arXiv:1306.1692v1 [cs.DC] 7 Jun 2013

A Deterministic Worst-Case Message Complexity OptimaLu8oh
for Resource Discovety

Sebastian Kniesburges Andreas Koutsopoulos Christian Scheideler
University of Paderborn University of Paderborn University of Paderborn
seppel@upb.de koutsopo@mail.upb.de scheideler@mail.upb.de
Abstract

We consider the problem of resource discovery in distrifhggstems. In particular we give an
algorithm, such that each node in a network discovers theeaddf any other node in the network.
We model the knowledge of the nodes as a virtual overlay nét\given by a directed graph such
that complete knowledge of all nodes corresponds to a caegiaph in the overlay network. Although
there are several solutions for resource discovery, outisalis the first that achieves worst-case optimal
work for each node, i.e. the number of addresg2g:() or bits (O(nlogn)) a node receives or sends
coincides with the lower bound, while ensuring only a lineartime (O(n)) on the number of rounds.

1 Introduction

To perform cooperative tasks in distributed systems theorétnodes have to know which other nodes are
participating. Examples for such cooperative tasks ramgm fundamental problems such as group-based
cryptography|([19], verifiable secret sharing [7], disttém consensus$ [22], and broadcasting [23] to peer-
to-peer(P2P) applications like distributed storage, iplalger online gaming, and various social network
applications such as chat groups. To perform these taskseeffiy knowledge of the complete network
for each node is assumed. Considering large-scale, ra#dwetworks this complete knowledge has to
be maintained despite high dynamics, such as joining oiidgavodes, that lead to changing topologies.
Therefore the nodes in a network need to learn about all oibes currently in the network. This problem
calledresource discoveryi.e. the discovery of the addresses of all nodes in the mktlwp every single
node, is a well studied problem and was firstly introduced bhycHol-Balter, Leighton and Lewin if [30].

1.1 Resource Discovery

As mentioned in[[30] the resource discovery problem can beddyy a simple swamping algorithm also
known aspointer doubling in each round, every node informs all of its neighbors alitsuéntire neigh-
borhood. While this just need3(log n) communication rounds to inform every node about any othdeno
in every weakly connected network of sizethe work spent by the nodes can be very high and far from
optimal. We measure the work of a node as the number of addreseh node receives or sends while exe-
cuting the algorithm. Moreover, in the stable state (i.achenode has complete knowledge) the work spent
by every node in a single round@(n?), which is certainly not useful for large-scale systemse#latively,
each node may just introduce a single neighbor to all of itghimors in a round-robin fashion. However,
it is easy to construct initial situations in which this s&gy is not better than pointer doubling in order to

*This work was partially supported by the German Researcindration (DFG) within the Collaborative Research Centre On-
The-Fly Computing (SFB 901).

http://arxiv.org/abs/1306.1692v1

reach complete knowledge. The problem in both approachtee isigh amount of redundancy: addresses
of nodes may be sent to other nodes that are already awaratafdtress. I [30] a randomized algorithm
called theName-Droppeiis presented that solves the resource discovery probleninagt(log® n) rounds
w.h.p. and work of?(n?log?® n). In [31] a deterministic solution for resource discovengistributed net-
works was proposed by Kutten et al. Their solution uses thesaodel as in [30] and improves the number
of communication rounds to which takéXlog n) rounds and?(n? log n) amount of work. Konwar et al.
presented solutions for the resource discovery problersidering different models, i.e. multicast or uni-
cast abilities and messages of different sizes, where therdgmund for the work i) (n?log? n). In their
algorithms they also considered when to terminate, i.e. tenwa node detect that its knowledge is already
complete. Recently resource discovery has been studiechbypter et. al. in [28], in which they present
two simple randomized algorithms based on gossiping thed fién log n) time and(n? log n) work per
node on expectation. They only allow nodes to send a singésage containing at most one address of size
log n in each round. Thus their model is more restrictive compérdtle model used in [30, 31] and leads
to an increased runtime in the number of rounds. We preseeteairdinistic solution that follows the idea
of [28] and limits the number of messages each node has toasehthe number of addresses transmitted
in one message. Our goal is to reduce the number of messagemdaeceived by each node such that we
avoid nodes to be overloaded. In detail we show that resaliscevery can be solved (n) rounds and it
suffices that each node sends and recei¥gs) messages in total, each message contai¢fig addresses.
Our solution is the first solution for resource discovenyt tiia only considers the total number of messages
but also the number of messages a single node has to sen@iverddote thaf)(n) is a trivial lower bound

for the work of each node to gain complete knowledge: stamtiith a list, in which each node is only con-
nected to two other nodes, each node has to receive atleastDs. So our algorithm is worst case optimal
in terms of message complexity. Furthermore our algoritlam ltandle the deletion of edges and joining
or leaving nodes, as long as the graph remains weakly catheModeling the current knowledge of all
nodes as a directed graph, i.e. there is an €dge) iff « knowsv’s ID, one can think of resource discovery
as building and maintaining a complete graph, a clique, agw@aal/overlay network. If the overlay can be
recovered out of any (weakly connected) initial graph, thieasponding algorithm can be considered to be
aself-stabilizingalgorithm. More precisely, an algorithm is considered #sstabilizing if it reaches a legal
state when started in an arbitrary initial staterfvergenceand stays in a legal state when started in a legal
state €losure.

1.2 Topological Self-Stabilization

There is a large body of literature on how to efficiently maintoverlay networks, e.gl.|[1} [2,/4,125,13] 17,
18,[20,[24| 29, 26]. While many results are already known om taokeep an overlay network in a legal
state, far less is known about self-stabilizing overlayvwaoeks. The idea of self-stabilization in distributed
computing first appeared in a classical paper by E.W. Digkistr1 974 [9] in which he looked at the problem
of self-stabilization in a token ring. Interestingly, tlgfuself-stabilizing distributed computing has received
a lot of attention for many years, the problem of designiristabilizing networks has attracted much less
attention. In order to recover certain network topologiesf any weakly connected network, researchers
have started with simple line and ring networks,[[8, 27]. Tieeative Successor Pointer Rewiring Protocol
[8] and the Ring Network [27], for example, organize the rodea sorted ring. IN_[10] Dolev and Kat
describe a strategy to build a hypertree with a polylogarithdegree and search time. [n[21], Onus et al.
present a local-control strategy called linearizationclmmverting an arbitrary connected graph into a sorted
list. Various self-stabilzing algorithms for differenttm@rk overlay structures have been considered over
the years[[16, 15, 11, 12, [10]. Jacob et &al.| [16] generaligiglitts gained from graph linearization to two
dimensions and present a self-stabilizing constructiorDielaunay graphs. In another paper, Jacob et al.
[15] present a self-stabilizing variant of the skip grapll ahow that it can recover its network topology

from any weakly connected state @(log? n) communication rounds with high probability. In]11] and
[12] Dolev and Tzachar show self-stabilizing algorithms fiarming subgraphs like clusters or expanders
in just polylogarithmic number of rounds. In]11] the authoise a self-stabilizing algorithm in which they
collect snapshots of the network along a spanning tree,hwdoald also be used to form a complete graph.
However, the authors give no bounds on the message conyplEixiheir algorithm. In[[3] the authors
present a general framework for the self-stabilizing awmsion of overlay networks, which may involves
the construction of the clique. The algorithm requires thevkledge of the 2-hop neighborhood for each
node and may involve the construction of a clique. In that,wWajures at the structure of the overlay
network can easily be detected and repaired. However, thie worder to do that when using this method
is too high as they essentially use pointer doubling, i.@aich round a node sends the information about its
neighborhood to all its neighbors.

One could use the distributed algorithms for self-stalnitidists and rings to form a complete graph, but
all algorithms proposed so far for these topologies invalweorst-case work aR(n?) per node in order to
form the list or ring. Hence, these algorithms cannot be ts@itain an efficient algorithm for the clique.

Alternatively, a self-stabilizing spanning tree algomiticould be used. A large number of self-stabilizing
distributed algorithms has already been proposed for thmdtion of spanning trees in static network
topologies, [[6], [[5], [14], [14]. For example inl[6] the awils present a self-stabilizing spanning tree with
minimal degree for the given network and [n [5] a fast aldoritfor a self-stabilizing spanning tree is
presented, which reaches optimal convergence tie?) in an asynchronous setting. However, these
spanning trees are either expensive to maintain or the amadumork in these algorithms is not being
considered.

However, these spanning trees are potentially expensiwetotain as a high degree cannot be avoided
in general (consider, for example, the extreme case of gstph in which a single node is connected to all
other nodes). For the case that the network topology is flesibd potentially allows every node to connect
to any other node, self-stabilizing algorithms are knowvat ttonstruct a bounded degree spanning tree (e.g.,
[14]). The algorithm in[[14] also has a very low overhead ie #table state. But no formal result is given
on the work to establish the spanning tree. Also, an outgiddazvous service, called an oracle, is used to
introduce nodes to other nodes, which is not available imoedel.

In summary, no self-stabilizing algorithm has been presirior the formation of a bounded degree
spanning tree if the network topology is under the contraghefnodes and there are no outside services for
the introduction of nodes.

1.3 Our model

We use the network model used in [30, 31} 28]. In the following give a detailed description of the
model. We model the network as a directed gréph= (V, E') where|V| = n. The nodes have unique
identifiers with a total order, and these identifiers are meslto be immutable (for example, we may use
the IP addresses of the nodes). We are using a standard esgoaermessage-passing model: time proceeds
in synchronous rounds, and all messages generated in i@neddelivered at the end of roundIn order

to deliver a message, a node may use any address storedoicaityariables. In each round, each node can
only inspect its local variables (i.e. it can only commurtécaith nodes that it knows). Beyond that, a node
does not have access to any information or services whicimsnéar example, that No a priori information
about the size or diameter of the network can be assumed bgeaaml there cannot be made use of some
outside rendezvous service to get introduced to other nddiessce, thestateof a node is fully determined
by its local variables. Like in [30, 31, 28] we assume that dencan verify its neighborhood without extra
work, such that there are no false identifiers in the netw@ily local topology changes are allowed, i.e.
a node may decide to cut a link to a neighbor (by deleting itlresk) or introduce a link to one of its
neighbors (by sending it an address). We model the decisiorist or establish links and to send messages

as actions. An action has the forn guard >—< commands >. A guard is a Boolean expression over
the state of the node. The commands are executed if the gutubi Any action whose guard is true is said
to beenabled We assume that a node can execute all of its enabled actidhs current round.

The stateof the system is the combination of the states of all node&eénsystem. Due to our syn-
chronous message-passing model, in which no messagd is $tidnsit at the beginning of a round, the
state of the system and contains all the information avalabthe system. Acomputationis a sequence
of system states such that for each statat the beginning of round the next state,, ; is obtained after
executing all actions that are enabled at the beginningwfdo and receiving all messages that they gen-
erated. We call a distributed algorithself-stabilizingif from any initial state in which the overlay network
is weakly connected, it eventually reaches a legal statestys in a legal state afterwards. In our case, the
legal state is the clique topology. Since the clique topplisginiquely defined, no more topological changes
will happen afterwards.Our goal is to develop algorithrrat tieed as few communication rounds and as lit-
tle work as possible to arrive at a clique. We distinguisiwieen two types of work. Thstabilization work
of a nodev is defined as the total number of addresses sent and recsiveduring the stabilization pro-
cess. Thenaintenance workf a nodev is defined as the maximum number of addresses sent and i@ceive
by v during a single round of the stable state, i.e. for the caseaticlique has been formed.

1.4 Our contributions

In this paper we present a distributed algorithm for respaiiscovery. We will describe the algorithm as a
self-stabilizing algorithm that forms and maintains a wicas a virtual overlay network. In particular, the
following theorem shows that our algorithm is worst-casgnogl in terms of message complexity.

Theorem 1.1 For any initial state in which the network is weakly connécteur algorithm requires at most
O(n) rounds and)(n) work per node until the network reaches a legal state in whifbrms a clique.

We further show that the maintenance cost per rour@d(is) for each node once a legal state has been
reached. We also consider topology updates caused by & $iigihg or leaving node and show that the
network recovers i¥(n) rounds with at mosP (n) messages over all nodes besides the maintenance work.
Note that we use a synchronous message passing model toagimddon the message complexity of our
algorithm, but our correctness analysis can also be apfgiad asynchronous setting.

1.5 Structure of the paper

The paper is structured as follows: In Section 2 we give argegm of our algorithm. In Section 3 we
prove that the algorithm is self-stabilizing. We considee stabilization work and maintenance work in
Section 4. In Section 5 we analyze the steps needed for thrieto recover after a node joins or leaves
the network. Finally, in Section 6 we end with a conclusion.

2 A distributed self-stabilizing algorithm for the clique

In this section we give a general description of our alganith~irst we introduce the variables being used,
and then the actions the nodes take, according to our rulesh Boder has a bufferB(x) for incoming
messages from the previous round. We assume that the baffacity is unbounded and no messages
are lost. We do not require any particular order in which tressages are processedH(z). Moreover,
each noder stores the following internal variables: its predecessor) , its successos(z), its current
neighborhoodN (z) in a circular list, the nodes received by messages from tedegessor in another
circular list L(z), the set of node$(x) that are received through scanning messages (defined bétew)

own identifierid(x) and its statustatus(x), which is by default set to ’inactive’ and can be changed to
‘active’. The current networky = (V, E) formed by the nodes is defined by their current neighborhoods
N(v). We only require thatV(v) does not contain false ids, since in that case the staliiizéime could

be delayed.

A message in general consists of the following partseader id which is the id of the node sending
the message, an optioredditional id if the sender wants to inform the receiving node about aratbde,
and thetypeof the message.

Each node has two different kinds of actions that we regéiveactions angeriodicactions. A receive
action is enabled if there is an incoming message of the sporeling type in the buffeB(x). There are
the following types of messagegsted-request, pred-accept, new-predecessor, deactiaativate, forward-
from-successor, forward-from-predecessor, forwardehescan, scanack, delete-successarperiodic ac-
tion is enabled in every state, as its guard is sintplg. Therefore there can be no state in the computation
in which no action is enabled. Each enabled action is exdauiee every step.

2.1 Definitions

In order to describe the algorithm formally and prove itsreciness later on, we need the definitions given
below. In this paper we assume that a predecessor of a nodeddeawith the next larger identifier.
Therefore for allp(z) links, p(x) > x. Then all nodes in a connected component considering mnly
links form a rooted tree, where for each tree the root hasatgest identifier. Note here that theap H
(defined below) is not a data structure or variable storedhlgynade. It is a notion used just for the purpose
of the analysis.

Definition 2.1 We call such a rooted tree formed pf) links aheapH . We further call the root of the tree
theheadh of the heapH . We further denote witheap(z) the heapH such thatr € H.

Definition 2.2 A sorted listis a heapH with headh, such thatvv € H — {h} : p(v) > vandVv €
H — {h} : s(p(v)) = v. We call a heapinearized w.r.t. anode € H, if Vv € H — {h} : p(v) > v and
Vo e H—{h} Av>u:s(p(v)) =v. We further call the time until a heap is linearized w.r.t. @eu the
linearization time ofu. We say that two heapd; and H; are mergedif all nodes inH; and H; form one
heapH.

2.2 Description of our algorithm

We only present the intuition behind our algorithm. The fideudocode is in Appendix_2.3. Our primary
goal is to collect the addresses of all nodes in the systetmeatade of maximum id, which we also call
theroot. In order to efficiently distribute the addresses from tligtto all other nodes in the system (so
that all ids are known to every node and a clique is formed)awwveat organizing them into a spanning tree
of constant degree, which in our case is a sorted list, oddierelescending ids. The root would then be
the head of the list. In order to reach a sorted list, we firganize the nodes in rooted trees satisfying the
max-heap property, i.e. a parent (also calieedecessoin the following) of a node has a higher id than
the node itself. The rooted trees will then be merged andtired over time so that they ultimately form a
single sorted list.

Since we want to minimize our message complexity, we had a& for a technique other than the
linearization technique presented(in][21]. So in our protoin order to minimize the amount of messages
sent by the nodes, we allow a node in each round to share iafammonly with its immediatesuccessor
s(z) (which is one of the nodes that considers it as its predegeandpredecessop(z). More precisely,
in each round a node forwards one of its neighbors (i.e. tlesd knows about) in a round-robin manner
to its predecessor. The intuition behind this is that if guewde does that sufficiently often, eventually the

5

root will learn about all ids in the system and will forwardslinformation in a round-robin manner to its
successor, who will then forward it to its successor, andrso o

In order for this process to work, each node must repeateaitypate and update its successor and
predecessor. This is done as follows: Each node choosemtikest node in its neighborhood that is larger
than itself as its predecessor and requests from it to adcapsuccessopfed — request message). Each
node also looks at the nodes which requested to be its succassigns the largest of them as its successor
(pred — accept) and forwards the rest to inew — predecessor). In that way each node has at most one
predecessor and one successor at the end of one round.

We also need to ensure that there exists a path of successmrshie root to all other nodes so that the
information can be forwarded to all. This is initially notetlcase since there exist many nodes that are the
largest in their known neighborhood, thinking they are thetr We call these nodésads. All the nodes
having the same head as an ancestor forhe@. The challenge is tenerge all heaps into one, since
then we have only one head, the root. In order to enable thgingeof the heaps, the heads continuously
scan their neighborhood. A node that receives@ message responds by sending the largest node in its
neighborhood through &canack message to the node that sent thatn message (could be possibly more
than one). Moreover, in each round, the largest node is ate@afded to its predecessqgiorward — head),
which in turn forwards it again to its predecessor, and so on.

We further discuss the process of forwarding an id to a nopl@decessor/successor. Note that when
a node forwards an id throughfarward — from — successor resp. forward — from — predecessor,
the id sent is the one at the head of the Ngtx) resp.L(z). Then the head shifts to the next element of the
(circular) list. When a node receives an id througfvaward— from—successor resp. forward— from—
predecessor message, it stores it at the head of its list. That way we erthiat once a node is forwarded
it will not be delayed by other nodes being forwarded on ity teathe root or the head of the heap. When
a node is inserted into a list, thiesert operation is used. Thawsert(< list >, < node >, < place >)
operation works as follows. It checks whethemode > is already in< list > and if not, it is inserted at
< place >, where< place > can be either head or tail (by head here the head of the list@imnot the
head of a heap as defined above).

To avoid accumulation of unsent ids in the lists (which woliddie an effect on the time and message
complexity) maintained by the nodes, the following rules ased. Whemr has no predecessor that it can
send dorward-from-successamessage to, although it has neighbors greater than itselfiGsnot a head),
it changes its status tmactive, and then informs its successor througteactivatemessage in order for
s(z) not to send itforward-from-successaio z, until z has a predecessor (in that caseaativemessage
is sent tas(x)) to which it can forward the messag€(x) then changes its status#eactive and forwards
the deactivatemessage to its successgs(z)), and so on. In that way no messages that are forwarded to
accumulate alV(z) before being forwarded again and we ensure that once a néolevisrded, it will not
be delayed by other nodes being forwarded. Whebtains a predecessor, it will change its statusctove
and inform through a message of typetivates(z) about that and the information flow can start again.

In order to repair faulty configurations, where a node is fiuto be a successor of more than one
node, we introduce the following rule. If a node receivessages sent by a hode that is not its predecessor
although the sending node should be the predecessor, thedeawill send adelete-successamessage,
correcting the wrong(x) link.

2.3 Pseudo code

In this last section we will present the pseudo code for theeiileed and analyzed algorithm on the next
page. The pseudo code starts with the periodic actions amdstfiows the receive actions, in which every
incoming message is handled according to the specific mesgpe.

Algorithm 1 ACTIONS OF NODE X AT EACH ROUND

forwardtopred: true —

if status(z) # inactive A p(z) # null then > x is not a head
send message(id(x), N(x).head, forward-from-successqix) > forward node to predecessor
N(x).head:=(N(x).head).next > shift head to next element in circular list

checkifhead: true—
if p(z) = null V p(xz) < z then > z is a head op () is invalid
p(z) := min{v € N(z) : v > x}
if p(z) # null then
send message(id(x),pred-request) to p(x)
status(x):=inactive

else > x is a head, scan a node
send message(id(x),scan) to N(x).head
insert(L(x),N(x).head, tail) > acopy of N(x).head is inserted at the end df (x)
N(x).head:=(N(x).head).next

else
send message(id(x),pred-request) to p(x)

forwardtosuc: true —
if s(xz) # null then

if s(z) < xthen > test if s(x) is valid
send message(id(x), L(x).head, forward-from-predeagsss(x) > forward node to successor
L(x).head:=(L(x).head).next

else
s(x)=null

forwardmax: true —
if S(x) # nullthen
maxzN := max{u:u € N(z)}
N(z) := N(z) U S(x)
maxS := max{u: u € S(x)}
if maxS > maxN A p(xz) # null then > forward largest node
send message(id(x),maxS , forward-head) to p(x)
S := 85\ {mazS}
maxN = maxS
forallu € S(z)do > send the maximum to the nodes$fz)
send message(id(x),maxN,scanack) to u
delete(S(x),u)

process: messagen € B(x) —

if m.type = forward — head then > insert the head forwarded froa{x) to N (x), S(x)
if m.id = s(x) then
if m.id ¢ N(x) then
insert(S(x),m.id)
insert(N(x),m.id,tail)

if m.type = scan then > « has been scanned by a headid
insert(S(x),m.id)

if m.type = scanack then
if m.id ¢ N(x) then
insert(S(x),m.id)

if m.type = delete — successor then
if m.id = s(z) then
s(z) = null

3 Correctness

In this section we show the correctness of our approach éoseif-stabilizing clique.

At first we show some basic lemmas. We then show that in lines &ll nodes belong to the same
heap. Then we show that the head of this heap (node with thé@mahid) is connected with every node
and vice versa after an additional time®@fr). From this state it take®(n) more time until every node is
connected to every other node and the clique is formed. Weayfermal definition of the legal state.

Definition 3.1 LetG be a network with node sét andmax = max {v € V'} be the node with the maxi-
mum id. Then G is in &gal stateff Yo € V : N(v) =V — {v} andVv € V — {maz} : p(v) > v and
Vv e V — {mazx} : s(p(v)) = v.

Note that the legal state contains the clique and also adslisteover the nodes. In this section we will
prove the following theorem.

Theorem 3.2 After O(n) rounds the network stabilizes to a legal state.

if m.type = pred — request then
if m.id < id(x) then

if s(x) # nullthen > renew successor if necessary, and rearrange old successor
grandson:min{m.id, s(x)}
s(x):=max{m.id, s(z)}
send message(id(x),pred-accept) to s(x)
send message(id(x),s(x),new-predecessor) to grandson

else
s(x):=m.id
send message(id(x),pred-accept) to s(x)

if m.type = new — predecessor then > renew predecessor
if m.id = p(x) then
if m.id2 > ¢ A m.id2 < p(x) then

p(x)=m.id2

send message(id(x),pred-request) to p(x)

status(x)=inactive

if s(z) # null then
send message(id(x),deactivate) to s(x)

if m.type = pred — accept then > the predecessor has accepieds its successor
if m.id = p(x) then
status(x)=active
if s(x) # nullthen
send message(id(x),activate) to s(x)
else
send message(id(x),delete-successor) to m.id

if m.type = deactivatethen
if m.id = p(x) then
status(x):=inactive
if s(x) # nullthen
send message(id(x),deactivate) to s(x) > forward the deactivation message to successor
else
send message(id(x),delete-successor) to m.id

if m.type = activate then
if m.id = p(z) then
status(x):=active
if s(x) # nullthen
send message(id(x),activate) to s(x) > forward the activation message to successor
else
send message(id(x),delete-successor) to m.id

if m.type = forward — from — successor then > insert the node forwarded fros(z) to N (z)
if m.id = s(x) then
insert(N(x), m.id2, head)

if m.type = forward — from — predecessor then > insert the node forwarded fropx) to N (), L(x)
if m.id = p(z) then
insert(N(x), m.id2, tail)
insert(L(x), m.id2, head)
else
send message(id(x),delete-successor) to m.id

3.1 Phase 0: Recovery to a valid state

In this phase we show that the network can recover if thenaterariableg(z) ands(x) are undefined or
set to invalid values, e.g(z) < z. We therefore define a state as valid state, if the nodes imaected
component given by(x) links form a tree and the successor’s predecessor has te et itself.

Definition 3.3 We say that the networ& is in a valid state ifp(z) > z ands(z) < z forall z € V
whenevep(z) ands(z) are defined and iff = s(z), thenz = p(y).

Theorem 3.4 It takes at most 2 rounds until the network is in a valid state.

Proof. The network may be at an invalid state at the first round weidensThat means that the variables
p(z), s(x) can have invalid values. Socould have set a node as its predecessor (i.e. = p(z)) with

u < z, which is not valid according to our protocol. Despite thegemce of this invalid state, our protocol
can recover from it very fast, so that the actual stabilaraprocedure can start. So if a variable is set faulty,
that isp(z) < x or s(z) > z, it will be set tonull after the first round, once the periodic actions will have
been executed, as it is tested in the acti@ns ki f head and forwardtosuc if p(x) < x and if s(z) > =.
Once each node has computed a valid predecessor, it wikse@uo accept it as a successor. So after the

8

next round each node will (if possible) also have a valid sasor, Moreover if: notices that it is contacted
from multiple nodes that think that has stored them as successargpntacts all these nodes but one (its
true successor) througlelete-successanessages so at next roumnchas no multiple successors. In other
words it always holds that ij = s(x), thenz = p(y). O

For our further analysis we assume that the initial stateliglysince we do not take into account the
first 2 rounds it takes to reach a valid state. So we considefirtst round in which we have a valid state
as the round = 0. Note that due to the periodic actions the network stays ialia state in every round
afterwards.

3.2 Phase 1: Connect all heaps by s-edges

In this phase we show that starting from a valid state alltexjsheaps will eventually be connected by
s-edges (defined below), so that they will merge afterwards.
First we give following definitions.

Definition 3.5 We distinguish between two different kinds of edges thaegish at any time in our network,
the edges in the séf and the ones in the séi;. We say thafz,y) isin E, if y € N(z) and (z,y) in E if
y € S(x), resulting from a scan from. We will call the latter ones-edgesand denote them b, y)s.

Definition 3.6 In the directed graph we define amdirected patlas a sequence of edgés), v1), (v1, v2),
. 7(Uk717vk)1 such thatvi € {1, ce ,]{:} : (?)Z',Uz‘_l) eFEvV (vi_l,vi) € F.

Definition 3.7 We say that two heapd; and H, are s-connectedf there exists at least one undirected path
from one node irH; to one node ind, and this path consists of either s-edges or edges havingrimatas
in the same heap.

Definition 3.8 We say that a subset of s-edg€sC E is as-connectivity seat roundt if all heaps in the
graph are s-connected to each other through edgds.iat roundt.

In the first phase we will show that afté¥(n) rounds all heaps have been connected by s-edges;d et
be the set of edgds:, v) € E at timet = 0. We then show that all these edges are scanné{ir) rounds,
giving us the connections via s-edges.

Theorem 3.9 After O(n) rounds the heap$i; and H; connected byu,v) € E° have either merged or
been connected by s-edges .

To prove the theorem we firstly show some basic lemmas needbé analysis.

Lemma 3.10 Let uy, - - - u|) be the elements in a hea in descending order. Then it takes at most
rounds till H is linearized w.r.tu;.

Proof. We prove the lemma by induction on the number of roundsote that all nodes are connected by
thep(x) links only to nodes with larger ids.

Induction basei(= 0): The head of the heap is the node with the maximal id theedfdvially, Vv €
H —{h}:p(v) >vandvv € H — {h} withv > h : s(p(v)) = v.

Induction step4{ — i+1): By induction the heap is linearized w.rd; afteri rounds, thus.;;; has to
be connected te; by ap(z) link. In the: 4+ 1th roundu; sendsnew — predecessor messages to all other
nodes withp(x) = w;, such thats(u;) = u;41 andu,;;; becomes the only node wii(z) = u;. Then
Vve H—{h}:p(v) >vandVv € H — {h} withv > u;1; : s(p(v)) = v. 0

Lemma 3.11 Once one head learns about the existence of another headhdsms are merged.

Proof. Let h; be the head of heafl;. Also, leth; be the head of heaff; scanningh;. There can be two
cases.

e h; < h;: Inthis casep; will no longer be a head onde; scans it and sends it own id.
e h; > h;: In this case]; will no longer be a head and will send pred-requesto h;.

O

In case of a merging of two heags;, H;, the time it takes until the new hedp is linearized w.r.t. a
nodew can increase with respect to the linearization time of the heap before the merging.

Lemma 3.12 If two heapsH; and H; merge to one heafl, the linearization time of a node € H; (resp.
u € Hj) can increase by at mogk/;| (resp. |H;|).

Proof. Without loss of generality let € H;. By Lemmal[3.1ID we know that the linearization time depends
on the number of nodes with a larger id in the heap. The numfberdes with a larger id can increase by at
most the size of the other hedp;. Thus, also the linearization time can only increase by atidd;|. O

From Lemmal[3.70 and Lemnia_3112 we immediately get via an thaduargument:

Corollary 3.13 For any heapH of size|H| in roundt it takes at mostH | — ¢ rounds until it forms a sorted
list.

Lemma 3.14 If a node sends af with a forward-from-successanessage, th&f will not be delayed by
other forward-from-successanessages on its way to the head.

Proof. Once a node sends a message to its predecessor thrdaghaad-from-successomessage, the
number of rounds it takes to reach the head of its heap demmtg®on the path to the head and the lin-
earization steps. When a nogdeeceives dorward-from-successamessage, it stores the receiviecat the
head of its neighborhood ligY (x). So thisid will be forwarded immediately, if is active. If it cannot be
forwarded because is inactive, the node will inform its successor about itctive state and as a conse-
guence no moréorward-from-successomessages will be sent ta That means that no other id can take
the place of the one present at the head/¢f). So, oncer is active again, théd will be sent immediately.

O

As a consequence of the observation of Lenima]3.11 we inteosloime additional notation to estimate
the time it takes until any id is scanned by a head of a heap.

For any edgdu,v) € E° with w € H; andv € H;, whereh; andh; denote the corresponding heads
of the heaps, we define the following notation in a rountlet P!(u) be the length of the path from to
hi, onceH; is linearized w.r.t.u. Let ID!(u,v) be the number of ids forwards or scans before sending
or scanningy the first time. LetLT"(u) be the time it takes until the heap is linearized war.t.i.e. on the
path from the head; to u each node has exactly one predecessor and successoraGoiRil3 shows that
LT'(u) is bounded byH;|.

Let ¢'(u,v) = P'(u) + ID*(u,v) + LT (u). We call ¢*(u, v) the delivery timeof an id v because
if ¢'(u,v) = 0, the id is scanned in roundor has already been scanned by We then denote by
&' (u,v) = min {¢'(w,v) : heap(u) = heap(w)} the minimal delivery time of for any node in the same
heap as..

For any edgéu, v) € E°, withu € H; andv € Hj, (i.e. v ando are in different heaps) anbf (u, v) = 0
the head offf; scans or has scanned= H; resulting in the s-edge, h;),.The following holds:

10

Lemma 3.15 If (u,v) € E°is an edge between two healfsand H;, then®®(u, v) < max {2|H;| +n — ¢,0}
< max {3n — t,0} for all roundst.

Proof. We will show the lemma by induction on the number of roundsr the analysis we divide each
roundt — t + 1 into two parts: in the first step — ¢’ all actions are executed and in the second step
t" — t + 1 all network changes are considered. Thus, we assume thatialhs are performed before the
network changes. This is reasonable as a node is aware ofeham its neighborhood only in the next
round, when receiving the messages. By network changes we the new edges that could be created in
the network. These new edges could possibly lead to the ngeajisome heaps at timer 1.

Induction base(= 0):

For any edgdu,v) € E° betweenH; andH, let z € H; be the node such tha@®(u,v) = ¢°(z,v).
Then P°(x) < H; as the path length is limited by the number of nodes in the héad(z,v) < n
as not more tham ids are in the system, and following from Lemma_3.13[(z) < |H;|. Then
®O(u,v) < ¢(x,v) < 2|H| +n < 3n.

Induction step(— t'): For any edgéu,v) € E° betweenH; andH; letx € H; be the node such that
(I)t(uv U) = (bt(mv U)'
Then in round: the following actions can be executed.

e z is inactive and can not forward an id. Then the heap is noatined w.r.t. z, which implies that
the linearization time decreases by one, L& (z) = LT!(z) — 1 and¢ (z,v) = ¢f(z,v) — 1 <
2|H;| +n —t — 1 as all other values are not affected.

e u is active, but does not sendby aforward-from-successomessage, then the number of ids that
u is sending before decreases by 1. Note that according to Lemimal3rl#gsn’'t sent dorward-
from-successomessage withv in a round before, as then there would be another npde H;
with ¢'(y,v) < ¢'(x,v). ThenID'(z,v) < ID!(z,v) — 1 and ¢ (z,v)) = ¢'(z,v) — 1 <
2\Hi\+n—t—1.

e u sends dorward-from-successomessage withy, then the length of the path farto the head;
decreases by 1 and*!(p(x),v) < P!(z)—14+ID!(z,v)+ LT (z) = ¢'(z,v)—1 < 2|H;|+n—t—1
Thus, in totald? (u, v) < ®(u,v) —1 < 2|H;| +n—t —1<3n— (t+1).

Induction step{ — ¢ + 1): Now we consider the possible network changes and thescisffon the
potential®'*1(u, v). Let againr € H; be the node such thét' (u,v) = ¢'(x,v) for an edggu,v) € E°
betweenH; and H;. The following network changes might occur:

e some heapdd;, and H; with k # i andl # i merge. This has no effect ob' (u,v). Thus,
O (0, v) = d (u,v) < 2/Hy|+n—t—1<3n— (t+1).

e HeapsH; and H;, merge toH]. Obviously the length of the path afcan increase ané'*!(x)
PY(x)+|Hy|. According to Lemmd 3.12 also the linearization time:@fn increase anbi7*+! ()

<
<
LT (z) + |Hy|. In total &+ (u, v) < ' (u,v) + 2|Hy| < 2/H!| +n—t—1<3n—(t+1).

Thus, inroundt + 1, @+ (u,v) < 2|Hy|+n—t—1<3n— (t+1).

O

Hence for every edgeu, v) € E° with u € H; andv € H;, ®(u,v) = 0 after3n rounds, which means
that the head off; scans or has scanned= H; resulting in the s-edgév, h;). Thus, we immediately get
Theorem[3.9.

11

3.3 Phase 2: Towards one heap

Based on the results of Phase 1, we will prove that a&ter) further rounds a clique is formed. For the
purpose of the analysis below, we use the following defingio

Definition 3.16 Letord(x) be theorderof a nodez, i.e. the ranking of the node if we sort allnodes in
the network according to their id (i.e. the node with the &sgidm hasord(m) = 0, the second largest
has order 1, and so on).

Definition 3.17 We define the potential(x,) of a pair of nodes: andy to be the positive integer equal to
w(z,y) =2-ord(z) +2-ord(y) + K(z,y), whereK (z,y) = 1if x > y and 0 otherwise. Also, let for a
set of edged’ C F, A(E') = max(, e {w(u,v)}, if £ # () and O otherwise.

We proceed by showing the following lemma.

Lemma 3.18 Two heapdd;, H; that are connected by an s-edge y); at timet will either stay connected
via s-edgegz;, y;)s at timet + 1 with the property thaty(z;, y;), the potentiakv(x;, y;) of the edges we
consider at time + 1 is smaller that the potentiab(z, y) of the edgdx, y)s we considered at timg or
andy will be in the same heap.

Proof. Let(z,y), be a s-edge connectidg; andH;, i.e.x € H;,y € H;. Then according to our algorithm
the following actions might be executed.

e 1 is the head of{; andy > = theny = p(z) andz sends gred-requesmessage tg, resulting in a
merge ofH; andH;.

e 1 is the head ofH; andz > y andy is a new id, thenz sends ascan-ackto y with its own id
and the edgéy, x), is created connectingl; and H;. Thenw(y,z) = 2ord(z) + 2o0rd(y) + 0 <
20rd(x) + 20rd(y) + 1 = w(z,y).

o 1 forwardsy to p(x) by aforward-headmessage, such thatc S(p(x)) andH; andH; are connected
by (p(2),y)s. Thenw(p(x),y) = 2ord(p(x)) + 2ord(y) + K(p(x),y) < 2ord(x) + 2ord(y) +
K(z,y) = w(z,y).

e 1 receives a new id € S(z) with z = max{v € N(x)}, such that: > y andz > z. Thenx
sends acan-ackcontainingz to y and the s-edgér, y) is substituted by s-edgé€s, z)s and(y, 2)s.
And H, and H; are connected via s-edges. Note that sipcg > = andz > z,y , ord(p(z)) <
ord(z),ord(z) < ord(x) andord(z) < ord(y). The potential of the new edges is(p(z),z) =
20rd(p(x))+20rd(2)+ K (p(x), 2) < 20rd(x)+20rd(y)+K(x,y) = wi(z,y). w(y, z) = 20rd(y)+
20rd(z) + 0 < 20rd(z) + 20rd(y) + K(z,y) = wi(z,y).

e x knows anidz € Hy, with z = max {v € N(z)},z > y andz ¢ S(z). Then one of the following
cases hold:

1. (z,2) € EY, then according to Lemm@a_3]15 a nade- = with u € H; has scanned resulting
in the s-edgé€z, u)s s-connectingd; and Hy.

2. x has received by aforward-from-predecessanessage. Then a node> x with v € H; has
scanned resulting in the s-edgéz, u)s s-connectingd; and Hy,.

3. zwas inS(x) in a previous round, then the edf@je z), existed s-connecting/; and Hy,.

12

4. r has received by aforward-from-successomessage. Then there is a nade z in the sub
heap rooted at such that(v, z) € E°. Then according to Lemma_3]15 a nodec H; with
w > v has scanned and the s-edgéz, w), existed s-connectingl; and Hy. If w > x, H; and
Hj, are s-connected by s-edges, y;)s With V(z;,4;) : (z < w < z; Az < w < y; Az <
ziNz<y)V<w<zAhr<wyANz<z;ANz<y). Ifw<zxthen atleastas many
rounds have passed singehas scanned as there are nodes on the path franto =, because
z has to be forwarded as many times. Then the ddge), has been forwarded or substituted
t times orH; and H;, have merged. TheH,; and H), are s-connected by s-edges, v;)s with
Vizg,y)(z<w<zihz<w<yAz<zAz<y)VE<w<zpAz<wyAz<
i ANz <y;).

In each case sends acan-ackcontainingz to y and the s-edgey, z), is created. And; and H;
are s-connected over s-edges and in all cases the potdmtigdss since for each new s-edge it holds
that at least one node is greater and the other node not stiaiethe nodes in the edge they replace.

e zis the head of{; andx < y, thenH; andH; merge to one heap.

e z is the head off; andx > y andy was inN (x) in a previous round, thef/; and H; are already
s-connected by s-edgés;, y;)s with greater ids by the same arguments as in the case befioee S
the ids are greater, the potential shrinks also here.

O

Lemma 3.19 If E; is an s-connectivity set at rourigdthere exists an s-connectivity 9ét,; at round¢ + 1
such thatA(EHl) < A(Et)

Proof. Let E; be an s-connectivity set a rourtd We replace every edger,y)s € E; with the edges
(zi,v;)s as described in the lemma above. For every pair of heaps #a svconnected atthrough an
edge inE;, there exists a set of s-edges of smaller potential thaheexis the two heaps#@at 1. We include
these edges il ;. But at round all pairs of heaps are s-connected throudghwhich means that at round
t + 1 all pairs of heaps are also s-connected throbgh,. So, E; 1 is an s-connectivity set at rouridt 1.
Also since all the edges iR have less potential as the ones the replacdgyji\(E; 1) < A(Ey). O

Theorem 3.20 After at most 4n+1 rounds, all heaps have been merged into one

Proof. From Theoreni_3]9 we know that all heaps are s-connected@fterrounds. So afte®)(n) rounds
there exists the first s-connectivity seh, with A(Ep) = max(, y)e g, {w(u, v)} = max, v)e g, {20md(u)+
20rd(v) + K(u,v)} < 2n+2n + 1 = 4n + 1. Since for each round and an s-connectivity sdf;, an
s-connectivity sefs;;; for roundt + 1 can be found, such that(E:,;) < A(Ey), (i.e. the potential of the
s-connectivity set shrinks by every round) after at miest- 1 rounds (after the existence Bt) there exists
an s-connectivity sef,, such thatA(E,) = 0. This means thak, is the empty set. Sinc€ is an
empty s-connectivity set connecting all the heaps of thptgrave know that the graph has only one heap.

3.4 Phase 3: Sorted list and Clique
Theorem 3.21 If all nodes form one heap, it také¥(n) time until the network reaches a legal state.
Proof. Since at this point we only have one head the heap will berined afterO(n) rounds. This follows

directly from Lemmal3.13. Once the heap is linearized anchéoa sorted list, each node'd will be sent
to the root, the remaining head, after at mesbunds. So the root will be aware of eved; The root, as

13

it sends according to the round-robin process all its inftiam to its successor, will send afterounds all

theids to it, and the successor will do the same. As a consequelhcedas will receive allids atO(n)

rounds. Adding all this together, aftéx(n) all nodes will know each other and a clique will be constrdcte
O

Combining Theoreni_314, Theorem_B.9, Theorem 13.20 and The@&1 our main theorem Theorem
32 holds.

4 Message complexity

In this section we give an upper bound for the work spent by emcle. We already mentioned that we
will distinguish two types of work. The stabilization worthat is spent until a clique is formed, and the
maintenance work, that is spent in each round in a legal. stsiéecount the work of a node in the number
of messages sent and received.

4.1 Stabilization work

According to Theorem 312 it take®(n) rounds to reach a legal state. In each round each active node
sends a message to its predecessor and its succémwearfl-from-successoiforward-from-predecesspr

and receives a message from thdamgard-from-successoforward-from-predecessr Also, a hode sends

at most onectivate/deactivatenessage to its successor at each round. This gives a rgsuttitk of O(n)

for each node 0O (n?) in total. By the following lemmas we show that the additionsssages sent and
received during the linearization are at m@Xin) for each node.

Lemma 4.1 Each node sends and receives at mBséh) pred-requestpred-acceptind new-predecessor
messages during the linearization phase.

Proof. In each round each node sends at mostmed-requesaind onepred-accepimessage and receives
at most onepred-accepior new-predecessamessage. It remains to show that each node receives at most
O(n) pred-requestind sends at mog?(n) new-predecessamessages. Note that it suffices to show that
each node receives at m@3tn) pred-requestas the number afew-predecessanessages directly depends
on the number of receivaated-requesmessages, to each node, that senpied-requesto « that is notu’
successor, sends aew-predecessanessage. A node only sends at most onmew-predecessanessage

to each other node. By receiving this message changes its predecessor. Thus befergends another
new-predecessanessage to, v has to change its predecessor back.té predecessor is only changed if a
root receives an id greater than its own id, or if the predsmesf a node sendsreew-predecesson cannot

be a head, thus's predecessor is only changed by anothew-predecessanessage. But's predecessor
can not be changed back #cas the id of the new predecessor is strictly decreasing. Byntlonotonicity

it follows that a node: only sends at most onew-predecessanessage to each other nadeThus, every
node only sends and receiv®$n) pred-requestind new predecessor messages. O

Lemma 4.2 Each node sends and receives at m@6&t) scanand scan-ackmessages during the lineariza-
tion phase.

Proof. Only heads of heaps send scan messages. In each round ed&ehéa exactly omecanmessage.
Each scanned node sendscanackmessage back or stores the id of the hea$i(in). Obviously a node can
be scanned by up tedifferent heads in one round. Which would lead to a worko¢h?) by receiving these
messages. But as a node sends the maximal id in its neighdmbrkith ascanackmessage, it is scanned

14

at most once by heads with an id smaller theaz. By receiving this id the scanning node recognizes, if
it is still a head, that it is not the largest id and cannot beadhof the heap and sets its predecessor and
stops scanning. So a node can be scanne® () heads before the heads stop scanning, because they
received ascanack A head that is not the maximal head, that scanned the nodar,seifl only scan the
node one more time and then stop scanning. So a node receivexsB)(n) scan messages from a new
maximal head®(n) messages from the current maximal head, as each head odly se@ scan message
per round, and all other scans increase the number of ildeiads, which is limited b§)(n). Regarding
the scanackmessages, since each head scans only once in each roumgjiesealso at most orseanack
(that result from serscanmessages) message in each round. A nodan also receive scanackmessage
when sending acanackmessage, but this happen only the if the node to whictstiamackwas sent does
not knowz, so all in all at most times. So, all in all, a node receivén) at the whole linearization phase.

O

Lemma 4.3 Each node sends and receives at n@ét) forward-headnessages through the linearization
phase.

Proof. Moreover, a node sends at most doevard-headmessage per round. The numbefarivard-head
messages it receives during the linearization phase iglihtlyO(n). That is because each nodeeceives
oneforward-headmessage from its successor in a round, and possibly fronn ptissible successors, let
u be such one, for which(u) = z. Butwu can only be once a possible successox,0$ince at the next
round it either will be forwarded te(x) and will never have: as its predecessor again, or it becomss).
Since each node can be only once a possible successoy tloe number oforward-headmessages sent
through all possible successors is limitedrhySo, the number dbrward-headmessages it receives during
the linearization phase is limited &9(n). 0

4.2 Maintenance work

Lemma 4.4 As soon as the network forms a stable clique with a stableafish spanning tree, i.e. the
network is in a legal state, each node sends and receives stt®id) messages in each round.

Proof. In a legal state all nodes form a sorted list. Thus, each nadeskactly one stable successor and
one stable predecessor. Then each node sends and receiyaednequesand onegpred-accepmessage.
Each node sends offierward-from-successoand ongorward-from-predecessanessage. Moreover there
is one head that sends oseanmessage, which is received by one other node, and receiesscanack
sent by the scanned node. Thus, each node sends and re@élyemessages in a stable state. O

5 Single Join and Leave Event

The case of arbitrary churn is hard to analyze formally. Theeswill show that the clique can efficiently
recover considering a single join or leave event in a legdést

Theorem 5.1 In a legal state it take®(n) rounds and messages to recover and stabilize after a new node
joins the network. It take®(1) rounds and messages to recover the clique after a node I¢heertwork.

Proof. If a nodew joins the network it creates an ed@e v) to a nodev in the clique. Ifv > u, u sends
a pred-requesto v, v then either accepts as its successor or creates an edge frota v's successor. It
takes at most)(n) rounds untilv reaches its final position in the sorted list. Additionallgendsu’s id to
its predecessor, and aftéx(n) rounds the head insertsto its neighborhood. I < u v sendsu’s id to

15

its predecessor, because it is a new id. Then it takes at@@strounds until the head receive$ id and
scansu, thenu assumes the head to be its predecessor and case 1 holdsOpAftefurther rounds each
nodes receives’s id andu receives the id of all other nodes in the network. Thus, &het) rounds after
a join the nodes form a cliqgue and the sorted list is linedrize

Obviously a clique remains a cligue in case a nadeaves the network. Also the sorted list is immedi-
ately repaired, as the successor of the removed node, asaUpredecessor to be its predecessor and sends
a pred-requestwhich will be accepted as the node has no other successte.thi ifu is the head of the
list, u’s successor will recognize that there is no node with a taiyim its neighborhood and will correctly
assume to be a head of a list and proceed the scanning. O

6 Conclusion

In this paper we introduced a local self-stabilizing timmetavork-efficient algorithm that forms a clique
out of any weakly connected graph. By forming a clique oupathm also solves the resource discovery
problem, as each node is aware of any other node in the net@rkalgorithm is the first algorithm that
solves resource discovery in optimal message complexiithErmore our algorithm is self-stabilizing and
thus can handle deletions of edges and joining or leavingsod

References

[1] James Aspnes and Gauri Shah. Skip graph&ODA pages 384-393, 2003.

[2] Baruch Awerbuch and Christian Scheideler. The hypgrralow-congestion deterministic data struc-
ture for distributed environments. BODA'04 pages 318-327, 2004.

[3] Andrew Berns, Sukumar Ghosh, and Sriram V. Pemmarajuef Bnnouncement: a framework for
building self-stabilizing overlay networks. PODC’10 pages 398-399, 2010.

[4] A. Bhargava, K. Kothapalli, C. Riley, C. Scheideler, Mhdber. Pagoda: A dynamic overlay network
for routing, data management, and multicastingSRAA'04 pages 170-179, 2004.

[5] Lélia Blin, Shlomi Dolev, Maria Gradinariu Potop-Butaru, and Stephane Rovedakis. Fast self-
stabilizing minimum spanning tree construction - using paot nearest common ancestor labeling
scheme. IDISC’10, pages 480-494, 2010.

[6] Lélia Blin, Maria Gradinariu Potop-Butucaru, and Stepe Rovedakis. Self-stabilizing minimum
degree spanning tree within one from the optimal degieBarallel Distrib. Comput.71(3):438-449,
2011.

[7] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Valife secret sharing and achieving simul-
taneity in the presence of faults (extended abstractFORS pages 383—-395, 1985.

[8] Curt Cramer and Thomas Fuhrmann. Self-stabilizing regwvorks on connected graphs. Technical
Report 2005-5, University of Karlsruhe (TH), 2005.

[9] Edsger W. Dijkstra. Self-stabilizing systems in spifedistributed control. Commun. ACM17.:643—
644, November 1974.

[10] Shlomi Dolev and Ronen I. Kat. Hypertree for self-staiig peer-to-peer systemsDistributed
Computing 20(5):375-388, 2008.

16

[11] Shlomi Dolev and Nir Tzachar. Empire of colonies: Ssthhbilizing and self-organizing distributed
algorithm. Theor. Comput. S¢i410(6-7):514-532, 2009.

[12] S.Dolev, N.Tzachar. Spanders: distributed spannipgueders. I'8AC p. 1309-1314, 2010.

[13] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer andcAlfdolman. Skipnet: a scalable overlay
network with practical locality properties. IBSITS'03 pages 9-9, 2003.

[14] Thomas Hérault, Pierre Lemarinier, Olivier Peresutemce Pilard, and Joffroy Beauquier. A model
for large scale self-stabilization. IRDPS pages 1-10, 2007.

[15] R. Jacob, A. W. Richa, C. Scheideler, S. Schmid, and #ublg. A distributed polylogarithmic time
algorithm for self-stabilizing skip graphs. PODC, p. 131-140, 20009.

[16] Ri. Jacob, S. Ritscher, C. Scheideler, S. Schmid. Asalbilizing and local delaunay graph construc-
tion. In Algorithms and Computatigvol. 5878 ofLNCS p. 771-780.

[17] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer.lfArgpairing peer-to-peer system resilient to
dynamic adversarial churn. IRTPS pages 13-23, 2005.

[18] Dahlia Malkhi, Moni Naor, and David Ratajczak. Vicerog scalable and dynamic emulation of the
butterfly. INPODC '02 pages 183-192, 2002.

[19] A.G. Myasnikov, V. Shpilrain, and A. UshakovGroup-based cryptographyAdvanced courses in
mathematics, CRM Barcelona. Birkhauser Verlag, 2008.

[20] Moni Naor and Udi Wieder. Novel architectures for p2plgations: The continuous-discrete ap-
proach. INACM Transactions on Algorithm8(3), 2007.

[21] Melih Onus, Andrea W. Richa, and Christian Scheiddlarearization: Locally self-stabilizing sorting
in graphs. IPALENEX 2007.

[22] Marshall C. Pease, Robert E. Shostak, and Leslie Latng®eaching agreement in the presence of
faults. J. ACM 27(2):228-234, 1980.

[23] HariGovind V. Ramasamy and Christian Cachin. Parsiousasynchronous byzantine-fault-tolerant
atomic broadcast. I®@PODIS pages 88-102, 2005.

[24] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richéadp, and Scott Shenker. A scalable content-
addressable network. BIGCOMM 2001 pages 161-172, 2001.

[25] Antony I. T. Rowstron and Peter Druschel. Pastry: Sualadecentralized object location, and routing
for large-scale peer-to-peer systemsMiddleware '0], pages 329—-350, 2001.

[26] Christian Scheideler and Stefan Schmid. A distribidad oblivious heap. IICALP (2), pages 571—
582, 2009.

[27] Ayman Shaker and Douglas S. Reeves. Self-stabilizingcsired ring topology p2p systems. In
Peer-to-Peer Computingpages 3946, 2005.

[28] Bernhard Haeupler, Gopal Pandurangan, David Pelggm®&ean Rajaraman, Zhifeng Sun. Discovery
through Gossip. '8PAA 2011.

17

[29] lon Stoica, Robert Morris, David Liben-nowell, Davidakger, M. Frans, Kaashoek Frank Dabek,
and Hari Balakrishnan. Chord: A scalable peer-to-peerupabervice for internet applications. In
SIGCOMM pages 149-160, 2001.

[30] Mor Harchol-Balter, Tom Leighton, Daniel Lewin. Resoa discovery in distributed networks. In
PODC '99, pages 229-237, 1999

[31] Shay Kutten, David Peleg, Uzi Vishkin. Determinist&spurce discovery in distributed networks. In
SPAA 01 pages 77-83, 2001.

[32] Kishori M. Konwar, Dariusz Kowalski, Alexander A. Shhteman. Node discovery in networks Jn
Parallel Distrib. Comput. 69, 4 (April 2009pages 337-348, 2009.

18

	1 Introduction
	1.1 Resource Discovery
	1.2 Topological Self-Stabilization
	1.3 Our model
	1.4 Our contributions
	1.5 Structure of the paper

	2 A distributed self-stabilizing algorithm for the clique
	2.1 Definitions
	2.2 Description of our algorithm
	2.3 Pseudo code

	3 Correctness
	3.1 Phase 0: Recovery to a valid state
	3.2 Phase 1: Connect all heaps by s-edges
	3.3 Phase 2: Towards one heap
	3.4 Phase 3: Sorted list and Clique

	4 Message complexity
	4.1 Stabilization work
	4.2 Maintenance work

	5 Single Join and Leave Event
	6 Conclusion

