Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Team Show image information

Team

Muhammad Awais

Contact
Publications
 Muhammad Awais

Computer Engineering

Doktorand

Phone:
+49 5251 60-4348
Office:
O3 125
Web:


Open list in Research Information System

2019

CIRCA: Towards a Modular and Extensible Framework for Approximate Circuit Generation

L.M. Witschen, T. Wiersema, H. Ghasemzadeh Mohammadi, M. Awais, M. Platzner, Microelectronics Reliability (2019), 99, pp. 277-290

Existing approaches and tools for the generation of approximate circuits often lack generality and are restricted to certain circuit types, approximation techniques, and quality assurance methods. Moreover, only few tools are publicly available. This hinders the development and evaluation of new techniques for approximating circuits and their comparison to previous approaches. In this paper, we first analyze and classify related approaches and then present CIRCA, our flexible framework for search-based approximate circuit generation. CIRCA is developed with a focus on modularity and extensibility. We present the architecture of CIRCA with its clear separation into stages and functional blocks, report on the current prototype, and show initial experiments.


2018

CIRCA: Towards a Modular and Extensible Framework for Approximate Circuit Generation

L.M. Witschen, T. Wiersema, H. Ghasemzadeh Mohammadi, M. Awais, M. Platzner, in: Third Workshop on Approximate Computing (AxC 2018), 2018

Existing approaches and tools for the generation of approximate circuits often lack generality and are restricted to certain circuit types, approximation techniques, and quality assurance methods. Moreover, only few tools are publicly available. This hinders the development and evaluation of new techniques for approximating circuits and their comparison to previous approaches. In this paper, we first analyze and classify related approaches and then present CIRCA, our flexible framework for search-based approximate circuit generation. CIRCA is developed with a focus on modularity and extensibility. We present the architecture of CIRCA with its clear separation into stages and functional blocks, report on the current prototype, and show initial experiments.


An MCTS-based Framework for Synthesis of Approximate Circuits

M. Awais, H. Ghasemzadeh Mohammadi, M. Platzner, in: 26th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), 2018, pp. 219-224

Approximate computing has become a very popular design strategy that exploits error resilient computations to achieve higher performance and energy efficiency. Automated synthesis of approximate circuits is performed via functional approximation, in which various parts of the target circuit are extensively examined with a library of approximate components/transformations to trade off the functional accuracy and computational budget (i.e., power). However, as the number of possible approximate transformations increases, traditional search techniques suffer from a combinatorial explosion due to the large branching factor. In this work, we present a comprehensive framework for automated synthesis of approximate circuits from either structural or behavioral descriptions. We adapt the Monte Carlo Tree Search (MCTS), as a stochastic search technique, to deal with the large design space exploration, which enables a broader range of potential possible approximations through lightweight random simulations. The proposed framework is able to recognize the design Pareto set even with low computational budgets. Experimental results highlight the capabilities of the proposed synthesis framework by resulting in up to 61.69% energy saving while maintaining the predefined quality constraints.


Open list in Research Information System

Publications


Open list in Research Information System

Conferences

An MCTS-based Framework for Synthesis of Approximate Circuits

M. Awais, H. Ghasemzadeh Mohammadi, M. Platzner, in: 26th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), 2018, pp. 219-224

Approximate computing has become a very popular design strategy that exploits error resilient computations to achieve higher performance and energy efficiency. Automated synthesis of approximate circuits is performed via functional approximation, in which various parts of the target circuit are extensively examined with a library of approximate components/transformations to trade off the functional accuracy and computational budget (i.e., power). However, as the number of possible approximate transformations increases, traditional search techniques suffer from a combinatorial explosion due to the large branching factor. In this work, we present a comprehensive framework for automated synthesis of approximate circuits from either structural or behavioral descriptions. We adapt the Monte Carlo Tree Search (MCTS), as a stochastic search technique, to deal with the large design space exploration, which enables a broader range of potential possible approximations through lightweight random simulations. The proposed framework is able to recognize the design Pareto set even with low computational budgets. Experimental results highlight the capabilities of the proposed synthesis framework by resulting in up to 61.69% energy saving while maintaining the predefined quality constraints.

@inproceedings{Awais_Ghasemzadeh Mohammadi_Platzner_2018, title={An MCTS-based Framework for Synthesis of Approximate Circuits}, booktitle={26th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)}, author={Awais, Muhammad and Ghasemzadeh Mohammadi, Hassan and Platzner, Marco}, year={2018}, pages={219–224} }


Journal Articles

CIRCA: Towards a Modular and Extensible Framework for Approximate Circuit Generation

L.M. Witschen, T. Wiersema, H. Ghasemzadeh Mohammadi, M. Awais, M. Platzner, Microelectronics Reliability (2019), 99, pp. 277-290

Existing approaches and tools for the generation of approximate circuits often lack generality and are restricted to certain circuit types, approximation techniques, and quality assurance methods. Moreover, only few tools are publicly available. This hinders the development and evaluation of new techniques for approximating circuits and their comparison to previous approaches. In this paper, we first analyze and classify related approaches and then present CIRCA, our flexible framework for search-based approximate circuit generation. CIRCA is developed with a focus on modularity and extensibility. We present the architecture of CIRCA with its clear separation into stages and functional blocks, report on the current prototype, and show initial experiments.

@article{Witschen_Wiersema_Ghasemzadeh Mohammadi_Awais_Platzner_2019, title={CIRCA: Towards a Modular and Extensible Framework for Approximate Circuit Generation}, volume={99}, DOI={10.1016/j.microrel.2019.04.003}, journal={Microelectronics Reliability}, publisher={Elsevier}, author={Witschen, Linus Matthias and Wiersema, Tobias and Ghasemzadeh Mohammadi, Hassan and Awais, Muhammad and Platzner, Marco}, year={2019}, pages={277–290} }


Preprint

CIRCA: Towards a Modular and Extensible Framework for Approximate Circuit Generation

L.M. Witschen, T. Wiersema, H. Ghasemzadeh Mohammadi, M. Awais, M. Platzner, in: Third Workshop on Approximate Computing (AxC 2018), 2018

Existing approaches and tools for the generation of approximate circuits often lack generality and are restricted to certain circuit types, approximation techniques, and quality assurance methods. Moreover, only few tools are publicly available. This hinders the development and evaluation of new techniques for approximating circuits and their comparison to previous approaches. In this paper, we first analyze and classify related approaches and then present CIRCA, our flexible framework for search-based approximate circuit generation. CIRCA is developed with a focus on modularity and extensibility. We present the architecture of CIRCA with its clear separation into stages and functional blocks, report on the current prototype, and show initial experiments.

@article{Witschen_Wiersema_Ghasemzadeh Mohammadi_Awais_Platzner, title={CIRCA: Towards a Modular and Extensible Framework for Approximate Circuit Generation}, journal={Third Workshop on Approximate Computing (AxC 2018)}, author={Witschen, Linus Matthias and Wiersema, Tobias and Ghasemzadeh Mohammadi, Hassan and Awais, Muhammad and Platzner, Marco} }


Open list in Research Information System

The University for the Information Society