‖x‖}, which shows that there is some k ∈ N, k ≥ 2 with
k = |{u ∈ Λ \ {0} | ‖x − u‖ = ‖x‖}|, because Λ is discrete. By Lemma 4.33,
there is a Voronoi-relevant vector v ∈ Λ with ‖x − v‖ = ‖x‖, which contradicts
x ∈ Ṽ(i)(Λ, ‖ · ‖).

For the remaining proofs, one further easy lemma is needed, which is the strictly
convex variant of Lemma 4.30.

Lemma 4.35 Let ‖ · ‖ : Rn → R≥0 be a strictly convex norm and let Λ ⊆ Rn be a
lattice. Then it holds for every x ∈ Ṽ(Λ, ‖·‖) and every w ∈ Λ with ‖x−w‖ < ‖x‖
that there is some τ ∈ (0, 1) with ‖τx− w‖ = τ‖x‖ and τx ∈ Ṽ(i)(Λ, ‖ · ‖).

Proof. As in the proof of Lemma 4.30, one finds τ ∈ (0, 1) such that ‖τx− w‖ =
τ‖x‖. For every Voronoi-relevant vector v ∈ Λ it holds by x ∈ Ṽ(Λ, ‖ · ‖) and
Lemma 2.6 that

τ‖x‖ ≤ ‖τx− τv‖ = ‖τ(τx− v) + (1− τ)(τx)‖ < max{‖τx− v‖, τ‖x‖},

which implies ‖τx− v‖ > τ‖x‖. Thus it is τx ∈ Ṽ(i)(Λ, ‖ · ‖).

Lemma 4.36 Let ‖ · ‖ : Rn → R≥0 be a strictly convex norm and let Λ ⊆ Rn be
a lattice. If Conjecture 4.31 is true, it holds for every x ∈ Ṽ(i)(Λ, ‖ · ‖) and every
w ∈ Λ \ {0} that ‖x− w‖ 6= ‖x‖.

Proof. Let x ∈ Ṽ(i)(Λ, ‖ · ‖) and w ∈ Λ \ {0}, and assume for contradiction that
‖x − w‖ = ‖x‖. Lemma 4.34 implies that x /∈ V(Λ, ‖ · ‖), i.e., there is some
u ∈ Λ \ {0} with ‖x‖ > ‖x − u‖. Since Λ is discrete, there is some k ∈ N with
k = |{u ∈ Λ | ‖x − u‖ < ‖x‖}| and one can write {u ∈ Λ | ‖x − u‖ < ‖x‖} =
{u1, . . . , uk}. Lemma 4.35 gives for every i ∈ {1, . . . , k} some τi ∈ (0, 1) with
‖τix − ui‖ = τi‖x‖ and τix ∈ Ṽ(i)(Λ, ‖ · ‖). Let j ∈ {1, . . . , k} with τj =
min{τ1, . . . , τk}. Lemma 4.34 applied on τjx and uj yields that τjx /∈ V(Λ, ‖ · ‖).
Hence, there is some v ∈ Λ such that τj‖x‖ > ‖τjx− v‖. As in the proof of Theo-
rem 4.29, (4.1) shows v ∈ {u1, . . . , uk}, which leads to the contradiction (4.2).

Lemma 4.37 Let ‖ · ‖ : Rn → R≥0 be a strictly convex norm and let Λ ⊆ Rn be
a lattice. If Conjecture 4.31 is true, it holds that Ṽ(i)(Λ, ‖ · ‖) ⊆ V(i)(Λ, ‖ · ‖).

Proof. Let x ∈ Ṽ(i)(Λ, ‖ · ‖) and assume for contradiction that x /∈ V(i)(Λ, ‖ · ‖),
i.e., there is some w ∈ Λ \ {0} with ‖x‖ ≥ ‖x − w‖. Lemma 4.36 implies that
‖x‖ > ‖x− w‖ must hold. Hence, Lemma 4.35 gives τ ∈ (0, 1) with ‖τx− w‖ =
τ‖x‖ and τx ∈ Ṽ(i)(Λ, ‖ · ‖), but this contradicts Lemma 4.36 applied on τx.

Proof of Theorem 4.32. It is clear that V(Λ, ‖ · ‖) ⊆ Ṽ(Λ, ‖ · ‖) and V(i)(Λ, ‖ · ‖) ⊆
Ṽ(i)(Λ, ‖ · ‖). Since it follows from Lemma 4.37 that V(i)(Λ, ‖ · ‖) = Ṽ(i)(Λ, ‖ · ‖),
it is only left to show that Ṽ(Λ, ‖ · ‖) ⊆ V(Λ, ‖ · ‖).

Let x ∈ Ṽ(Λ, ‖ · ‖) and assume for contradiction that x /∈ V(Λ, ‖ · ‖), i.e.,
there is some w ∈ Λ \ {0} with ‖x‖ > ‖x − w‖. Then Lemma 4.35 shows that
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τx ∈ Ṽ(i)(Λ, ‖ · ‖) holds for some τ ∈ (0, 1) with ‖τx − w‖ = τ‖x‖, leading to
τx ∈ V(i)(Λ, ‖ · ‖) by Lemma 4.37. In particular, τ‖x‖ < ‖τx−w‖ follows, which
contradicts the choice of τ .

4.4 Facets

When considering the complexity of the Voronoi cell of the origin of a given lattice,
one is particularly interested in the number of facets of that Voronoi cell. In a
lattice of rank m, a facet is an at least (m − 1)-dimensional “boundary part” of
the Voronoi cell, which is completely contained in at least one bisector between 0
and some other lattice vector, and it is maximal in the sense that the intersection
of all these bisectors and the Voronoi cell is contained in the facet. More formally
this can be stated as follows.

Definition 4.38 For a discrete set of points P ⊆ Rn and a norm ‖·‖ : Rn → R≥0,
F ⊆ span(P) is a facet of the Voronoi cell of a ∈ P if the following four conditions
hold:

1. F ⊆ V‖·‖,P(a),

2. ∃b ∈ P \ {a} : F ⊆ H=
‖·‖(a, b),

3. ∀b ∈ P \ {a} with F ⊆ H=
‖·‖(a, b): ∃x ∈ F ∃δ ∈ R>0 :

B‖·‖2,δ(x) ∩ span(P) ∩H=
‖·‖(a, b) ⊆ F ,

4.

 ⋂
b∈P\{a}:
F⊆H=

‖·‖(a,b)

H=
‖·‖(a, b)

 ∩ V‖·‖,P(a) ⊆ F .

For every lattice and every norm, every Voronoi-relevant vector induces a facet
of the Voronoi cell of the origin.

Proposition 4.39 Let ‖ · ‖ : Rn → R≥0 be a norm and let Λ ⊆ Rn be a lattice.
Then it holds for every lattice vector v ∈ Λ which is Voronoi-relevant with respect
to ‖ · ‖ that V(Λ, ‖ · ‖) ∩H=

‖·‖(0, v) is a facet of the Voronoi cell of the origin.

Proof. Let v ∈ Λ be Voronoi-relevant, and define F := V(Λ, ‖ · ‖) ∩ H=
‖·‖(0, v).

It is clear that F fulfills the first two conditions of Definition 4.38. Since v is
Voronoi-relevant, there is some x ∈ span(Λ) such that ‖x‖ = ‖x− v‖ < ‖x− w‖
holds for every w ∈ Λ \ {0, v}. Hence, x ∈ F follows, and for all w ∈ Λ \ {0, v}
it is x /∈ H=

‖·‖(0, w). This means that the second condition is exactly fulfilled for
v, which implies that condition four also holds. The rest of this proof verifies
condition three.

Because Λ is discrete, there is some ε ∈ R>0 such that B‖·‖,‖x‖+ε(x)∩Λ = {0, v}.
The continuity of ‖ · ‖ with respect to ‖ · ‖2 yields δ1 ∈ R>0 such that for every
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y ∈ B‖·‖2,δ1(x) it holds that |‖x‖ − ‖y‖| < ε
2
. From Corollary 4.8, the existence

of δ2 ∈ R>0 follows such that ‖y − x‖ = |‖x − x‖ − ‖y − x‖| < ε
2

holds for
every y ∈ B‖·‖2,δ2(x). It is left to show that for δ := min{δ1, δ2} it holds that
B‖·‖2,δ(x) ∩ span(Λ) ∩H=

‖·‖(0, v) ⊆ V(Λ, ‖ · ‖).
Let y ∈ B‖·‖2,δ(x) ∩ span(Λ) ∩H=

‖·‖(0, v). Since it holds for every z ∈ B‖·‖,‖y‖(y)
that

‖z − x‖ ≤ ‖z − y‖+ ‖y − x‖ < ‖y‖+
ε

2
<
(ε

2
+ ‖x‖

)
+
ε

2
= ‖x‖+ ε,

it follows that B‖·‖,‖y‖(y) ⊆ B‖·‖,‖x‖+ε(x), which leads to B‖·‖,‖y‖(y) ∩ Λ = {0, v}.
Thus, it holds that ‖y‖ = ‖y − v‖ < ‖y − w‖ for all w ∈ Λ \ {0, v}, and
y ∈ V(Λ, ‖ · ‖).

Note that the facets induced by Voronoi-relevant vectors as in the above propo-
sition are pairwise distinct by the first paragraph of the above proof.

One would like to have that every facet of the Voronoi cell of the origin of
some given lattice has a form as in the above proposition, and in particular that
every facet is induced by some unique Voronoi-relevant vector. But as seen in
Corollary 2.27, the Voronoi-relevant vectors might not even be sufficient to deter-
mine the Voronoi cell of the origin when a non-strictly convex norm is used. The
same counterexample can now be used to specify a facet which is induced by two
generalized Voronoi-relevant vectors.

Proposition 4.40 Let b1 := (1, 1)T and b2 := (0, 3)T . Then

H=
‖·‖1(0, b1 − b2) ∩H=

‖·‖1(0, 2b1 − b2)

is a facet of the Voronoi cell of the origin of L(b1, b2).

Proof. Consider x = (x1, x2)T ∈ H=
‖·‖1(0, b1− b2)∩H=

‖·‖1(0, 2b1− b2). Then it holds

that ‖x‖1 = ‖x− (b1 − b2)‖1 = ‖x− (2b1 − b2)‖1, which is equivalent to

|x1|+ |x2| = |x1 − 1|+ |x2 + 2| = |x1 − 2|+ |x2 + 1|. (4.3)

Now distinguish three cases according to x:

1. x1 > 1:

(4.3) yields x1 + |x2| = x1 − 1 + |x2 + 2|, which further gives x2 = −1
2
, such

that (4.3) leads to x1 + 1
2

= |x1 − 2|+ 1
2
. This contradicts x1 > 1.

2. x2 < −1:

(4.3) yields |x1| − x2 = |x1 − 2| − x2 − 1, which implies x1 = 1
2
, and so (4.3)

further gives 1
2
− x2 = 1

2
+ |x2 + 2|. This contradicts x2 < −1.

3. x1 ≤ 1 and x2 ≥ −1:

Now, (4.3) can be written as |x1|+ |x2| = 3− x1 + x2.
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4 General shape of bisectors, Voronoi cells and their facets

If x1 < 0 would hold, (4.3) would lead to −x1 + |x2| = 3− x1 + x2, yielding
x2 = −3

2
, but this contradicts x2 ≥ −1.

If x2 > 0 would hold, (4.3) would imply |x1| + x2 = 3− x1 + x2, leading to
x1 = 3

2
, but this contradicts x1 ≤ 1.

Hence, is must hold that 0 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 0. With this, (4.3)
reduces to x1 − x2 = 3− x1 + x2, which is equivalent to x1 − x2 = 3

2
. From

this it further follows that x1 ≥ 1
2
, because otherwise one would get the

contradiction −1 ≤ x2 = x1 − 3
2
< −1.

This case distinguishing shows that

H=
‖·‖1(0, b1 − b2) ∩H=

‖·‖1(0, 2b1 − b2)

⊆
{(

x1

x2

)
∈ R2

∣∣∣∣ x1 − x2 =
3

2
, x1 ∈

[
1

2
, 1

]}
=: F .

(4.4)

Using the notation of Proposition 2.21, it is {(x1, x2)T ∈ S(o)
2 | x1 > 0} ⊆ F .

Therefore, it follows from the proof of Lemma 2.24 that{
v ∈ L(b1, b2) \ {0} | F ⊆ H=

‖·‖1(0, v)
}

= {b1 − b2, 2b1 − b2} . (4.5)

In particular, this shows that H=
‖·‖1(0, b1 − b2) ∩ H=

‖·‖1(0, 2b1 − b2) = F . Since

Lemma 2.24 also states that F ⊆ V(L(b1, b2), ‖ · ‖1), it holds that F fulfills the
first condition of Definition 4.38 as well as the second condition by (4.5). Further-
more, condition four follows from (4.5) and (4.4). To verify condition three, let
x := 3

4
(1,−1)T ∈ F and δ := 1

4
, and show B‖·‖2,δ(x)∩H=

‖·‖1(0, b1− b2) ⊆ F as well

as B‖·‖2,δ(x) ∩H=
‖·‖1(0, 2b1 − b2) ⊆ F .

For y ∈ B‖·‖2,δ(x) ∩
(
H=
‖·‖1(0, b1 − b2) ∪H=

‖·‖1(0, 2b1 − b2)
)

, it holds that

y1 ∈
(

1
2
, 1
)

and y2 ∈
(
−1,−1

2

)
. Hence, one of the equalities |y1| + |y2| =

|y1−1|+|y2+2| or |y1|+|y2| = |y1−2|+|y2+1| already implies y1−y2 = 3−y1+y2,
which is equivalent to y1 − y2 = 3

2
. This shows that y ∈ F .

Hence, for arbitrary norms, one can conclude from Proposition 4.39 only that
every Voronoi cell of the origin of a given lattice has at least as many facets as
Voronoi-relevant vectors. The rest of this chapter considers strictly convex norms.
First the investigation is restricted to two-dimensional lattices, and later higher
dimensions are discussed.

4.4.1 Two-dimensional lattices

In the special case of lattices with dimension two and strictly convex norms, one
can indeed show that every facet of the Voronoi cell of the origin has a form as
given in Proposition 4.39. Notably, this means that facets can be defined more
easily and precisely in this case.
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Proposition 4.41 Let ‖·‖ : R2 → R≥0 be a strictly convex norm and let Λ ⊆ R2 be
a lattice. Then it holds for every facet F of the Voronoi cell of the origin that there
is a unique Voronoi-relevant vector v ∈ Λ such that F = V(Λ, ‖ · ‖) ∩H=

‖·‖(0, v).

Proof. For a facet F ⊆ V(Λ, ‖ · ‖), there is some v ∈ Λ \ {0} with F ⊆ H=
‖·‖(0, v)

by condition two of Definition 4.38. Moreover, by the third condition of this
definition, there are x ∈ F and δ ∈ R>0 with B‖·‖2,δ(x)∩ span(Λ)∩H=

‖·‖(0, v) ⊆ F .

Assume for contradiction that there is w ∈ Λ \ {0, v} with F ⊆ H=
‖·‖(0, w).

In particular, it holds that x ∈ H=
‖·‖(0, v) ∩ H=

‖·‖(0, w). Theorem 2 in [6] shows
that both of these bisectors are homeomorphic to lines, and for this case Theorem
2.1.2.3 in [10] states that the intersection of these bisectors is empty or a single
point, where the intersection is empty if 0, v, w would be collinear. Thus it follows
that H=

‖·‖(0, v) ∩ H=
‖·‖(0, w) = {x} and that 0, v, w are non-collinear, where the

latter implies span(Λ) = R2. This shows that B‖·‖2,δ(x) ∩ H=
‖·‖(0, v) ⊆ F = {x},

which contradicts that H=
‖·‖(0, v) homeomorphic to a line by Theorem 2 in [6].

Hence, v is the only vector in Λ \ {0} with F ⊆ H=
‖·‖(0, v). Condition four of

Definition 4.38 implies H=
‖·‖(0, v) ∩ V(Λ, ‖ · ‖) = F . It is left to show that v is

Voronoi-relevant. If ‖x− w‖ > ‖x‖ holds for all w ∈ Λ \ {0, v}, it would directly
follow that v is Voronoi-relevant. Thus assume that ‖x−w‖ = ‖x‖ holds for some
w ∈ Λ \ {0, v}. Then it follows as above that span(Λ) = R2. Since⋃

u∈Λ\{0,v}

(
H=
‖·‖(0, v) ∩H=

‖·‖(0, u)
)

is countable by Theorem 2 in [6] and Theorem 2.1.2.3 in [10], there is some

y ∈ B‖·‖2,δ(x) ∩ H=
‖·‖(0, v) ⊆ F such that y /∈

⋃
u∈Λ\{0,v}

(
H=
‖·‖(0, v) ∩H=

‖·‖(0, u)
)

.

Hence, y ∈ F = H=
‖·‖(0, v) ∩ V(Λ, ‖ · ‖) and ‖y‖ = ‖y − v‖ < ‖y − u‖ for all

u ∈ Λ \ {0, v}. Therefore, v is Voronoi-relevant.

Corollary 4.42 Let ‖ · ‖ : R2 → R≥0 be a strictly convex norm and let Λ ⊆ R2

be a lattice. Then it holds that v 7→ V(Λ, ‖ · ‖) ∩ H=
‖·‖(0, v) is a bijection between

Voronoi-relevant vectors and facets of the Voronoi cell of the origin.

Proof. This statement follows directly from Propositions 4.39 and 4.41.

Additionally to this desirable correspondence between facets and Voronoi-
relevant vectors showing that every Voronoi cell of the origin of a given two-
dimensional lattice has exactly as many facets as Voronoi-relevant vectors with
respect to a strictly convex norm, it holds for the two-dimensional and strictly
convex case that all these facets are connected.

Proposition 4.43 Let ‖ · ‖ : R2 → R≥0 be a strictly convex norm and let Λ ⊆ R2

be a lattice. Then it holds that every facet of the Voronoi cell of the origin is
connected.
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4 General shape of bisectors, Voronoi cells and their facets

Proof. Let F be a facet of the Voronoi cell of the origin. By Proposition 4.41,
there is a Voronoi-relevant vector v ∈ Λ with F = V(Λ, ‖ · ‖) ∩ H=

‖·‖(0, v). Using

Theorem 2 in [6], one finds a homeomorphism f : R → H=
‖·‖(0, v). Consider now

x1, x2 ∈ F with x1 6= x2, and define τ1 := f−1(x1) as well as τ2 := f−1(x2).
Without loss of generality, one can assume that τ1 < τ2.

Now assume for contradiction that there is µ ∈ (τ1, τ2) such that f(µ) /∈ F .
Then it holds that f(µ) /∈ V(Λ, ‖ · ‖), which implies the existence of some
w ∈ Λ\{0, v} with ‖f(µ)−w‖ < ‖f(µ)‖. Due to x1, x2 ∈ F it is ‖x1−w‖ ≥ ‖x1‖
and ‖x2 − w‖ ≥ ‖x2‖. Corollary 4.8 gives that g : R2 → R, x 7→ ‖x − w‖ − ‖x‖
is continuous, which further implies that g ◦ f is continuous. Furthermore, it is
g(f(τ1)) ≥ 0, g(f(τ2)) ≥ 0 and g(f(µ)) < 0. Applying the intermediate value the-
orem twice yields µ1 ∈ [τ1, µ) with g(f(µ1)) = 0 and µ2 ∈ (µ, τ2] with g(f(µ2)) = 0.
Thus, f(µ1), f(µ2) ∈ H=

‖·‖(0, w) ∩ H=
‖·‖(0, v) follows, which shows by Theorem 2

in [6] and Theorem 2.1.2.3 in [10] that f(µ1) = f(µ2). Therefore, µ1 = µ2 must
hold, which contradicts µ1 < µ < µ2.

Hence, it holds that f([τ1, τ2]) ⊆ F , and the continuous function
f |[τ1,τ2] : [τ1, τ2]→ F is a path from x1 to x2.

4.4.2 Higher-dimensional lattices

If one wants to generalize the result from Proposition 4.41 to arbitrary dimensions
n greater than two, one needs that the intersection of two bisectors between 0 and
v, and 0 and w is (n − 2)-dimensional as long as 0, v and w are non-collinear.
This was discussed in Section 4.2. Additionally, one wants the property that two
bisectors of the above form do not only touch at their (n− 2)-dimensional inter-
section, but also that each bisector has parts in both halfspaces determined by the
other bisector. After this is shown in the next lemma, the desired generalization
of Proposition 4.41 can be stated and proven with the help of Theorem 4.18.

Lemma 4.44 Let ‖ · ‖ : Rn → R≥0 be a strictly convex and smooth norm, and let
V ⊆ Rn be a subspace. If a1, a2, a3 ∈ V are non-collinear, then

H=
‖·‖(a1, a2) ∩ V * H≤‖·‖(a1, a3) ∩ V and

H=
‖·‖(a1, a2) ∩ V * H≤‖·‖(a3, a1) ∩ V.

Proof. Let H ⊆ V be the plane spanned by a1, a2, a3. Then it holds that
a1+a2

2
∈ H ∩ H=

‖·‖(a1, a2). In addition, let K1 := B‖·‖, 1
2
‖a1−a2‖

(
a1+a2

2

)
∩ H, which

gives a two-dimensional strictly convex and smooth body with center point a1+a2

2
.

Lemma 2.1.1.1 and Theorem 2.1.2.3 in [10] show for strictly convex bodies in
two-dimensions and for pairwise distinct points a, b, c that there is at most one
uniformly scaled and translated copy of this body that has a, b, c on its boundary,
and that exactly one such copy exists if a, b, c are non-collinear and the given body
is smooth. Since 2a3− a1 ∈ H does not lie on the line through a1 and a2, Lemma
2.1.1.1 and Theorem 2.1.2.3 in [10] imply the existence of a uniformly scaled (with
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center a1+a2

2
), translated copy K2 ⊆ H of K1 having a1, a2 and 2a3 − a1 on its

boundary. Let p ∈ H denote the center point of K2, i.e., the resulting point
after applying the same translation from K1 to K2 on a1+a2

2
. Then it holds that

‖a1 − p‖ = ‖a2 − p‖ = ‖2a3 − a1 − p‖. The strict convexity of ‖ · ‖ leads to
‖a3− p‖ = ‖1

2
(a1 − p) + 1

2
(2a3 − a1 − p) ‖ < ‖a1− p‖. Thus, p ∈ H=

‖·‖(a1, a2)∩V ,

but p /∈ H≤‖·‖(a1, a3), which shows H=
‖·‖(a1, a2) ∩ V * H≤‖·‖(a1, a3).

a1+a3

2
∈ H does not lie on the line through a1 and a2, such that – as above –

some uniformly scaled (with center a1+a2

2
), translated copy K3 ⊆ H of K1 exists

that has a1, a2 and a1+a3

2
on its boundary. Let q ∈ H denote the center point of

K3. Then it follows that ‖a1 − q‖ = ‖a2 − q‖ = ‖a1+a3

2
− q‖. Lemma 2.6 yields

‖a1 − q‖ =

∥∥∥∥a1 + a3

2
− q
∥∥∥∥ =

∥∥∥∥1

2
(a1 − q) +

1

2
(a3 − q)

∥∥∥∥
< max {‖a1 − q‖, ‖a3 − q‖} ,

which shows ‖a1−q‖ < ‖a3−q‖. Hence, q ∈ H=
‖·‖(a1, a2)∩V , but q /∈ H≤‖·‖(a3, a1),

which shows H=
‖·‖(a1, a2) ∩ V * H≤‖·‖(a3, a1).

Proposition 4.45 Let ‖ · ‖ : Rn → R≥0 be a strictly convex and smooth norm,
and let Λ ⊆ Rn be a lattice. If Conjecture 4.17 is true, then it holds for every facet
F of the Voronoi cell of the origin that there is a unique Voronoi-relevant vector
v ∈ Λ such that F = V(Λ, ‖ · ‖) ∩H=

‖·‖(0, v).

Proof. For a facet F ⊆ V(Λ, ‖ · ‖), there is some v ∈ Λ \ {0} with F ⊆ H=
‖·‖(0, v)

by condition two of Definition 4.38. Moreover, by the third condition of this
definition, there are x ∈ F and δ ∈ R>0 with B‖·‖2,δ(x)∩ span(Λ)∩H=

‖·‖(0, v) ⊆ F .

Assume for contradiction that there is w ∈ Λ \ {0, v} with x ∈ H=
‖·‖(0, w). If

Conjecture 4.17 is true, Theorem 4.18 implies that 0, v, w are non-collinear and
that H=

‖·‖(0, v) ∩ H=
‖·‖(0, w) ∩ span(Λ) is homeomorphic to Rm−2, where m ≥ 2

denotes the dimension of span(Λ). Furthermore, it follows from Theorem 2 in
[6] that span(Λ) ∩H=

‖·‖(0, v) is homeomorphic to Rm−1, and from Lemma 1 in [6]
that every bisector of two distinct points separates its two corresponding strict
halfspaces from each other. By Lemma 4.44, H=

‖·‖(0, v) ∩ H=
‖·‖(0, w) ∩ span(Λ)

separates H=
‖·‖(0, v) ∩ span(Λ) in two domains, where one domain is contained in

H<
‖·‖(0, w) and the other in H<

‖·‖(w, 0). Since x ∈ H=
‖·‖(0, v)∩H=

‖·‖(0, w)∩ span(Λ),

there is y ∈ B‖·‖2,δ(x)∩ span(Λ)∩H=
‖·‖(0, v) ⊆ F ⊆ V(Λ, ‖ · ‖) with y ∈ H<

‖·‖(w, 0),
which is a contradiction.

Hence, v is Voronoi-relevant and v is the only vector in Λ \ {0} such that F ⊆
H=
‖·‖(0, v). Condition four of Definition 4.38 impliesH=

‖·‖(0, v)∩V(Λ, ‖·‖) = F .

Corollary 4.46 Let ‖ · ‖ : Rn → R≥0 be a strictly convex and smooth norm,
and let Λ ⊆ Rn be a lattice. If Conjecture 4.17 is true, then it holds that
v 7→ V(Λ, ‖ · ‖) ∩ H=

‖·‖(0, v) is a bijection between Voronoi-relevant vectors and
facets of the Voronoi cell of the origin.
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Proof. This statement follows directly from Propositions 4.39 and 4.45.

Unfortunately, one cannot hope for a connectedness result as stated in Propo-
sition 4.43 for higher dimensions than two. The next proposition does not give
a counterexample for lattices, but considers the case where the given discrete set
of points has exactly four points. It finds a Voronoi cell with a facet that is not
connected, although the norms fulfill strict convexity and smoothness. Hence, un-
der the assumption of Conjecture 4.17, every Voronoi cell of the origin of a given
lattice has exactly as many facets as Voronoi-relevant vectors with respect to a
strictly convex and smooth norm, but the total number of connected components
of the individual facets might be higher than the number of Voronoi-relevant vec-
tors. The proof of the next proposition uses two generalizations of the classical
Jordan curve theorem, which will be stated first: The Jordan-Brouwer separation
theorem and the Jordan-Schoenflies theorem.

Theorem 4.47 (Jordan-Brouwer separation theorem) Let n ∈ N, n ≥ 2. If
X ⊆ Rn if homeomorphic to Sn−1, then Rn \X has exactly two connected compo-
nents, where one is bounded and the other unbounded, and X is the boundary of
each component.

A proof for the Jordan-Brouwer separation theorem is for example given in [11].
For the case n = 2, it yields the Jordan curve theorem, since every closed Jordan
curve in R2 is homeomorphic to S1.

Definition 4.48 A closed Jordan curve in R2 is the image of a continuous func-
tion ϕ : [0, 1] → R2 such that the restriction ϕ|[0,1) is injective and ϕ(0) = ϕ(1)
holds.

Theorem 4.49 (Jordan curve theorem) If K ⊆ R2 is a closed Jordan curve, then
R2 \K has exactly two connected components, where one is bounded and the other
unbounded, and K is the boundary of each component.

Another extension of the Jordan curve theorem is the Jordan-Schoenflies theo-
rem, which can for example be found in [15] or [8].

Theorem 4.50 (Jordan-Schoenflies theorem) Let K ⊆ R2 be a closed Jordan
curve with homeomorphism h : K → S1. Then h can be extended to a homeomor-
phism H : R2 → R2.

In addition, if A is the unbounded component of R2 \ K and B the bounded
component, then B ∪K is homeomorphic to {x ∈ R2 | ‖x‖2 ≤ 1}, and A ∪K is
homeomorphic to {x ∈ R2 | ‖x‖2 ≥ 1}.
Proposition 4.51 Let p ∈ N with p ≥ 3. There exists P := {a1, a2, a3, a4} ⊆ R3

such that a facet of V‖·‖p,P(a1) is not connected.

Proof. For p ≥ 3, the unit ball of ‖ · ‖p is not an ellipsoid. It was shown in
[14] and [5] that for each convex body K in R3 which is not an ellipsoid there
is a uniformly scaled, translated copy K̃ of K with K̃ 6= K such that ∂K̃ ∩ ∂K
is not contained in a plane. This result gives non-coplanar a1, a2, a3, a4 ∈ R3

such that |H=
‖·‖p(a1, a2) ∩ H=

‖·‖p(a1, a3) ∩ H=
‖·‖p(a1, a4)| ≥ 2. Together with the
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strict convexity and smoothness of ‖ · ‖p, Lemma 3.1.3.5 in [10] even yields that
|H=
‖·‖p(a1, a2) ∩ H=

‖·‖p(a1, a3) ∩ H=
‖·‖p(a1, a4)| ≥ 3. Furthermore, it is proven in [9]

that |H=
‖·‖p(a1, a2) ∩H=

‖·‖p(a1, a3) ∩H=
‖·‖p(a1, a4)| <∞.

First consider H=
‖·‖p(a1, a2), which is homeomorphic to R2 by Theorem 2 in [6].

This bisector is depicted schematically in Figure 4.4 as the background plane of
this figure. By Lemma 3.1.2.6 and Corollary 3.1.2.7 in [10], there exists a homeo-
morphism f : R→ H=

‖·‖p(a1, a2)∩H=
‖·‖p(a1, a3). Lemma 1 in [6] yields that every bi-

sector of two distinct points separates its two corresponding strict halfspaces from
each other. By Lemma 4.44, H=

‖·‖p(a1, a2)∩H=
‖·‖p(a1, a3) separates H=

‖·‖p(a1, a2) in

two connected domains, where one domain is contained in H<
‖·‖p(a1, a3) and the

other inH<
‖·‖p(a3, a1). Analogously, H=

‖·‖p(a1, a2)∩H=
‖·‖p(a1, a4) is homeomorphic to

R and separates H=
‖·‖p(a1, a2) in two connected domains contained in H<

‖·‖p(a1, a4)

or H<
‖·‖p(a4, a1), respectively. Both of these intersections with H=

‖·‖p(a1, a2) are also
schematically illustrated in Figure 4.4. From the paragraph above it is known
that the three discussed bisectors intersect in at least three, but a finite number
of points. Thus, there is k ∈ N, k ≥ 3 such that

f−1
(
H=
‖·‖p(a1, a2) ∩H=

‖·‖p(a1, a3) ∩H=
‖·‖p(a1, a4)

)
= {τ1, τ2, . . . , τk}

with τ1 < τ2 < . . . < τk. For i ∈ {1, . . . , k}, define xi := f(τi), inducing also an
ordering of the intersection points. The first three intersection points x1, x2, x3

are depicted in Figure 4.4. Note that due to these intersection points, there
must be two bounded domains A,B of H=

‖·‖p(a1, a2), where A corresponds to

the part of H=
‖·‖p(a1, a2) ∩ H=

‖·‖p(a1, a3) between x1 and x2, and B corresponds

to the part of H=
‖·‖p(a1, a2) ∩ H=

‖·‖p(a1, a3) between x2 and x3, as depicted in

Figure 4.4. In addition, C denotes the domain of H=
‖·‖p(a1, a2) corresponding to

the unbounded part of H=
‖·‖p(a1, a2)∩H=

‖·‖p(a1, a3) “before” x1, which “lies on the
same side” of this bisector intersection as B. More precisely, this means that either
B,C ⊆ H<

‖·‖p(a1, a3) or B,C ⊆ H<
‖·‖p(a3, a1), and either B,C ⊆ H<

‖·‖p(a1, a4)

or B,C ⊆ H<
‖·‖p(a4, a1). Without loss of generality, one can assume that

B,C ⊆ H<
‖·‖p(a1, a4), because otherwise – instead of B and C – one can consider

A and the domain of H=
‖·‖p(a1, a2) corresponding to the part of

H=
‖·‖p(a1, a2) ∩ H=

‖·‖p(a1, a3) “behind” x3, which “lies on the same side” of this
bisector intersection as A. Now, distinguish the following cases:

1. B,C ⊆ H<
‖·‖p(a1, a3):

In this case, B and C are both contained in the facet V‖·‖p,P(a1)∩H=
‖·‖p(a1, a2)

of the Voronoi cell of a1 ∈ P := {a1, a2, a3, a4}, which is thus not connected.

2. B,C ⊆ H<
‖·‖p(a3, a1):

One can proceed analogously as above, but starting with H=
‖·‖p(a1, a3) and

then considering H=
‖·‖p(a1, a3)∩H=

‖·‖p(a1, a2) and H=
‖·‖p(a1, a3)∩H=

‖·‖p(a1, a4).

79



4 General shape of bisectors, Voronoi cells and their facets

A B

C

x1

x2

x3

H=
‖·‖p(a1, a2)

H=
‖·‖p(a1, a3)

H=
‖·‖p(a1, a4)

Figure 4.4: Illustration for the proof of Proposition 4.51: B and C yield not con-
nected parts of the same facet.

This yields an analogous picture as in Figure 4.4, where the labels
“H=
‖·‖p(a1, a2)” and “H=

‖·‖p(a1, a3)” are exchanged. The domains correspond-

ing to B and C are denoted by B1,3 and C1,3, respectively. Since f ((τ2, τ3)) ⊆
H<
‖·‖p(a1, a4), it also holds that B1,3, C1,3 ⊆ H<

‖·‖p(a1, a4). Using these two
domains, one can distinguish again two cases:

a) B1,3, C1,3 ⊆ H<
‖·‖p(a1, a2):

In this case, B1,3 and C1,3 are both contained in the facet
V‖·‖p,P(a1) ∩ H=

‖·‖p(a1, a3) of the Voronoi cell of a1 ∈ P , which is thus
not connected.

b) B1,3, C1,3 ⊆ H<
‖·‖p(a2, a1):

In this situation, one starts the above process again, but
this time with H=

‖·‖p(a2, a3). Then, one considers the intersections

H=
‖·‖p(a2, a3)∩H=

‖·‖p(a1, a2) and H=
‖·‖p(a2, a3)∩H=

‖·‖p(a2, a4), to get again

an analogous picture as in Figure 4.4, where the label “H=
‖·‖p(a1, a2)” is

replaced by “H=
‖·‖p(a2, a3)” and the label “H=

‖·‖p(a1, a4)” by

“H=
‖·‖p(a2, a4)”. The domains corresponding to B and C are denoted

by B2,3 and C2,3, respectively. Since f ((τ2, τ3)) ⊆ H<
‖·‖p(a2, a4), it also

holds that B2,3, C2,3 ⊆ H<
‖·‖p(a2, a4). With these two domains, two

further cases need to be distinguished:

i. B2,3, C2,3 ⊆ H<
‖·‖p(a2, a1):

In this case, B2,3 and C2,3 are both contained in the facet
V‖·‖p,P(a2) ∩ H=

‖·‖p(a2, a3) of the Voronoi cell of a2 ∈ P , which is
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4.4 Facets

thus not connected. Renaming of the points in P yields Proposi-
tion 4.51.

ii. B2,3, C2,3 ⊆ H<
‖·‖p(a1, a2):

The rest of this proof shows that this case cannot occur.

From B ⊆ H=
‖·‖p(a1, a2) it follows that B ⊆ H<

‖·‖p(a3, a2). With the

same argument, B1,3 ⊆ H=
‖·‖p(a1, a3) implies B1,3 ⊆ H<

‖·‖p(a2, a3).

This means thatB andB1,3 lie on two different sides ofH=
‖·‖p(a2, a3).

Moreover, H=
‖·‖p(a1, a2), H=

‖·‖p(a1, a3) and H=
‖·‖p(a2, a3) intersect in

H=
‖·‖p(a1, a2)∩H=

‖·‖p(a1, a3) and separate R3 into six domains. These
intersections and domains are illustrated in Figure 4.5 at the in-
tersection point f

(
τ2+τ3

2

)
∈ H=

‖·‖p(a1, a2) ∩ H=
‖·‖p(a1, a3). The six

domains are denoted by Gi,j,l := H<
‖·‖p(ai, aj) ∩ H

<
‖·‖p(aj, al) with

i, j, l ∈ {1, 2, 3} pairwise distinct. The bold line parts indicate
on which side of the intersection H=

‖·‖p(a1, a2) ∩ H=
‖·‖p(a1, a3) the

domains B, B1,3 and B2,3 lie, respectively.

f
(
τ2+τ3

2

)

B

B1,3B2,3

H=
‖·‖p(a1, a2)

H=
‖·‖p(a2, a3)

H=
‖·‖p(a1, a3)

G1,2,3

G2,1,3

G2,3,1

G3,2,1

G3,1,2

G1,3,2

Figure 4.5: Illustration for the proof of Proposition 4.51: Situation which cannot
occur.

Denote by P1,2 ⊆ H=
‖·‖p(a1, a2)∩H=

‖·‖p(a1, a4) the part of this bisec-
tor intersection between x2 and x3, both points inclusive.
Analogously, P1,3 ⊆ H=

‖·‖p(a1, a3) ∩ H=
‖·‖p(a1, a4) and P2,3 ⊆

H=
‖·‖p(a2, a3) ∩ H=

‖·‖p(a2, a4) denote the parts between x2 and x3.

Hence, for all i, j ∈ {1, 2, 3} with i < j there exists a homeomor-
phism ψi,j : [0, 1]→ Pi,j with ψi,j(0) = x2 and ψi,j(1) = x3.
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4 General shape of bisectors, Voronoi cells and their facets

P1,2∪P1,3 ⊆ H=
‖·‖p(a1, a4), so let ϕ1 : R2 → H=

‖·‖p(a1, a4) be a home-
omorphism. Since P1,2 and P1,3 are paths from x2 to x3 without
inner intersections, K1 := ϕ−1

1 (P1,2) ∪ ϕ−1
1 (P1,3) is a closed Jordan

curve in R2. Thus it follows from the Jordan curve theorem that
R2 \K1 has exactly two connected components, where exactly one
of them is bounded and K1 is the boundary of both components.
Let the bounded component be denoted by D1. When identifying
the one-dimensional sphere S1 with the unit circle in the complex
plane,

h1 : K1 → S1, x 7→


eiπψ

−1
1,2(ϕ1(x)) , if ϕ1(x) ∈ ψ1,2 ((0, 1)) ,

eiπ(2−ψ−1
1,3(ϕ1(x))) , if ϕ1(x) ∈ ψ1,3 ((0, 1)) ,

1 , if ϕ1(x) = x2,
−1 , if ϕ1(x) = x3

gives a homeomorphism, which can be extended to a
homeomorphism H1 : R2 → R2 such that H1(D1) = B‖·‖2,1(0) and
H1(D1) = B‖·‖2,1(0) by the Jordan-Schoenflies theorem. Further-
more, B‖·‖2,1(0) ⊆ R2 is homeomorphic to the two-dimensional half
sphere S2

1/2 := {y = (y1, y2, y3)T ∈ R3 | ‖y‖2 = 1, y3 ≥ 0}, and thus
also homeomorphic to the two-dimensional quarter sphere
S2

1/4 := {y = (y1, y2, y3)T ∈ R3 | ‖y‖2 = 1, y3 ≥ 0, y1 ≥ 0}. Note
that these homeomorphisms can be chosen such that
{eiπx | x ∈ [0, 1]} is identified with {y = (y1, y2, y3)T ∈ R3 |
‖y‖2 = 1, y3 = 0, y1 ≤ 0} (for the half sphere) or with
{y = (y1, y2, y3)T ∈ R3 | ‖y‖2 = 1, y1 = 0, y3 ≥ 0} (for the quarter
sphere), respectively, and such that {eiπx | x ∈ [1, 2]} is identified
with {y = (y1, y2, y3)T ∈ R3 | ‖y‖2 = 1, y3 = 0, y1 ≥ 0}. Therefore,
ϕ1(D1) ⊆ H=

‖·‖p(a1, a4) is homeomorphic to S2
1/4 such that P1,2 cor-

responds to {y = (y1, y2, y3)T ∈ R3 | ‖y‖2 = 1, y1 = 0, y3 ≥ 0} and
P1,3 to {y = (y1, y2, y3)T ∈ R3 | ‖y‖2 = 1, y3 = 0, y1 ≥ 0}. Since
P1,2 \ {x2, x3} ⊆ H=

‖·‖p(a1, a2) ∩ H<
‖·‖p(a3, a1) and P1,3 \ {x2, x3} ⊆

H=
‖·‖p(a1, a3) ∩ H<

‖·‖p(a2, a1), it follows that there is exactly one

G ∈ {G(i), G(o)} with

G(i) := G2,3,1 ∪
(
H=
‖·‖p(a2, a3) ∩H<

‖·‖p(a2, a1)
)
∪G3,2,1,

G(o) := G2,1,3 ∪
(
H=
‖·‖p(a1, a2) ∩H<

‖·‖p(a1, a3)
)

∪ G1,2,3 ∪
(
H=
‖·‖p(a2, a3) ∩H<

‖·‖p(a1, a2)
)

∪ G1,3,2 ∪
(
H=
‖·‖p(a1, a3) ∩H<

‖·‖p(a1, a2)
)
∪G3,1,2,

such that ϕ1(D1) ⊆ G; or more precisely, for every path P ⊆ D1
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from ϕ−1
1 (x2) to ϕ−1

1 (x3) without inner intersections with
ϕ−1

1 (P1,2) and ϕ−1
1 (P1,3) it holds that ϕ1(P ) ⊆ G ∪ {x2, x3} is

a path from x2 to x3. If it would hold that G = G(o), then(
H=
‖·‖p(a1, a2) ∩H<

‖·‖p(a1, a3)
)
∪ {x2, x3} would contain a path in

ϕ1(D1) ⊆ H=
‖·‖p(a1, a4) from x2 to x3, which is not possible due to

B ⊆ H<
‖·‖p(a3, a1). Hence, G = G(i).

For P1,2 ∪ P2,3 ⊆ H=
‖·‖p(a2, a4) and P1,3 ∪ P2,3 ⊆ H=

‖·‖p(a3, a4) with

homeomorphisms ϕ2 : R2 → H=
‖·‖p(a2, a4), ϕ3 : R2 → H=

‖·‖p(a3, a4)

and closed Jordan curves K2 := ϕ−1
2 (P1,2) ∪ ϕ−1

2 (P2,3),
K3 := ϕ−1

3 (P1,3) ∪ ϕ−1
3 (P2,3), one proceeds analogously and finds

bounded domains D2 ⊆ R2 \ K2, D3 ⊆ R2 \ K3 with boundaries
K2, K3, respectively, such that

ϕ2(D2) ⊆ G3,1,2 ∪
(
H=
‖·‖p(a1, a3) ∩H<

‖·‖p(a1, a2)
)
∪G1,3,2,

ϕ3(D3) ⊆ G1,2,3 ∪
(
H=
‖·‖p(a1, a2) ∩H<

‖·‖p(a1, a3)
)
∪G2,1,3.

Let S2
1/4,90◦ and S2

1/4,180◦ denote two copies of S2
1/4 that are rotated

around the y2-axes by 90◦ or 180◦, respectively, such that S2 =
S2

1/4,90◦ ∪ S2
1/4,180◦ ∪ S2

1/2. Defining homeomorphisms h2 : K2 → S1

and h3 : K3 → S1 analogously as h1, one gets that ϕ1(D1) is home-
omorphic to S2

1/4,90◦ , ϕ2(D2) is homeomorphic to S2
1/4,180◦ , ϕ3(D3)

is homeomorphic to S2
1/2, and these three homeomorphisms can be

“glued together” to a homeomorphism

C := ϕ1(D1) ∪ ϕ2(D2) ∪ ϕ3(D3)→ S2.

The Jordan-Brouwer separation theorem implies that R3 \ C has
exactly two connected components, where exactly one of the
components is bounded. Let D(i) be the bounded component
and D(o) be the unbounded component. Furthermore, it is
x2, x3 ∈ C ⊆ H=

‖·‖p(a1, a4) ∪ H=
‖·‖p(a2, a4) ∪ H=

‖·‖p(a3, a4) and

f ((τ2, τ3)) ⊆ D(i) ∩ H<
‖·‖p(a1, a4) ∩ H<

‖·‖p(a2, a4) ∩ H<
‖·‖p(a3, a4). In

particular, it is either a4 ∈ D(o) or a4 ∈ D(i). In both cases, it
follows from the boundedness of D(i) that the ray from a4 through
f
(
τ2+τ3

2

)
intersects C behind f

(
τ2+τ3

2

)
at µ ∈ C. Therefore, there

exists τ ∈ (0, 1) with f
(
τ2+τ3

2

)
= τa4 + (1 − τ)µ, as well as

i ∈ {1, 2, 3} with ‖µ− a4‖p = ‖µ− ai‖p. Hence, using Lemma 2.6,
one gets the contradiction∥∥∥∥f (τ2 + τ3

2

)
− ai

∥∥∥∥
p
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<

∥∥∥∥f (τ2 + τ3

2

)
− a4

∥∥∥∥
p

= (1− τ)‖µ− a4‖p = (1− τ)‖µ− ai‖p

=

∥∥∥∥(τa4 + (1− τ)ai)− f
(
τ2 + τ3

2

)∥∥∥∥
p

=

∥∥∥∥τ (a4 − f
(
τ2 + τ3

2

))
+ (1− τ)

(
ai − f

(
τ2 + τ3

2

))∥∥∥∥
p

<max

{∥∥∥∥a4 − f
(
τ2 + τ3

2

)∥∥∥∥
p

,

∥∥∥∥ai − f (τ2 + τ3

2

)∥∥∥∥
p

}

=

∥∥∥∥a4 − f
(
τ2 + τ3

2

)∥∥∥∥
p

.
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5 Conclusion

The main question of this thesis was answered in Chapters 2 and 3: By Proposi-

tion 3.7, there are at most
(

1 + 4 µ(Λ,‖·‖)
λ1(Λ,‖·‖)

)n
generalized Voronoi-relevant vectors

in every lattice Λ with respect to an arbitrary norm ‖ · ‖. This bound depends
on the lattice dimension n and two additional lattice parameters. Thus, it is not
sufficient for the algorithm by Micciancio and Voulgaris, which needs an upper
bound of the form 2O(n). Table 5.1 summarizes when such a bound exists (cf. [1],
Theorem 2.4, Corollary 3.6, Theorem 2.28). The constructions in Corollary 3.6

norm n = 2 n ≥ 3

Euclidean 2(2n − 1)
strictly convex 2(2n − 1) no bound solely depending on dimension
arbitrary ? no bound solely depending on dimension

Table 5.1: Upper bounds for the number of Voronoi-relevant vectors (first two
rows) and generalized Voronoi-relevant vectors (last row, marked by ?)
with respect to different norms and lattice dimensions n.

and Theorem 2.28 use the 3-norm and the 1-norm, but they should be extendable
to p-norms for p ∈ (1,∞), p 6= 2 and the∞-norm, respectively. Hence, one cannot
easily generalize the algorithm by Micciancio and Voulgaris with the same time
and space complexity of 2O(n) to the 3-norm or the 1-norm and probably neither
to any p-norm for p ∈ [1,∞], p 6= 2.

The last chapter gives several directions for future work: On the one hand, fur-
ther analysis of the Conjectures 4.17 and 4.31 is required. Alternatively, trying to
discover proofs for the corresponding Theorems 4.18 and 4.32 without depending
on these two conjectures seems worthwhile. Note that it is also sufficient for Propo-
sition 4.45 and Corollary 4.46 to show Theorem 4.18 instead of Conjecture 4.17.
On the other hand, the study of bisectors and their intersections in general di-
mensions seems to be of fundamental importance but not well understood. Thus,
one possible research direction is the further investigation of these objects. The
results about bisectors described in this work have an analytic point of view, but
it might also be interesting to study bisectors in an algebraic manner. For this,
one could start with the examination of the algebraic varieties given by bisectors
of p-norms.
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[14] A. V. Shǎıdenko. Some characteristic properties of the ellipsoid. In Sibirsk
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