Handout zu Beweistechniken

erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün]

Inhaltsverzeichnis

1	Was	s ist ein Beweis?	4		
2	Was ist Vorraussetzung, was ist Behauptung?				
3	3 Beweisarten				
	3.1	Deduktive Beweisführung			
	3.2	Wiederlegungsbeweise	ļ		
	3.3	Induktive Beweise			
4	Wie	e genau/formal muss ein Beweis sein?	6		

1 Was ist ein Beweis?

- vollständige und folgerichtige Argumentation über die Korrektheit einer Aussage
- Eine Aussage enthält überlicherwiese Vorraussetzungen und Behauptungen
- Argumentation muss die Gültigkeit der Behauptungen in all den Situationen nachweisen, in denen die Vorraussetzung gilt
- Die Vollständigkeit einer Argumentation verlangt, dass die Argumentation jeden möglichen Einzelfall überdeckt
- Die Folgerichtigkeit verlangt, dass jedes einzelne Argument in der Argumentationskette als korrekt abgesichert ist und auch von einem nicht wohlgesonnenn Leser akzeptiert werden muss

2 Was ist Vorraussetzung, was ist Behauptung?

Im folgenden sind die wichtigsten Formulierungen und ihre Bedeutung aufgelistet:

- Wenn A, so (dann) B
 - A wird zur Vorraussetzung, B wird zur Behauptung
 - auch A impliziert B, aus A folgt B, B wenn A, A \Rightarrow B
 - Achtung: wenn B gilt, muss A nicht gelten (A muss nicht der Grund sein)
- A genau dann, wenn B, zwei Aussagen A und B sind äquivalent
 - dies entspricht: "Wenn A so B" und "Wenn B so A" (A \Rightarrow B und B \Rightarrow A
 - zu Beweisen ist also einmal "Wenn A so B" und zum Anderen "Wenn B so A"

- Für alle x gilt A bzw. Für alle x gilt A(x)
 - Die Argumentation muss nun die Gültigkeit von A nachweisen, egal welchen konkreten Wert x bekommt. Deswegen setzt man an: Vorraussetzung: Sei x ein beliebiges gewähltes Element. Behauptung: Für dieses Element gilt A(x)
 - folgende Argumente dürfen keine Annahmen darüber benutzen wolchen der vielen möglichen Werte x hat. Sie dürfen aber von einer einmal für die gesamte Argumentation unveränderten Wahl ausgehen.
- Für alle x aus der Menge M gilt A(x)
 - Dies entspricht: Für alle x gilt: Wenn $x \in M$, so gilt A(x)
- Es gibt/existiert ein x, für das A(x)
 - Es gibt mindestens eins
- Es gibt ein x in der Menge M mit A(x)
 - Es gibt ein x, für das gilt: $x \in M$ und es gilt A(x)

3 Beweisarten

Die wesentlichen Beweisarten sind:

Deduktive Beweise: bei sequentieller Verarbeitung

Wiederlegungsbeweise und Gegegenbeispiele: Unmöglichkeitsaussagen Induk-

tionsbeweise: Rekursion/Schleifen

3.1 Deduktive Beweisführung

Deduktive Beweisführung: Logische Beweisschritte von Annahme zur Konklusion

- Der Beweis entspricht einer Folge von Zwischenaussagen
 - Beginne mit (Menge der) Annahmen

- Jede Zwischenaussage folgt schlüssig aus (allen) vorhergehenden Aussagen
- Konklusion ergibt sich als letzter Beweisschritt
- Zulässige Arguemtne in Beweisschritt
 - Logische Schluss: Sind A und A \Rightarrow B bekannt, kann B gefolgert werden
 - Bekannte mathematische Grundsätze (z.B. Arithmetik)
 - Bereits bewiesene Sätze
 - Auflösung von Definitionen
 - Extensionalität von Mengen: M=M' genau dann wenn M⊆ M'∧M'⊆M M⊆ M' genau dann wenn $(\forall x)$ x \in M \Rightarrow x \in M'
 - Gleichheit von zahlen: x=y genau dann wenn weder x<y noch x>y

Beispiel für Auflösen von Definitionen

Wenn S endliche Teilmenge einer Menge U ist und das Komplement von S (bezüglich U) endlich ist, dann ist U endlich.

Definitionen:

S endlich \equiv Es gibt eine Zahl n mit ||S|| = n

T Komplement von $S \equiv T \cup S = U$ und $T \cap S = \emptyset$

Beweis:

Aussage	Beweis
1. S endlich	Gegeben
2. T Komplement von S	Gegeben
3. T endlich	Gegeben
$ 4. S = n$ für ein $n \in \mathbb{N}$	Auflösen der Definition in (1)
$ 5. T = m$ für ein $m \in \mathbb{N}$	Auflösen der Definition in (3)
6. $T \cup S = U$	Auflösen der Definition in (2)
7. $T \cap S = \emptyset$	Auflösen der Definition in (2)
$ 8. U = m + n \text{ für } n, m \in \mathbb{N}$	(4), (5), (6), (7) und Gesetze der Kardinalität
9. U endlich	Einsetzen der Definition in (8)

3.2 Wiederlegungsbeweise

Zeige dass eine Aussage A nicht gilt:

- Beweis durch Widerspruch: A gilt nicht, wenn aus der Annahme von A ein Widerspruch folgt
- Beweis durch Gegenbeispiel: A ist nicht allgemeingültig, wenn es ein einziges Gegenbeispiel gibt
- Beweis durch Kontraposition:
 - Statt wenn H dann K zeige: Wenn nicht K dann nicht H
 - Behauptungen sind aussagenlogisch äquivalent
- Spezielle Anwendung: Indirekte Beweisführung
 - Zeige, dass aus "H und nicht K" ein Widerspruch folgt, Aussagenlogisch äquivalent zu "Wenn H dann K"

Beispiel für Beweis durch Widerspruch

Wenn S endliche Teilmenge einer unendlichen Menge U ist, dann ist das Kompelent von S (bezüglich U) unendlich.

\mathbf{r}	•
Bew	7010
コンケッ	vero.

Dewels.				
Aussage	Beweis			
1. S endlich	Gegeben			
2. T Komplement von S	Gegeben			
3. U unendlich	Gegeben			
4. T endlich	Annahme			
5. U endlich	(1), (4) mit Satz aus Beweis zuvor			
6. Widerspruch	(3),(5)			
7. T unendlich	Annahme (4) muss falsch sein			

3.3 Induktive Beweise

- beweise eine Aussage A für alle natürlichen Zahlen
 - Standartinduktion:
 Gilt A für i und folgt A für n+1, wenn A für n gilt, dann gilt A für alle n>i

• Vollständige Induktion:

Folgt A für n, wenn A für alle j<n mit j \geq i gilt, dann gilt A für alle n \geq i

Mächtiger, da man nicht den unmittelbaren Vorgänger benutzen muss

- Strukturelle Induktion
 - Zeige A für alle Elemente einer rekursiven Datenstruktur Gilt A für das Basiselement und folgt A für ein zusammengeseteztes Element, wenn A für seine Unterelemente gilt, dann gilt A für alle Elemente
 - Häufig eingesetzt für die Analyse von Baumstrukturen (suchen, sortieren), syntaktische Strukturen (Formeln, Programmierpsrachen,...)

Beispiel Induktion

Für alle $n \ge 1$ gilt $n^2 \ge n$.

Beweis: Induktion über n. 1. Induktionsanfang: Zeige Eigenschaft E für n=1 Es gilt offensichtli $1^2 = 1$ Also ist der Induktionsanfang gezeigt.

2. Induktionsschritt: $(n \to n+1)$

Es ist zu zeigen, dass $(n+1)^2 \ge (n+1)$ gilt. Die Induktionsvorraussetzung ist $n^2 n$.

Es gilt $(n+1)^2=n^2+2n+1$. Mit der Induktionsvorraussetzung erhalten wir $(n+1)^2=n^2+2n+1\geq n+2n+1\geq n+1$ 3. Den Beweis des Satzes beenden wir mit q.e.d.

4 Wie genau/formal muss ein Beweis sein?

Ein Beweis ist ein Argument, das den Leser überzeugt

- Präzise genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Zwischenschritte müssen mit "üblichen" Vorkenntnissen erklärbar sein
- Tipp: ausführliche Lösungen entwickeln, bis Sie genug Erfahrungen haben. Bei der Präsentation für andere zentrale Gedanken aus der Lösung extrahieren

• Test: verstehen Kommilitonen die Lösung und warum sie funktioniert?

Literatur

[Bün] BÜNING, Prof. Doktor K.: Folien Veranstaltung Modellierung

[Kre13] Kreitz, Prof. C.: Folien Veranstaltung Theoretische Informatik. letzter Zugriff 04.2013