
ar
X

iv
:1

30
6.

16
92

v1
 [

cs
.D

C
]

7
Ju

n
20

13

A Deterministic Worst-Case Message Complexity Optimal Solution
for Resource Discovery∗

Sebastian Kniesburges
University of Paderborn

seppel@upb.de

Andreas Koutsopoulos
University of Paderborn
koutsopo@mail.upb.de

Christian Scheideler
University of Paderborn
scheideler@mail.upb.de

Abstract

We consider the problem of resource discovery in distributed systems. In particular we give an
algorithm, such that each node in a network discovers the address of any other node in the network.
We model the knowledge of the nodes as a virtual overlay network given by a directed graph such
that complete knowledge of all nodes corresponds to a complete graph in the overlay network. Although
there are several solutions for resource discovery, our solution is the first that achieves worst-case optimal
work for each node, i.e. the number of addresses (O(n)) or bits (O(n logn)) a node receives or sends
coincides with the lower bound, while ensuring only a linearruntime (O(n)) on the number of rounds.

1 Introduction

To perform cooperative tasks in distributed systems the network nodes have to know which other nodes are
participating. Examples for such cooperative tasks range from fundamental problems such as group-based
cryptography [19], verifiable secret sharing [7], distributed consensus [22], and broadcasting [23] to peer-
to-peer(P2P) applications like distributed storage, multiplayer online gaming, and various social network
applications such as chat groups. To perform these tasks efficiently knowledge of the complete network
for each node is assumed. Considering large-scale, real-world networks this complete knowledge has to
be maintained despite high dynamics, such as joining or leaving nodes, that lead to changing topologies.
Therefore the nodes in a network need to learn about all othernodes currently in the network. This problem
called resource discovery, i.e. the discovery of the addresses of all nodes in the network by every single
node, is a well studied problem and was firstly introduced by Harchol-Balter, Leighton and Lewin in [30].

1.1 Resource Discovery

As mentioned in [30] the resource discovery problem can be solved by a simple swamping algorithm also
known aspointer doubling: in each round, every node informs all of its neighbors aboutits entire neigh-
borhood. While this just needsO(log n) communication rounds to inform every node about any other node
in every weakly connected network of sizen, the work spent by the nodes can be very high and far from
optimal. We measure the work of a node as the number of addresses each node receives or sends while exe-
cuting the algorithm. Moreover, in the stable state (i.e., each node has complete knowledge) the work spent
by every node in a single round isΘ(n2), which is certainly not useful for large-scale systems. Alternatively,
each node may just introduce a single neighbor to all of its neighbors in a round-robin fashion. However,
it is easy to construct initial situations in which this strategy is not better than pointer doubling in order to

∗This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Centre On-
The-Fly Computing (SFB 901).

1

http://arxiv.org/abs/1306.1692v1

reach complete knowledge. The problem in both approaches isthe high amount of redundancy: addresses
of nodes may be sent to other nodes that are already aware of that address. In [30] a randomized algorithm
called theName-Dropperis presented that solves the resource discovery problem within O(log2 n) rounds
w.h.p. and work ofO(n2 log2 n). In [31] a deterministic solution for resource discovery indistributed net-
works was proposed by Kutten et al. Their solution uses the same model as in [30] and improves the number
of communication rounds to which takesO(log n) rounds andO(n2 log n) amount of work. Konwar et al.
presented solutions for the resource discovery problem considering different models, i.e. multicast or uni-
cast abilities and messages of different sizes, where the upper bound for the work isO(n2 log2 n). In their
algorithms they also considered when to terminate, i.e. howcan a node detect that its knowledge is already
complete. Recently resource discovery has been studied by Haeupler et. al. in [28], in which they present
two simple randomized algorithms based on gossiping that needΩ(n log n) time andΩ(n2 log n) work per
node on expectation. They only allow nodes to send a single message containing at most one address of size
log n in each round. Thus their model is more restrictive comparedto the model used in [30, 31] and leads
to an increased runtime in the number of rounds. We present a deterministic solution that follows the idea
of [28] and limits the number of messages each node has to sendand the number of addresses transmitted
in one message. Our goal is to reduce the number of messages sent and received by each node such that we
avoid nodes to be overloaded. In detail we show that resourcediscovery can be solved inO(n) rounds and it
suffices that each node sends and receivesO(n) messages in total, each message containingO(1) addresses.
Our solution is the first solution for resource discovery that not only considers the total number of messages
but also the number of messages a single node has to send or receive. Note thatΩ(n) is a trivial lower bound
for the work of each node to gain complete knowledge: starting with a list, in which each node is only con-
nected to two other nodes, each node has to receive at leastn−3 IDs. So our algorithm is worst case optimal
in terms of message complexity. Furthermore our algorithm can handle the deletion of edges and joining
or leaving nodes, as long as the graph remains weakly connected. Modeling the current knowledge of all
nodes as a directed graph, i.e. there is an edge(u, v) iff u knowsv’s ID, one can think of resource discovery
as building and maintaining a complete graph, a clique, as a virtual overlay network. If the overlay can be
recovered out of any (weakly connected) initial graph, the corresponding algorithm can be considered to be
aself-stabilizingalgorithm. More precisely, an algorithm is considered as self-stabilizing if it reaches a legal
state when started in an arbitrary initial state (convergence) and stays in a legal state when started in a legal
state (closure).

1.2 Topological Self-Stabilization

There is a large body of literature on how to efficiently maintain overlay networks, e.g., [1, 2, 4, 25, 13, 17,
18, 20, 24, 29, 26]. While many results are already known on how to keep an overlay network in a legal
state, far less is known about self-stabilizing overlay networks. The idea of self-stabilization in distributed
computing first appeared in a classical paper by E.W. Dijkstra in 1974 [9] in which he looked at the problem
of self-stabilization in a token ring. Interestingly, though self-stabilizing distributed computing has received
a lot of attention for many years, the problem of designing self-stabilizing networks has attracted much less
attention. In order to recover certain network topologies from any weakly connected network, researchers
have started with simple line and ring networks, [8, 27]. TheIterative Successor Pointer Rewiring Protocol
[8] and the Ring Network [27], for example, organize the nodes in a sorted ring. In [10] Dolev and Kat
describe a strategy to build a hypertree with a polylogarithmic degree and search time. In [21], Onus et al.
present a local-control strategy called linearization forconverting an arbitrary connected graph into a sorted
list. Various self-stabilzing algorithms for different network overlay structures have been considered over
the years [16, 15, 11, 12, 10]. Jacob et al. [16] generalize insights gained from graph linearization to two
dimensions and present a self-stabilizing construction for Delaunay graphs. In another paper, Jacob et al.
[15] present a self-stabilizing variant of the skip graph and show that it can recover its network topology

2

from any weakly connected state inO(log2 n) communication rounds with high probability. In [11] and
[12] Dolev and Tzachar show self-stabilizing algorithms for forming subgraphs like clusters or expanders
in just polylogarithmic number of rounds. In [11] the authors use a self-stabilizing algorithm in which they
collect snapshots of the network along a spanning tree, which could also be used to form a complete graph.
However, the authors give no bounds on the message complexity of their algorithm. In [3] the authors
present a general framework for the self-stabilizing construction of overlay networks, which may involves
the construction of the clique. The algorithm requires the knowledge of the 2-hop neighborhood for each
node and may involve the construction of a clique. In that way, failures at the structure of the overlay
network can easily be detected and repaired. However, the work in order to do that when using this method
is too high as they essentially use pointer doubling, i.e. ineach round a node sends the information about its
neighborhood to all its neighbors.

One could use the distributed algorithms for self-stabilizing lists and rings to form a complete graph, but
all algorithms proposed so far for these topologies involvea worst-case work ofΩ(n2) per node in order to
form the list or ring. Hence, these algorithms cannot be usedto obtain an efficient algorithm for the clique.

Alternatively, a self-stabilizing spanning tree algorithm could be used. A large number of self-stabilizing
distributed algorithms has already been proposed for the formation of spanning trees in static network
topologies, [6], [5], [14], [14]. For example in [6] the authors present a self-stabilizing spanning tree with
minimal degree for the given network and in [5] a fast algorithm for a self-stabilizing spanning tree is
presented, which reaches optimal convergence timeO(n2) in an asynchronous setting. However, these
spanning trees are either expensive to maintain or the amount of work in these algorithms is not being
considered.

However, these spanning trees are potentially expensive tomaintain as a high degree cannot be avoided
in general (consider, for example, the extreme case of a stargraph in which a single node is connected to all
other nodes). For the case that the network topology is flexible and potentially allows every node to connect
to any other node, self-stabilizing algorithms are known that construct a bounded degree spanning tree (e.g.,
[14]). The algorithm in [14] also has a very low overhead in the stable state. But no formal result is given
on the work to establish the spanning tree. Also, an outside rendezvous service, called an oracle, is used to
introduce nodes to other nodes, which is not available in ourmodel.

In summary, no self-stabilizing algorithm has been presented for the formation of a bounded degree
spanning tree if the network topology is under the control ofthe nodes and there are no outside services for
the introduction of nodes.

1.3 Our model

We use the network model used in [30, 31, 28]. In the followingwe give a detailed description of the
model. We model the network as a directed graphG = (V,E) where|V | = n. The nodes have unique
identifiers with a total order, and these identifiers are assumed to be immutable (for example, we may use
the IP addresses of the nodes). We are using a standard synchronous message-passing model: time proceeds
in synchronous rounds, and all messages generated in roundi are delivered at the end of roundi. In order
to deliver a message, a node may use any address stored in its local variables. In each round, each node can
only inspect its local variables (i.e. it can only communicate with nodes that it knows). Beyond that, a node
does not have access to any information or services which means, for example, that No a priori information
about the size or diameter of the network can be assumed by a node and there cannot be made use of some
outside rendezvous service to get introduced to other nodes. Hence, thestateof a node is fully determined
by its local variables. Like in [30, 31, 28] we assume that a node can verify its neighborhood without extra
work, such that there are no false identifiers in the network.Only local topology changes are allowed, i.e.
a node may decide to cut a link to a neighbor (by deleting its address) or introduce a link to one of its
neighbors (by sending it an address). We model the decisionsto cut or establish links and to send messages

3

as actions. An action has the form< guard >→< commands >. A guard is a Boolean expression over
the state of the node. The commands are executed if the guard is true. Any action whose guard is true is said
to beenabled. We assume that a node can execute all of its enabled actions in the current round.

The stateof the system is the combination of the states of all nodes in the system. Due to our syn-
chronous message-passing model, in which no message is still in transit at the beginning of a round, the
state of the system and contains all the information available in the system. Acomputationis a sequence
of system states such that for each statesi at the beginning of roundi, the next statesi+1 is obtained after
executing all actions that are enabled at the beginning of round i and receiving all messages that they gen-
erated. We call a distributed algorithmself-stabilizingif from any initial state in which the overlay network
is weakly connected, it eventually reaches a legal state andstays in a legal state afterwards. In our case, the
legal state is the clique topology. Since the clique topology is uniquely defined, no more topological changes
will happen afterwards.Our goal is to develop algorithms that need as few communication rounds and as lit-
tle work as possible to arrive at a clique. We distinguish between two types of work. Thestabilization work
of a nodev is defined as the total number of addresses sent and received by v during the stabilization pro-
cess. Themaintenance workof a nodev is defined as the maximum number of addresses sent and received
by v during a single round of the stable state, i.e. for the case that a clique has been formed.

1.4 Our contributions

In this paper we present a distributed algorithm for resource discovery. We will describe the algorithm as a
self-stabilizing algorithm that forms and maintains a clique as a virtual overlay network. In particular, the
following theorem shows that our algorithm is worst-case optimal in terms of message complexity.

Theorem 1.1 For any initial state in which the network is weakly connected, our algorithm requires at most
O(n) rounds andO(n) work per node until the network reaches a legal state in whichit forms a clique.

We further show that the maintenance cost per round isO(1) for each node once a legal state has been
reached. We also consider topology updates caused by a single joining or leaving node and show that the
network recovers inO(n) rounds with at mostO(n) messages over all nodes besides the maintenance work.
Note that we use a synchronous message passing model to give bounds on the message complexity of our
algorithm, but our correctness analysis can also be appliedto an asynchronous setting.

1.5 Structure of the paper

The paper is structured as follows: In Section 2 we give a description of our algorithm. In Section 3 we
prove that the algorithm is self-stabilizing. We consider the stabilization work and maintenance work in
Section 4. In Section 5 we analyze the steps needed for the network to recover after a node joins or leaves
the network. Finally, in Section 6 we end with a conclusion.

2 A distributed self-stabilizing algorithm for the clique

In this section we give a general description of our algorithm. First we introduce the variables being used,
and then the actions the nodes take, according to our rules. Each nodex has a bufferB(x) for incoming
messages from the previous round. We assume that the buffer capacity is unbounded and no messages
are lost. We do not require any particular order in which the messages are processed inB(x). Moreover,
each nodex stores the following internal variables: its predecessorp(x) , its successors(x), its current
neighborhoodN(x) in a circular list, the nodes received by messages from the predecessor in another
circular listL(x), the set of nodesS(x) that are received through scanning messages (defined below), its

4

own identifierid(x) and its statusstatus(x), which is by default set to ’inactive’ and can be changed to
’active’. The current networkG = (V,E) formed by the nodes is defined by their current neighborhoods
N(v). We only require thatN(v) does not contain false ids, since in that case the stabilization time could
be delayed.

A message in general consists of the following parts: asender id, which is the id of the node sending
the message, an optionaladditional id, if the sender wants to inform the receiving node about another node,
and thetypeof the message.

Each node has two different kinds of actions that we callreceiveactions andperiodicactions. A receive
action is enabled if there is an incoming message of the corresponding type in the bufferB(x). There are
the following types of messages:pred-request, pred-accept, new-predecessor, deactivate, activate, forward-
from-successor, forward-from-predecessor, forward-head, scan, scanack, delete-successor. A periodic ac-
tion is enabled in every state, as its guard is simplytrue. Therefore there can be no state in the computation
in which no action is enabled. Each enabled action is executed once every step.

2.1 Definitions

In order to describe the algorithm formally and prove its correctness later on, we need the definitions given
below. In this paper we assume that a predecessor of a node is anode with the next larger identifier.
Therefore for allp(x) links, p(x) > x. Then all nodes in a connected component considering onlyp(x)
links form a rooted tree, where for each tree the root has the largest identifier. Note here that theheapH
(defined below) is not a data structure or variable stored by any node. It is a notion used just for the purpose
of the analysis.

Definition 2.1 We call such a rooted tree formed byp(x) links aheapH. We further call the root of the tree
theheadh of the heapH. We further denote withheap(x) the heapH such thatx ∈ H.

Definition 2.2 A sorted listis a heapH with headh, such that∀v ∈ H − {h} : p(v) > v and ∀v ∈
H − {h} : s(p(v)) = v. We call a heaplinearized w.r.t. a nodeu ∈ H, if ∀v ∈ H − {h} : p(v) > v and
∀v ∈ H − {h} ∧ v ≥ u : s(p(v)) = v. We further call the time until a heap is linearized w.r.t. a nodeu the
linearization time ofu. We say that two heapsHi andHj are mergedif all nodes inHi andHj form one
heapH.

2.2 Description of our algorithm

We only present the intuition behind our algorithm. The fullpseudocode is in Appendix 2.3. Our primary
goal is to collect the addresses of all nodes in the system at the node of maximum id, which we also call
the root. In order to efficiently distribute the addresses from this root to all other nodes in the system (so
that all ids are known to every node and a clique is formed), weaim at organizing them into a spanning tree
of constant degree, which in our case is a sorted list, ordered in descending ids. The root would then be
the head of the list. In order to reach a sorted list, we first organize the nodes in rooted trees satisfying the
max-heap property, i.e. a parent (also calledpredecessorin the following) of a node has a higher id than
the node itself. The rooted trees will then be merged and linearized over time so that they ultimately form a
single sorted list.

Since we want to minimize our message complexity, we had to look for a technique other than the
linearization technique presented in [21]. So in our protocol, in order to minimize the amount of messages
sent by the nodes, we allow a node in each round to share information only with its immediatesuccessor
s(x) (which is one of the nodes that considers it as its predecessor) andpredecessorp(x). More precisely,
in each round a node forwards one of its neighbors (i.e. the nodes it knows about) in a round-robin manner
to its predecessor. The intuition behind this is that if every node does that sufficiently often, eventually the

5

root will learn about all ids in the system and will forward this information in a round-robin manner to its
successor, who will then forward it to its successor, and so on.

In order for this process to work, each node must repeatedly compute and update its successor and
predecessor. This is done as follows: Each node chooses the smallest node in its neighborhood that is larger
than itself as its predecessor and requests from it to acceptit as successor (pred− request message). Each
node also looks at the nodes which requested to be its successor, assigns the largest of them as its successor
(pred − accept) and forwards the rest to it (new − predecessor). In that way each node has at most one
predecessor and one successor at the end of one round.

We also need to ensure that there exists a path of successors from the root to all other nodes so that the
information can be forwarded to all. This is initially not the case since there exist many nodes that are the
largest in their known neighborhood, thinking they are the root. We call these nodesheads. All the nodes
having the same head as an ancestor form aheap. The challenge is tomerge all heaps into one, since
then we have only one head, the root. In order to enable the merging of the heaps, the heads continuously
scan their neighborhood. A node that receives ascan message responds by sending the largest node in its
neighborhood through ascanack message to the node that sent thatscan message (could be possibly more
than one). Moreover, in each round, the largest node is also forwarded to its predecessor (forward−head),
which in turn forwards it again to its predecessor, and so on.

We further discuss the process of forwarding an id to a node’spredecessor/successor. Note that when
a node forwards an id through aforward− from− successor resp.forward− from− predecessor,
the id sent is the one at the head of the listN(x) resp.L(x). Then the head shifts to the next element of the
(circular) list. When a node receives an id through aforward−from−successor resp.forward−from−
predecessor message, it stores it at the head of its list. That way we ensure that once a node is forwarded
it will not be delayed by other nodes being forwarded on its way to the root or the head of the heap. When
a node is inserted into a list, theinsert operation is used. Theinsert(< list >,< node >,< place >)
operation works as follows. It checks whether< node > is already in< list > and if not, it is inserted at
< place >, where< place > can be either head or tail (by head here the head of the list is meant, not the
head of a heap as defined above).

To avoid accumulation of unsent ids in the lists (which wouldhave an effect on the time and message
complexity) maintained by the nodes, the following rules are used. Whenx has no predecessor that it can
send aforward-from-successormessage to, although it has neighbors greater than itself (so x is not a head),
it changes its status toinactive, and then informs its successor through adeactivatemessage in order for
s(x) not to send itsforward-from-successorto x, until x has a predecessor (in that case anactivemessage
is sent tos(x)) to which it can forward the message.s(x) then changes its status toinactive and forwards
thedeactivatemessage to its successors(s(x)), and so on. In that way no messages that are forwarded tox
accumulate atN(x) before being forwarded again and we ensure that once a node isforwarded, it will not
be delayed by other nodes being forwarded. Whenx obtains a predecessor, it will change its status toactive
and inform through a message of typeactivates(x) about that and the information flow can start again.

In order to repair faulty configurations, where a node is thought to be a successor of more than one
node, we introduce the following rule. If a node receives messages sent by a node that is not its predecessor
although the sending node should be the predecessor, then a node will send adelete-successormessage,
correcting the wrongs(x) link.

2.3 Pseudo code

In this last section we will present the pseudo code for the described and analyzed algorithm on the next
page. The pseudo code starts with the periodic actions and then shows the receive actions, in which every
incoming message is handled according to the specific message type.

6

Algorithm 1 ACTIONS OF NODE X AT EACH ROUND
forwardtopred: true →
if status(x) 6= inactive ∧ p(x) 6= null then ⊲ x is not a head

send message(id(x), N(x).head, forward-from-successor)to p(x) ⊲ forward node to predecessor
N(x).head:=(N(x).head).next ⊲ shift head to next element in circular list

checkifhead: true→
if p(x) = null ∨ p(x) < x then ⊲ x is a head orp(x) is invalid

p(x) := min{v ∈ N(x) : v > x}
if p(x) 6= null then

send message(id(x),pred-request) to p(x)
status(x):=inactive

else ⊲ x is a head, scan a node
send message(id(x),scan) to N(x).head
insert(L(x),N(x).head,tail) ⊲ a copy ofN(x).head is inserted at the end ofL(x)
N(x).head:=(N(x).head).next

else
send message(id(x),pred-request) to p(x)

forwardtosuc: true→
if s(x) 6= null then

if s(x) < x then ⊲ test ifs(x) is valid
send message(id(x), L(x).head, forward-from-predecessor) to s(x) ⊲ forward node to successor
L(x).head:=(L(x).head).next

else
s(x)=null

forwardmax: true →
if S(x) 6= null then

maxN := max{u : u ∈ N(x)}
N(x) := N(x) ∪ S(x)
maxS := max{u : u ∈ S(x)}
if maxS > maxN ∧ p(x) 6= null then ⊲ forward largest node

send message(id(x),maxS , forward-head) to p(x)
S := S \ {maxS}
maxN = maxS

for all u ∈ S(x) do ⊲ send the maximum to the nodes ofS(x)
send message(id(x),maxN,scanack) to u
delete(S(x),u)

process: messagem ∈ B(x) →

if m.type = forward − head then ⊲ insert the head forwarded froms(x) toN(x), S(x)
if m.id = s(x) then

if m.id 6∈ N(x) then
insert(S(x),m.id)

insert(N(x),m.id,tail)

if m.type = scan then ⊲ x has been scanned by a headm.id

insert(S(x),m.id)

if m.type = scanack then
if m.id 6∈ N(x) then

insert(S(x),m.id)

if m.type = delete − successor then
if m.id = s(x) then

s(x) = null

3 Correctness

In this section we show the correctness of our approach for the self-stabilizing clique.
At first we show some basic lemmas. We then show that in linear time all nodes belong to the same

heap. Then we show that the head of this heap (node with the maximal id) is connected with every node
and vice versa after an additional time ofO(n). From this state it takesO(n) more time until every node is
connected to every other node and the clique is formed. We give a formal definition of the legal state.

Definition 3.1 LetG be a network with node setV andmax = max {v ∈ V } be the node with the maxi-
mum id. Then G is in alegal stateiff ∀v ∈ V : N(v) = V − {v} and∀v ∈ V − {max} : p(v) > v and
∀v ∈ V − {max} : s(p(v)) = v.

Note that the legal state contains the clique and also a sorted list over the nodes. In this section we will
prove the following theorem.

Theorem 3.2 AfterO(n) rounds the network stabilizes to a legal state.

7

if m.type = pred − request then
if m.id < id(x) then

if s(x) 6= null then ⊲ renew successor if necessary, and rearrange old successor
grandson:=min{m.id, s(x)}
s(x):=max{m.id, s(x)}
send message(id(x),pred-accept) to s(x)
send message(id(x),s(x),new-predecessor) to grandson

else
s(x):=m.id

send message(id(x),pred-accept) to s(x)

if m.type = new − predecessor then ⊲ renew predecessor
if m.id = p(x) then

if m.id2 > x ∧ m.id2 < p(x) then
p(x)=m.id2
send message(id(x),pred-request) to p(x)
status(x)=inactive
if s(x) 6= null then

send message(id(x),deactivate) to s(x)

if m.type = pred − accept then ⊲ the predecessor has acceptedx as its successor
if m.id = p(x) then

status(x)=active
if s(x) 6= null then

send message(id(x),activate) to s(x)
else

send message(id(x),delete-successor) to m.id

if m.type = deactivate then
if m.id = p(x) then

status(x):=inactive
if s(x) 6= null then

send message(id(x),deactivate) to s(x) ⊲ forward the deactivation message to successor
else

send message(id(x),delete-successor) to m.id

if m.type = activate then
if m.id = p(x) then

status(x):=active
if s(x) 6= null then

send message(id(x),activate) to s(x) ⊲ forward the activation message to successor
else

send message(id(x),delete-successor) to m.id

if m.type = forward − from − successor then ⊲ insert the node forwarded froms(x) toN(x)
if m.id = s(x) then

insert(N(x), m.id2, head)

if m.type = forward − from − predecessor then ⊲ insert the node forwarded fromp(x) toN(x), L(x)
if m.id = p(x) then

insert(N(x), m.id2, tail)
insert(L(x), m.id2, head)

else
send message(id(x),delete-successor) to m.id

3.1 Phase 0: Recovery to a valid state

In this phase we show that the network can recover if the internal variablesp(x) ands(x) are undefined or
set to invalid values, e.gp(x) < x. We therefore define a state as valid state, if the nodes in a connected
component given byp(x) links form a tree and the successor’s predecessor has to be the node itself.

Definition 3.3 We say that the networkG is in a valid state ifp(x) > x and s(x) < x for all x ∈ V
wheneverp(x) ands(x) are defined and ify = s(x), thenx = p(y).

Theorem 3.4 It takes at most 2 rounds until the network is in a valid state.

Proof. The network may be at an invalid state at the first round we consider. That means that the variables
p(x), s(x) can have invalid values. Sox could have set a nodeu as its predecessor (i.e.u = p(x)) with
u < x, which is not valid according to our protocol. Despite the presence of this invalid state, our protocol
can recover from it very fast, so that the actual stabilization procedure can start. So if a variable is set faulty,
that isp(x) < x or s(x) > x, it will be set tonull after the first round, once the periodic actions will have
been executed, as it is tested in the actionscheckifhead andforwardtosuc if p(x) < x and if s(x) > x.
Once each node has computed a valid predecessor, it will request it to accept it as a successor. So after the

8

next round each node will (if possible) also have a valid successor, Moreover ifx notices that it is contacted
from multiple nodes that think thatx has stored them as successors,x contacts all these nodes but one (its
true successor) throughdelete-successormessages so at next roundx has no multiple successors. In other
words it always holds that ify = s(x), thenx = p(y). ⊓⊔

For our further analysis we assume that the initial state is valid, since we do not take into account the
first 2 rounds it takes to reach a valid state. So we consider the first round in which we have a valid state
as the roundt = 0. Note that due to the periodic actions the network stays in a valid state in every round
afterwards.

3.2 Phase 1: Connect all heaps by s-edges

In this phase we show that starting from a valid state all existing heaps will eventually be connected by
s-edges (defined below), so that they will merge afterwards.

First we give following definitions.

Definition 3.5 We distinguish between two different kinds of edges that canexist at any time in our network,
the edges in the setE and the ones in the setEs. We say that(x, y) is in E, if y ∈ N(x) and(x, y) in Es if
y ∈ S(x), resulting from a scan fromy. We will call the latter oness-edgesand denote them by(x, y)s.

Definition 3.6 In the directed graph we define anundirected pathas a sequence of edges(v0, v1), (v1, v2),
· · · , (vk−1, vk), such that∀i ∈ {1, · · · , k} : (vi, vi−1) ∈ E ∨ (vi−1, vi) ∈ E.

Definition 3.7 We say that two heapsH1 andH2 ares-connectedif there exists at least one undirected path
from one node inH1 to one node inH2 and this path consists of either s-edges or edges having bothnodes
in the same heap.

Definition 3.8 We say that a subset of s-edgesE′
s ⊆ Es is as-connectivity setat roundt if all heaps in the

graph are s-connected to each other through edges inE′
s at roundt.

In the first phase we will show that afterO(n) rounds all heaps have been connected by s-edges. LetE0

be the set of edges(u, v) ∈ E at timet = 0. We then show that all these edges are scanned inO(n) rounds,
giving us the connections via s-edges.

Theorem 3.9 After O(n) rounds the heapsHi andHj connected by(u, v) ∈ E0 have either merged or
been connected by s-edges .

To prove the theorem we firstly show some basic lemmas needed in the analysis.

Lemma 3.10 Let u1, · · · u|H| be the elements in a heapH in descending order. Then it takes at mosti
rounds tillH is linearized w.r.tui.

Proof. We prove the lemma by induction on the number of roundsi. Note that all nodes are connected by
thep(x) links only to nodes with larger ids.

Induction base (i = 0): The head of the heap is the node with the maximal id therefore trivially, ∀v ∈
H − {h} : p(v) > v and∀v ∈ H − {h} with v ≥ h : s(p(v)) = v.

Induction step (i → i+1): By induction the heap is linearized w.r.t.ui after i rounds, thusui+1 has to
be connected toui by ap(x) link. In the i + 1th roundui sendsnew − predecessor messages to all other
nodes withp(x) = ui, such thats(ui) = ui+1 andui+1 becomes the only node withp(x) = ui. Then
∀v ∈ H − {h} : p(v) > v and∀v ∈ H − {h} with v ≥ ui+1 : s(p(v)) = v. ⊓⊔

9

Lemma 3.11 Once one head learns about the existence of another head, twoheaps are merged.

Proof. Let hi be the head of heapHi. Also, lethj be the head of heapHj scanninghi. There can be two
cases.

• hi < hj : In this case,hi will no longer be a head oncehj scans it and sends it own id.

• hi > hj : In this case,hj will no longer be a head and will send anpred-requestto hi.

⊓⊔

In case of a merging of two heapsHi, Hj, the time it takes until the new heapH is linearized w.r.t. a
nodeu can increase with respect to the linearization time ofu in the heap before the merging.

Lemma 3.12 If two heapsHi andHj merge to one heapH, the linearization time of a nodeu ∈ Hi (resp.
u ∈ Hj) can increase by at most|Hj| (resp.|Hi|).

Proof. Without loss of generality letu ∈ Hi. By Lemma 3.10 we know that the linearization time depends
on the number of nodes with a larger id in the heap. The number of nodes with a larger id can increase by at
most the size of the other heapHj. Thus, also the linearization time can only increase by at most |Hj|. ⊓⊔

From Lemma 3.10 and Lemma 3.12 we immediately get via an inductive argument:

Corollary 3.13 For any heapH of size|H| in roundt it takes at most|H| − t rounds until it forms a sorted
list.

Lemma 3.14 If a node sends anid with a forward-from-successormessage, theid will not be delayed by
other forward-from-successormessages on its way to the head.

Proof. Once a node sends a message to its predecessor through aforward-from-successormessage, the
number of rounds it takes to reach the head of its heap dependsonly on the path to the head and the lin-
earization steps. When a nodex receives aforward-from-successormessage, it stores the receivedid at the
head of its neighborhood listN(x). So thisid will be forwarded immediately, ifx is active. If it cannot be
forwarded becausex is inactive, the node will inform its successor about its inactive state and as a conse-
quence no moreforward-from-successormessages will be sent tox. That means that no other id can take
the place of the one present at the head ofN(x). So, oncex is active again, theid will be sent immediately.

⊓⊔

As a consequence of the observation of Lemma 3.11 we introduce some additional notation to estimate
the time it takes until any id is scanned by a head of a heap.

For any edge(u, v) ∈ E0 with u ∈ Hi andv ∈ Hj, wherehi andhj denote the corresponding heads
of the heaps, we define the following notation in a roundt: Let P t(u) be the length of the path fromu to
hi, onceHi is linearized w.r.t.u. Let IDt(u, v) be the number of idsu forwards or scans before sending
or scanningv the first time. LetLT t(u) be the time it takes until the heap is linearized w.r.t.u , i.e. on the
path from the headhi to u each node has exactly one predecessor and successor. Corollary 3.13 shows that
LT t(u) is bounded by|Hi|.

Let φt(u, v) = P t(u) + IDt(u, v) + LT t(u). We callφt(u, v) the delivery timeof an id v because
if φt(u, v) = 0, the id is scanned in roundt or has already been scanned byhi. We then denote by
Φt(u, v) = min

{

φt(w, v) : heap(u) = heap(w)
}

the minimal delivery time ofv for any node in the same
heap asu.

For any edge(u, v) ∈ E0, with u ∈ Hi andv ∈ Hj , (i.e.u andv are in different heaps) andΦt(u, v) = 0
the head ofHi scans or has scannedv ∈ Hj resulting in the s-edge(v, hi)s.The following holds:

10

Lemma 3.15 If (u, v) ∈ E0 is an edge between two heapsHi andHj, thenΦt(u, v) ≤ max {2|Hi|+ n− t, 0}
≤ max {3n− t, 0} for all roundst.

Proof. We will show the lemma by induction on the number of rounds. For the analysis we divide each
round t → t + 1 into two parts: in the first stept → t′ all actions are executed and in the second step
t′ → t + 1 all network changes are considered. Thus, we assume that allactions are performed before the
network changes. This is reasonable as a node is aware of changes in its neighborhood only in the next
round, when receiving the messages. By network changes we mean the new edges that could be created in
the network. These new edges could possibly lead to the merging of some heaps at timet+ 1.

Induction base(t = 0):
For any edge(u, v) ∈ E0 betweenHi andHj let x ∈ Hi be the node such thatΦ0(u, v) = φ0(x, v).

ThenP 0(x) ≤ Hi as the path length is limited by the number of nodes in the heap, ID0(x, v) ≤ n
as not more thann ids are in the system, and following from Lemma 3.13,LT (x) ≤ |Hi|. Then
Φ0(u, v) ≤ φ0(x, v) ≤ 2|Hi|+ n ≤ 3n.

Induction step(t → t′): For any edge(u, v) ∈ E0 betweenHi andHj let x ∈ Hi be the node such that
Φt(u, v) = φt(x, v).

Then in roundt the following actions can be executed.

• x is inactive and can not forward an id. Then the heap is not linearized w.r.t.x, which implies that
the linearization time decreases by one, i.e.LT t′(x) = LT t(x) − 1 andφt′(x, v) = φt(x, v) − 1 ≤
2|Hi|+ n− t− 1 as all other values are not affected.

• u is active, but does not sendv by a forward-from-successormessage, then the number of ids that
u is sending beforev decreases by 1. Note that according to Lemma 3.14,x hasn’t sent aforward-
from-successormessage withv in a round before, as then there would be another nodey ∈ Hi

with φt(y, v) < φt(x, v). Then IDt′(x, v) ≤ IDt(x, v) − 1 andφt′(x, v)) = φt(x, v) − 1 ≤
2|Hi|+ n− t− 1.

• u sends aforward-from-successormessage withv, then the length of the path forv to the headhi
decreases by 1 andφt+1(p(x), v) ≤ P t(x)−1+IDt(x, v)+LT t(x) = φt(x, v)−1 ≤ 2|Hi|+n−t−1

Thus, in totalΦt′(u, v) ≤ Φt(u, v)− 1 ≤ 2|Hi|+ n− t− 1 ≤ 3n− (t+ 1).

Induction step(t′ → t + 1): Now we consider the possible network changes and their effects on the
potentialΦt+1(u, v). Let againx ∈ Hi be the node such thatΦt(u, v) = φt(x, v) for an edge(u, v) ∈ E0

betweenHi andHj. The following network changes might occur:

• some heapsHk and Hl with k 6= i and l 6= i merge. This has no effect onΦt′(u, v). Thus,
Φt+1(u, v) = Φt′(u, v) ≤ 2|Hi|+ n− t− 1 ≤ 3n− (t+ 1).

• HeapsHi andHk merge toH ′
i. Obviously the length of the path ofx can increase andP t+1(x) ≤

P t′(x)+|Hk|. According to Lemma 3.12 also the linearization time ofx can increase andLT t+1(x) ≤
LT t′(x) + |Hk|. In totalΦt+1(u, v) ≤ Φt′(u, v) + 2|Hk| ≤ 2|H ′

i|+ n− t− 1 ≤ 3n− (t+ 1).

Thus, in roundt+ 1, Φt+1(u, v) ≤ 2|Hi|+ n− t− 1 ≤ 3n− (t+ 1). ⊓⊔

Hence for every edge(u, v) ∈ E0 with u ∈ Hi andv ∈ Hj, Φt(u, v) = 0 after3n rounds, which means
that the head ofHi scans or has scannedv ∈ Hj resulting in the s-edge(v, hi). Thus, we immediately get
Theorem 3.9.

11

3.3 Phase 2: Towards one heap

Based on the results of Phase 1, we will prove that afterO(n) further rounds a clique is formed. For the
purpose of the analysis below, we use the following definitions:

Definition 3.16 Let ord(x) be theorderof a nodex, i.e. the ranking of the node if we sort alln nodes in
the network according to their id (i.e. the node with the largest idm hasord(m) = 0, the second largest
has order 1, and so on).

Definition 3.17 We define the potentialλ(x, y) of a pair of nodesx andy to be the positive integer equal to
ω(x, y) = 2 · ord(x) + 2 · ord(y) +K(x, y), whereK(x, y) = 1 if x > y and 0 otherwise. Also, let for a
set of edgesE′ ⊆ E, Λ(E′) = max(u,v)∈E′{ω(u, v)}, if E′ 6= ∅ and 0 otherwise.

We proceed by showing the following lemma.

Lemma 3.18 Two heapsHi, Hj that are connected by an s-edge(x, y)s at timet will either stay connected
via s-edges(xi, yi)s at timet + 1 with the property that,∀(xi, yi), the potentialω(xi, yi) of the edges we
consider at timet+ 1 is smaller that the potentialω(x, y) of the edge(x, y)s we considered at timet, or x
andy will be in the same heap.

Proof. Let (x, y)s be a s-edge connectingHi andHj, i.e.x ∈ Hi, y ∈ Hj. Then according to our algorithm
the following actions might be executed.

• x is the head ofHi andy > x theny = p(x) andx sends apred-requestmessage toy, resulting in a
merge ofHi andHj .

• x is the head ofHi andx > y and y is a new id, thenx sends ascan-ackto y with its own id
and the edge(y, x)s is created connectingHi andHj . Thenω(y, x) = 2ord(x) + 2ord(y) + 0 <
2ord(x) + 2ord(y) + 1 = ω(x, y).

• x forwardsy to p(x) by aforward-headmessage, such thaty ∈ S(p(x)) andHi andHj are connected
by (p(x), y)s. Thenω(p(x), y) = 2ord(p(x)) + 2ord(y) + K(p(x), y) < 2ord(x) + 2ord(y) +
K(x, y) = ω(x, y).

• x receives a new idz ∈ S(x) with z = max {v ∈ N(x)}, such thatz > y andz > x. Thenx
sends ascan-ackcontainingz to y and the s-edge(x, y)s is substituted by s-edges(x, z)s and(y, z)s.
And Hi andHj are connected via s-edges. Note that sincep(x) > x andz > x, y , ord(p(x)) <
ord(x), ord(z) < ord(x) andord(z) < ord(y). The potential of the new edges is:ω(p(x), z) =
2ord(p(x))+2ord(z)+K(p(x), z) < 2ord(x)+2ord(y)+K(x, y) = ωt(x, y). ω(y, z) = 2ord(y)+
2ord(z) + 0 < 2ord(x) + 2ord(y) +K(x, y) = ωt(x, y).

• x knows an idz ∈ Hk with z = max {v ∈ N(x)} , z > y andz /∈ S(x). Then one of the following
cases hold:

1. (x, z) ∈ E0, then according to Lemma 3.15 a nodeu > x with u ∈ Hi has scannedz resulting
in the s-edge(z, u)s s-connectingHi andHk.

2. x has receivedz by a forward-from-predecessormessage. Then a nodeu > x with u ∈ Hi has
scannedz resulting in the s-edge(z, u)s s-connectingHi andHk.

3. z was inS(x) in a previous round, then the edge(x, z)s existed s-connectingHi andHk.

12

4. x has receivedz by a forward-from-successormessage. Then there is a nodev ≤ x in the sub
heap rooted atx such that(v, z) ∈ E0. Then according to Lemma 3.15 a nodew ∈ Hi with
w > v has scannedz and the s-edge(z, w)s existed s-connectingHi andHk. If w > x, Hi and
Hk are s-connected by s-edges(xi, yi)s with ∀(xi, yi) : (x < w < xi ∧ x < w < yi ∧ z ≤
xi ∧ z ≤ yi) ∨ (x < w ≤ xi ∧ x < w ≤ yi ∧ z < xi ∧ z < yi). If w < x then at least as many
rounds have passed sincew has scannedz as there are nodes on the path fromw to x, because
z has to be forwarded as many times. Then the edge(z, w)s has been forwarded or substituted
t times orHi andHk have merged. ThenHi andHk are s-connected by s-edges(xi, yi)s with
∀(xi, yi) : (x < w < xi ∧ x < w < yi ∧ z ≤ xi ∧ z ≤ yi) ∨ (x < w ≤ xi ∧ x < w ≤ yi ∧ z <
xi ∧ z < yi).

In each casex sends ascan-ackcontainingz to y and the s-edge(y, z)s is created. AndHi andHj

are s-connected over s-edges and in all cases the potential shrinks, since for each new s-edge it holds
that at least one node is greater and the other node not smaller than the nodes in the edge they replace.

• x is the head ofHi andx < y, thenHi andHj merge to one heap.

• x is the head ofHi andx > y andy was inN(x) in a previous round, thenHi andHj are already
s-connected by s-edges(xi, yi)s with greater ids by the same arguments as in the case before. Since
the ids are greater, the potential shrinks also here.

⊓⊔

Lemma 3.19 If Et is an s-connectivity set at roundt, there exists an s-connectivity setEt+1 at roundt+ 1
such thatΛ(Et+1) < Λ(Et).

Proof. Let Et be an s-connectivity set a roundt. We replace every edge(x, y)s ∈ Et with the edges
(xi, yi)s as described in the lemma above. For every pair of heaps that were s-connected att through an
edge inEt, there exists a set of s-edges of smaller potential that s-connects the two heaps att+1. We include
these edges inEt+1. But at roundt all pairs of heaps are s-connected throughEt, which means that at round
t+ 1 all pairs of heaps are also s-connected throughEt+1. So,Et+1 is an s-connectivity set at roundt+ 1.
Also since all the edges inEt+1 have less potential as the ones the replaced inEt, Λ(Et+1) < Λ(Et). ⊓⊔

Theorem 3.20 After at most 4n+1 rounds, all heaps have been merged into one.

Proof. From Theorem 3.9 we know that all heaps are s-connected afterO(n) rounds. So afterO(n) rounds
there exists the first s-connectivity set,E0, withΛ(E0) = max(u,v)∈E0

{ω(u, v)} = max(u,v)∈E0
{2ord(u)+

2ord(v) + K(u, v)} ≤ 2n + 2n + 1 = 4n + 1. Since for each roundt and an s-connectivity setEt, an
s-connectivity setEt+1 for roundt+ 1 can be found, such thatΛ(Et+1) < Λ(Et), (i.e. the potential of the
s-connectivity set shrinks by every round) after at most4n+1 rounds (after the existence ofEs) there exists
an s-connectivity setE∞, such thatΛ(E∞) = 0. This means thatE∞ is the empty set. SinceE∞ is an
empty s-connectivity set connecting all the heaps of the graph, we know that the graph has only one heap.⊓⊔

3.4 Phase 3: Sorted list and Clique

Theorem 3.21 If all nodes form one heap, it takesO(n) time until the network reaches a legal state.

Proof. Since at this point we only have one head the heap will be linearized afterO(n) rounds. This follows
directly from Lemma 3.13. Once the heap is linearized and forms a sorted list, each node’sid will be sent
to the root, the remaining head, after at mostn rounds. So the root will be aware of everyid. The root, as

13

it sends according to the round-robin process all its information to its successor, will send aftern rounds all
the ids to it, and the successor will do the same. As a consequence, all nodes will receive allids atO(n)
rounds. Adding all this together, afterO(n) all nodes will know each other and a clique will be constructed.

⊓⊔

Combining Theorem 3.4, Theorem 3.9, Theorem 3.20 and Theorem 3.21 our main theorem Theorem
3.2 holds.

4 Message complexity

In this section we give an upper bound for the work spent by each node. We already mentioned that we
will distinguish two types of work. The stabilization work,that is spent until a clique is formed, and the
maintenance work, that is spent in each round in a legal state. We count the work of a node in the number
of messages sent and received.

4.1 Stabilization work

According to Theorem 3.2 it takesO(n) rounds to reach a legal state. In each round each active node
sends a message to its predecessor and its successor (forward-from-successor, forward-from-predecessor)
and receives a message from them (forward-from-successor, forward-from-predecessor). Also, a node sends
at most oneactivate/deactivatemessage to its successor at each round. This gives a resulting work ofO(n)
for each node orO(n2) in total. By the following lemmas we show that the additionalmessages sent and
received during the linearization are at mostO(n) for each node.

Lemma 4.1 Each node sends and receives at mostO(n) pred-request, pred-acceptand new-predecessor
messages during the linearization phase.

Proof. In each round each node sends at most onepred-requestand onepred-acceptmessage and receives
at most onepred-acceptor new-predecessormessage. It remains to show that each node receives at most
O(n) pred-requestand sends at mostO(n) new-predecessormessages. Note that it suffices to show that
each node receives at mostO(n) pred-request, as the number ofnew-predecessormessages directly depends
on the number of receivedpred-requestmessages, to each node, that sends apred-requestto u that is notu’
successor,u sends anew-predecessormessage. A nodeu only sends at most onenew-predecessormessage
to each other nodev. By receiving this messagev changes its predecessor. Thus beforeu sends another
new-predecessormessage tov, v has to change its predecessor back tou. A predecessor is only changed if a
root receives an id greater than its own id, or if the predecessor of a node sends anew-predecessor. v cannot
be a head, thusv’s predecessor is only changed by anothernew-predecessormessage. Butv’s predecessor
can not be changed back tou as the id of the new predecessor is strictly decreasing. By this monotonicity
it follows that a nodeu only sends at most onenew-predecessormessage to each other nodev. Thus, every
node only sends and receivesO(n) pred-requestand new predecessor messages. ⊓⊔

Lemma 4.2 Each node sends and receives at mostO(n) scanandscan-ackmessages during the lineariza-
tion phase.

Proof. Only heads of heaps send scan messages. In each round each head sends exactly onescanmessage.
Each scanned node sends ascanackmessage back or stores the id of the head inS(x). Obviously a node can
be scanned by up ton different heads in one round. Which would lead to a work ofO(n2) by receiving these
messages. But as a node sends the maximal id in its neighborhood with ascanackmessage, it is scanned

14

at most once by heads with an id smaller thenmax. By receiving this id the scanning node recognizes, if
it is still a head, that it is not the largest id and cannot be a head of the heap and sets its predecessor and
stops scanning. So a node can be scanned byO(n) heads before the heads stop scanning, because they
received ascanack. A head that is not the maximal head, that scanned the node so far, will only scan the
node one more time and then stop scanning. So a node receives at mostO(n) scan messages from a new
maximal head,O(n) messages from the current maximal head, as each head only sends one scan message
per round, and all other scans increase the number of inactive heads, which is limited byO(n). Regarding
thescanackmessages, since each head scans only once in each round, it receives also at most onescanack
(that result from sentscanmessages) message in each round. A nodex can also receive ascanackmessage
when sending ascanackmessage, but this happen only the if the node to which thescanackwas sent does
not knowx, so all in all at mostn times. So, all in all, a node receivesO(n) at the whole linearization phase.

⊓⊔

Lemma 4.3 Each node sends and receives at mostO(n) forward-headmessages through the linearization
phase.

Proof. Moreover, a node sends at most oneforward-headmessage per round. The number offorward-head
messages it receives during the linearization phase is limited byO(n). That is because each nodex receives
one forward-headmessage from its successor in a round, and possibly from other possible successors, let
u be such one, for whichp(u) = x. But u can only be once a possible successor ofx, since at the next
round it either will be forwarded tos(x) and will never havex as its predecessor again, or it becomess(x).
Since each node can be only once a possible successor forx, the number offorward-headmessages sent
through all possible successors is limited byn. So, the number offorward-headmessages it receives during
the linearization phase is limited byO(n). ⊓⊔

4.2 Maintenance work

Lemma 4.4 As soon as the network forms a stable clique with a stable listas a spanning tree, i.e. the
network is in a legal state, each node sends and receives at mostO(1) messages in each round.

Proof. In a legal state all nodes form a sorted list. Thus, each node has exactly one stable successor and
one stable predecessor. Then each node sends and receives one pred-requestand onepred-acceptmessage.
Each node sends oneforward-from-successorand oneforward-from-predecessormessage. Moreover there
is one head that sends onescanmessage, which is received by one other node, and receives one scanack,
sent by the scanned node. Thus, each node sends and receivesO(1) messages in a stable state. ⊓⊔

5 Single Join and Leave Event

The case of arbitrary churn is hard to analyze formally. Thus, we will show that the clique can efficiently
recover considering a single join or leave event in a legal state.

Theorem 5.1 In a legal state it takesO(n) rounds and messages to recover and stabilize after a new node
joins the network. It takesO(1) rounds and messages to recover the clique after a node leavesthe network.

Proof. If a nodeu joins the network it creates an edge(u, v) to a nodev in the clique. Ifv > u, u sends
a pred-requestto v, v then either acceptsu as its successor or creates an edge fromu to v’s successor. It
takes at mostO(n) rounds untilv reaches its final position in the sorted list. Additionallyv sendsu’s id to
its predecessor, and afterO(n) rounds the head insertsu to its neighborhood. Ifv < u v sendsu’s id to

15

its predecessor, because it is a new id. Then it takes at mostO(n) rounds until the head receivesu’s id and
scansu, thenu assumes the head to be its predecessor and case 1 holds. AfterO(n) further rounds each
nodes receivesu’s id andu receives the id of all other nodes in the network. Thus, afterO(n) rounds after
a join the nodes form a clique and the sorted list is linearized.

Obviously a clique remains a clique in case a nodeu leaves the network. Also the sorted list is immedi-
ately repaired, as the successor of the removed node, assumesu’ predecessor to be its predecessor and sends
a pred-request, which will be accepted as the node has no other successor. Note that ifu is the head of the
list, u’s successor will recognize that there is no node with a larger id in its neighborhood and will correctly
assume to be a head of a list and proceed the scanning. ⊓⊔

6 Conclusion

In this paper we introduced a local self-stabilizing time-and work-efficient algorithm that forms a clique
out of any weakly connected graph. By forming a clique our algorithm also solves the resource discovery
problem, as each node is aware of any other node in the network. Our algorithm is the first algorithm that
solves resource discovery in optimal message complexity. Furthermore our algorithm is self-stabilizing and
thus can handle deletions of edges and joining or leaving nodes.

References

[1] James Aspnes and Gauri Shah. Skip graphs. InSODA, pages 384–393, 2003.

[2] Baruch Awerbuch and Christian Scheideler. The hyperring: a low-congestion deterministic data struc-
ture for distributed environments. InSODA’04, pages 318–327, 2004.

[3] Andrew Berns, Sukumar Ghosh, and Sriram V. Pemmaraju. Brief announcement: a framework for
building self-stabilizing overlay networks. InPODC’10, pages 398–399, 2010.

[4] A. Bhargava, K. Kothapalli, C. Riley, C. Scheideler, M. Thober. Pagoda: A dynamic overlay network
for routing, data management, and multicasting. InSPAA’04, pages 170–179, 2004.

[5] Lélia Blin, Shlomi Dolev, Maria Gradinariu Potop-Butucaru, and Stephane Rovedakis. Fast self-
stabilizing minimum spanning tree construction - using compact nearest common ancestor labeling
scheme. InDISC’10, pages 480–494, 2010.

[6] Lélia Blin, Maria Gradinariu Potop-Butucaru, and Stephane Rovedakis. Self-stabilizing minimum
degree spanning tree within one from the optimal degree.J. Parallel Distrib. Comput., 71(3):438–449,
2011.

[7] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving simul-
taneity in the presence of faults (extended abstract). InFOCS, pages 383–395, 1985.

[8] Curt Cramer and Thomas Fuhrmann. Self-stabilizing ringnetworks on connected graphs. Technical
Report 2005-5, University of Karlsruhe (TH), 2005.

[9] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.Commun. ACM, 17:643–
644, November 1974.

[10] Shlomi Dolev and Ronen I. Kat. Hypertree for self-stabilizing peer-to-peer systems.Distributed
Computing, 20(5):375–388, 2008.

16

[11] Shlomi Dolev and Nir Tzachar. Empire of colonies: Self-stabilizing and self-organizing distributed
algorithm.Theor. Comput. Sci., 410(6-7):514–532, 2009.

[12] S.Dolev, N.Tzachar. Spanders: distributed spanning expanders. InSAC, p. 1309–1314, 2010.

[13] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer and Alec Wolman. Skipnet: a scalable overlay
network with practical locality properties. InUSITS’03, pages 9–9, 2003.

[14] Thomas Hérault, Pierre Lemarinier, Olivier Peres, Laurence Pilard, and Joffroy Beauquier. A model
for large scale self-stabilization. InIPDPS, pages 1–10, 2007.

[15] R. Jacob, A. W. Richa, C. Scheideler, S. Schmid, and H. T¨aubig. A distributed polylogarithmic time
algorithm for self-stabilizing skip graphs. InPODC, p. 131–140, 2009.

[16] Ri. Jacob, S. Ritscher, C. Scheideler, S. Schmid. A self-stabilizing and local delaunay graph construc-
tion. In Algorithms and Computation, vol. 5878 ofLNCS, p. 771–780.

[17] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. A self-repairing peer-to-peer system resilient to
dynamic adversarial churn. InIPTPS, pages 13–23, 2005.

[18] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scalable and dynamic emulation of the
butterfly. InPODC ’02, pages 183–192, 2002.

[19] A.G. Myasnikov, V. Shpilrain, and A. Ushakov.Group-based cryptography. Advanced courses in
mathematics, CRM Barcelona. Birkhäuser Verlag, 2008.

[20] Moni Naor and Udi Wieder. Novel architectures for p2p applications: The continuous-discrete ap-
proach. InACM Transactions on Algorithms, 3(3), 2007.

[21] Melih Onus, Andrea W. Richa, and Christian Scheideler.Linearization: Locally self-stabilizing sorting
in graphs. InALENEX, 2007.

[22] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence of
faults. J. ACM, 27(2):228–234, 1980.

[23] HariGovind V. Ramasamy and Christian Cachin. Parsimonious asynchronous byzantine-fault-tolerant
atomic broadcast. InOPODIS, pages 88–102, 2005.

[24] Sylvia Ratnasamy, Paul Francis, Mark Handley, RichardKarp, and Scott Shenker. A scalable content-
addressable network. InSIGCOMM 2001, pages 161–172, 2001.

[25] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. InMiddleware ’01, pages 329–350, 2001.

[26] Christian Scheideler and Stefan Schmid. A distributedand oblivious heap. InICALP (2), pages 571–
582, 2009.

[27] Ayman Shaker and Douglas S. Reeves. Self-stabilizing structured ring topology p2p systems. In
Peer-to-Peer Computing, pages 39–46, 2005.

[28] Bernhard Haeupler, Gopal Pandurangan, David Peleg, Rajmohan Rajaraman, Zhifeng Sun. Discovery
through Gossip. InSPAA, 2011.

17

[29] Ion Stoica, Robert Morris, David Liben-nowell, David Karger, M. Frans, Kaashoek Frank Dabek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In
SIGCOMM, pages 149–160, 2001.

[30] Mor Harchol-Balter, Tom Leighton, Daniel Lewin. Resource discovery in distributed networks. In
PODC ’99, pages 229-237, 1999

[31] Shay Kutten, David Peleg, Uzi Vishkin. Deterministic resource discovery in distributed networks. In
SPAA ’01, pages 77-83, 2001.

[32] Kishori M. Konwar, Dariusz Kowalski, Alexander A. Shvartsman. Node discovery in networks InJ.
Parallel Distrib. Comput. 69, 4 (April 2009), pages 337-348, 2009.

18

	1 Introduction
	1.1 Resource Discovery
	1.2 Topological Self-Stabilization
	1.3 Our model
	1.4 Our contributions
	1.5 Structure of the paper

	2 A distributed self-stabilizing algorithm for the clique
	2.1 Definitions
	2.2 Description of our algorithm
	2.3 Pseudo code

	3 Correctness
	3.1 Phase 0: Recovery to a valid state
	3.2 Phase 1: Connect all heaps by s-edges
	3.3 Phase 2: Towards one heap
	3.4 Phase 3: Sorted list and Clique

	4 Message complexity
	4.1 Stabilization work
	4.2 Maintenance work

	5 Single Join and Leave Event
	6 Conclusion

