
Self-Assessment
for

Master Degree Course Computer Science

Department of Computer Science
Paderborn University

Germany

November 27, 2018

The following are exercises for a self-assessment in Computer Science (CS), covering some of the
subjects which a student with a Bachelor degree in Computer Science should know. This self-assessment
is intended to be taken by prospective students of Computer Science at Paderborn University aiming
for a Master degree. The exercises are taken out of written exams in CS Bachelor courses at Paderborn
University. Thanks go to a number of lecturers for preparing the exercises. The exercises are for personal
usage only; copyright is with Paderborn University and the lecturers having prepared the exams.

The first part contains the exercises; the second part the solutions. For a self-assessment, it is highly
recommended to do the exercises without looking at the solutions. Solutions are solely ment for
checking the correctness of answers. As the exercises are prepared by different persons, they differ in
style.

The maths exercises cover linear algebra only. For more exercises in mathematics see e.g. Frank Ayres JR.:
Schaum’s Outline Series; Theory and Problems of Calculus (2nd edition); McGraw-Hill Book Company,
e.g. Chapter 2 on "Limits", Chapter 3 on "Continuity" or Chapter 13 on "Differentiation of inverse
trigonometric functions". Additionally, a certain amount of knowledge in probability theory is necessary.

If a prospective student has difficulties in the majority of exercises (or even, has never heard of the
concepts in the exercises), this is a clear indication that the student does not possess enough knowledge
in Computer Science to successfully complete the Master degree course in CS at Paderborn University.

© Paderborn University

Self-Assessment Master CS

Part I

Exercises

1 Mathematics

Exercise 1. (easy)

Consider the four vectors

v1 =





−1
3
1



 , v2 =





0
1
1



 , v3 =





−2
3
−1



 and v4 =





1
t2 − 2

t





in R3 where t ∈ R.

(a) Do the vectors v1, v2, v3 form a basis of R3?

(b) Determine all t ∈ R such that v1, v2, v4 is a generating set of R3.

Exercise 2. (more difficult)

Let a, b, c ∈ R. Show that the real (2× 2)-matrix

A=
�

a b
b c

�

is diagonalizable.

2 Programming, Programming Languages, Software Engineering,
Databases

2.1 Programming

The questions below use Java, Python, or a combination of the two. If you are familiar with other
modern programming languages, that is fine as well. We do not insist upon any particular programming
language as a prerequisite.

Exercise 3. Methods.

Write a static Java method countEven which takes an integer array as argument and returns the number
of even values in it. Write a main method in which countEven is called.

Exercise 4. Recursion.

Let the function f be defined for a ≤ b by

f (a, b) =

¨

f (a,
�

a+b
2

�

) + f (
�

a+b
2

�

+ 1, b) if a < b
b else.

What does f calculate? Is f using direct recursion or is it using indirect recursion? Give the source code
of either a Java or a Python implementation of f which uses recursion.

Exercise 5. Trees.

Let the following Java class BinTree for binary trees be given.

public class BinTree {
BinTree left;
BinTree right;
int data;

public BinTree (BinTree l, BinTree r, int d) {

© Paderborn University

Self-Assessment Master CS

left = l;
right = r;
data = d;

}

public BinTree (int d) {
left = null;
right = null;
data = d;

}
}

(a) Write a Java program which generates the following tree.

1

32

54

(b) Write a method int numberOfLeaves() which recursively counts the number of leafs in the
tree. A leaf is a node without successors.

Example: The above tree has 3 leafs.

Exercise 6. Closures.

Use Python to implement a function f that takes a single number m as its parameter. It shall return a
function that does the following: Take a list of numbers as its parameter and return a list which has all
numbers smaller than m removed. Also give a sample invocation of your function.

Exercise 7. Inheritance.

What output does the following Java code produce if new Line() is called?
public abstract class Chain {

public int a = 42;
public Chain() {

System.out.println("Forty−Two");
}

}

public class Line extends Chain {
public Line() {

System.out.println(a);
}

}

2.2 Programming Languages

Exercise 8. Syntax.

The following productions of a context-free grammar with starting symbol spec are given:

(p1) spec ::= interfaces
(p2) interfaces ::= interfaces interface
(p3) interfaces ::=
(p4) interface ::= ’ifac’ ident ’;’
(p5) interface ::= ’ifac’ ident ’extends’ super ’;’
(p6) super ::= idents
(p7) idents ::= ident idents
(p8) idents ::= ident

(a) Determine the sets of terminals and nonterminals.

(b) Draw the derivation tree for the following sentence:

© Paderborn University

Self-Assessment Master CS

ifac ident ; ifac ident extends ident ident ;

(c) We add a production p9 to the above grammar:

(p9) idents ::=

This modification additionally allows empty lists of ident terminals. Unfortunately it turns the
grammar into an ambiguous grammar. Show the ambiguity of this extended grammar. Give a
short explanation of your proof.

Exercise 9. Runtime stack.

(a) Complete the drawing of the runtime stack (1 snapshot) for the execution of the following program
until the point of time where “Halt” is being output. Include the parameter and variable values in
the stack frame (like shown in main’s frame) and draw the references to the static predecessor
frames (static links). Mark frames that have been removed by crossing them out.

main
1k

 1 proc main() {
 2 k = 1;
 3 proc a(n) {
 4 proc b() {
 5 if (n == k) {
 6 print "Halt";
 7 }
 8 }
 9
 10 if (n == 1) {
 11 a(n + 1);
 12 }
 13 b();
 14 }
 15 a(k);
 16 }

(b) The stack frames contain references to the static predecessors. What are those references used for
in general and particularly in the above example?

2.3 Software Engineering

Exercise 10. Model of the problem domain.

Specify a model of the problem domain that models the description of a container terminal contained in
the reference as accurately and completely as possible. To do this, use the following predefined class
frame.

© Paderborn University

Self-Assessment Master CS

Reference:

A container terminal consists of at least one storage area for containers, at least one straddle
carrier, at least one gantry crane and at least one berth for container ships.

A storage area consists of 50 individual storage bays. On one storage field, up to four
containers can be stacked on top of each other. A gantry crane stands at a berth and can
transport up to two containers. A straddle carrier can only transport one container and is
located either at a berth or a storage area. There is at least one gantry crane at a berth and
there can be at most one berth.

Each container ship has a capacity that specifies how many containers can be transported.
The maximum capacity is 3000 containers.

At the storage area, trucks can stand to be loaded. A truck can carry up to two containers.

A container can be empty or full and has a container number.

Furthermore, a container is located either on a container ship, a truck, a straddle carrier, a
gantry crane or on a storage bay. Containers can be stacked.

© Paderborn University

Self-Assessment Master CS

Exercise 11. Statecharts.

(a) Convert the following statechart into a flat state machine without superstates.

(b) The information in the reference describes important functions of a microwave oven. Use it to
construct a UML statechart of the system that contains all the properties described as complete
and precise as possible. Use superstates to keep the number of transitions low.

Reference:

We’re looking at a microwave oven. It has a mechanical main powerswitch, with which the
microwave oven can be completely switched on and off.

When the microwave is switched on, it goes to standby mode and the power can be adjusted
with a push button. When switched on for the first time, it is set to 600W. Press the push
button to switch to 200W, 400W and then back again to 600W. The selected power is stored
when the microwave oven is turned on and off.

To start the warm-up process, the user can press one of three buttons: If the start button is
used, the unit will run until the stop button is pressed. When ssing the "1 minute" button,
the oven will run until the time has elapsed or until the user presses the stop button. The "5
minutes" button behaves analogously. Even during the warm-up process, the output power
can be adjusted.

Of course, the microwave oven also has a door that can be opened and closed, even when
switched off. However, the warm-up process cannot be started when the door is open, and
while the warm-up process is running the door cannot be opened.

On delivery, the microwave oven is switched off and the door is closed.

Exercise 12. Design patterns.

In the reference you find Java code that creates a window, draws a black square and creates a quit
button. In addition, you find a simplified class diagram of the used Java library Swing (Attention: The
Java code contains further classes). You will also find the Composite Pattern and the Observer Pattern in
the reference as assistance.

(a) How are the classes of the source code and the Swing library related to the Observer Pattern and
the Composite Pattern? For each class in the following table, specify the role in the Composite
Pattern and the role in the Observer Pattern. If you cannot find a match for a class in a pattern,
type "n/a".

© Paderborn University

Self-Assessment Master CS

Class in Reference Role in Composite Pattern Role in Observer Pattern

AbstractButton

ActionEvent

ActionListener

Application

Component

Container

Graphics

JButton

JFrame

JComponent

JPanel

MainPanel

Window

(b) How are the methods related to the Observer Pattern and the Composite Pattern? Specify a
mapping between the methods from the reference and the methods from the respective pattern.

Method in Reference Method in Composite Pattern Method in Observer Pattern

actionPerformed

add

addActionListener

paint

paintComponents

(c) Have a look at the class diagram of the Swing library in the reference. How does the Composite
Pattern in the Swing library differ from the Composite Pattern in the lecture (see below) regarding
leaf nodes?

Reference:

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.Graphics;
import java.awt.Window;
import javax.swing.AbstractButton;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JPanel;

class MainPanel extends JPanel {
@Override
public void paint(Graphics g) {

g.fillRect(100, 50, 25, 25);

© Paderborn University

Self-Assessment Master CS

super.paintComponents(g);
}

}

public class Application implements ActionListener {
public Window createWindow() {

AbstractButton quitButton = new JButton("Quit");
quitButton.setBounds(150, 50, 100, 25);
quitButton.addActionListener(this);

JPanel panel = new MainPanel();
panel.setLayout(null);
panel.add(quitButton);

Window window = new JFrame();
window.setBounds(0, 0, 400, 200);
window.add(panel);
return window;

}

public void actionPerformed(ActionEvent event) {
System.exit(0);

}

public static void main(String[] args) {
Application app = new Application();
Window window = app.createWindow();
window.setVisible(true);

}
}

Class Diagram of the Swing library (simplified)

© Paderborn University

Self-Assessment Master CS

Composite-Pattern from lecture

Observer-Pattern from lecture

2.4 Databases

Exercise 13. Functional dependencies and schema design.

Given is the relation RA = {A, B, C , D, E, F} and the set of functional dependencies FA = {AF → B, A→
C , EF → D, D→ AF, F → E, D→ C}.

(a) Prove or disprove that {EF} is a unique key.

Given are RN = {A, B, C , D, E} and Fmin = {A→ C , B→ A, BE→ D, D→ B}. Unique keys are {BE} and
{DE}.

(a) Name all breaches of the 3rd Normal Form that occur within the universal relation RN .

(b) Compute a schema in 3NF for the given universal relation RN and the minmal set of functional
dependencies Fmin using the schema synthesis approach.

Given is R = {A, B, C , D, E, F} and the set of functional dependenciesF = {A→ B, FB→ C , F → AD, F →
B, E→ BC D}.

(a) Compute the minimal functional dependency set for F .

Exercise 14. Recovery.

(a) Given is the following history of transactions. The objects A, B, C and D are stored on pages
with page IDs PA, PB, PC or PD respectively. At the beginning, the values of the objects are
A= 0, B = 0, C = 0 and D = 0.

Hint: wri te(C , V) means the value V is written to object C .

© Paderborn University

Self-Assessment Master CS

T1 T2
1. BOT
2. BOT
3. write(A, 10)
4. write(B, 20)
5. write(C , 30)
6. commit
7. write(D, 40)

Assign each of the following disk states a combination of the replacement strategies steal or ¬steal
and force or ¬force. Each combination has to be assigned exactly once.

Replacement strategy A B C D

10 20 30 0

0 0 30 0

10 0 30 0

0 20 30 0

(b) Complete the log entries for the above given history within the following table.

LSN TA ID Page ID Redo Undo Prev-LSN

#1 T1 BOT

#2 T2 BOT

#3

#4

#5

#6

#7

#8

(c) If we assume that the log is empty before starting the above given exercise. How many lines the
log contains at least after having performed the operations of line 7 of the history on the database?
Justify your answer

(d) Assume that we use the combination of replacement strategies steal and ¬force and the following
data is stored on disk:

PA PB PC PD

LSN = #3 LSN = #0 LSN = #0 LSN = #7
A= 10 B = 0 C = 0 D = 40

(a) What are the LSNs of log entries that are redone and undone during the redo and undo
phase of recovery. Respect the correct order of each phase.

Redo:

Undo:

(b) Which CLRs are added to log during the undo phase?
Hint: You might not need all lines of the table.

© Paderborn University

Self-Assessment Master CS

LSN TA ID Page ID Redo Prev-LSN Undo-NextLSN

Exercise 15. Logical query optimization.

Given is the following SQL query:
SELECT t i t l e FROM Newspaper , Authors , A r t i c l e

WHERE Newspaper . name=worksfor
AND Authors . name=author
AND age > 50
AND p r i c e > 310;

(a) Draw the logical query tree for this SQL query. Assume the following relations (prime attributes
are printed bold, foreign keys are printed in intalics.)

Newspaper:

name price
NY Post 300
LA Times 320
Wall Street Journal 360
USA Today 180
Chicago Tribune 0

Authors:

name age gender worksfor
Peter 28 male NY Post
Lars 46 male NY Post
Susanne 28 female LA Times
Elvis 36 male Wall Street Journal
Sarah 54 female Wall Street Journal
Anne 28 female USA Today
Bertie 62 male USA Today
Rolf 26 male Chicago Tribune

Ar ticle:

id title author publishedin
10001 Young and successfull Peter NY Post
10002 Black Friday Deals Susanne LA Times
10003 Costs of Growth Susanne LA Times
10004 The Brutal Reality of Brexit Elvis Wall Street Journal
10005 DAX rises above 16000 Sarah Wall Street Journal
10006 No pain, no gain Anne USA Today
10007 Cutting corners Bertie USA Today
10008 Bad offers Rolf Chicago Tribune

(b) Draw the optimal query tree using the rules of logical query optimization. Calculate the number
of intermediate results and the selectivity of all selections and joins in relation to the input size.

3 Modelling, Algorithms and Complexity

3.1 Logics and Modelling

Exercise 16. Logic.

© Paderborn University

Self-Assessment Master CS

• Let the following two propositional logic formulae over the atoms A, B, C be given:

α= (A∨ C)∧
�

¬A∨ (¬B ∧ C)
�

β = ¬C → B

(a) Complete the following truth table:

A B C β A∨ C ¬B ∧ C ¬A∨ (¬B ∧ C) α

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

(b) Is the formula α a tautology, satisfiable or contradictory?

(c) Are α and β logically equivalent?

(d) Is β a semantic entailment of α?

• Let p be a unary predicate. Are the predicate logic formulae ∃x ¬p(x) and ¬∀x p(x) logically
equivalent?

Exercise 17. Sets.

Give the extensional description and the cardinality of the following sets U , V and W . In this, A= {a, b}
und B = {b, c}.

(a) U = ; ∪ {;} ∪ {{;}}

U = |U |=

(b) V = (A× A)∩ (A× B)

V = |V |=

(c) W = (A× B) \ ((A× {;})∪ (B × A))

W = |W |=

Exercise 18. Regular languages.

(a) Give a finite state automaton accepting the regular language (a+ b)∗.c.d∗.

(b) Give a regular expression describing the language accepted by the following finite state automaton.

a
c

b

© Paderborn University

Self-Assessment Master CS

3.2 Computability and Complexity

Exercise 19. The symmetric difference L1∆L2 = (L1 ∨ L2) \ (L1 ∧ L2) of two languages L1, L2 ⊆ Σ∗ is
the set of all words of Σ∗ that are contained in exactly one of the two languages. Show the following: If
L1, L2 are decidable, then L1∆L2 is also decidable.

Hint: Start with a deterministic Turing machine (DTM) M1 that decides L1 and a second DTM M2 that
decides L2. Then construct a 2-band DTM ML1∆L2

, that decides L1∆L2.

Exercise 20. Can the following languages be enumerated recursively? Justify your answer. If a language
can be enumerated recursively, describe a DTM that accepts the language. Otherwise, show that it is not
enumerable by doing a reduction from a suitable language.

a) L1 := {〈M〉 | M holds for at least one input}

b) L2 := {〈M〉 | M holds for infinitely many inputs}

c) L3 := {(〈M1〉, 〈M2〉, 〈M3〉) | L(M1) = L(M2)∩ L(M3)}

Exercise 21. We define the problem One-in-three-3SAT (1in3SAT): The problem 1in3SAT is defined as
3SAT, but with the difference that it has to be decided whether a fulfilling assignment of the variables
exists, so that in each clause exactly one literal is true.

Show that 3SAT ≤p 1in3SAT (≤p = polynomially reducible).

3.3 Data Structures and Algorithms

Exercise 22. Binary Max Heaps.

A binary max heap is a data structure to store keys. It is defined by the the following two properties:

(a) Form invariant
A binary max heap is a complete binary tree. That means, all the tree’s levels (except possibly the
last) are fully filled, i.e., each node has exactly two children. If the tree’s last level is not complete,
the nodes of that level are filled from left to right.

(b) Heap invariant
The key stored in each node is greater or equal to the keys in the node’s children.

A binary max heap may be stored using an array A. The keys are stored in the following way:

(a) The root is at A[0].

(b) The children of the element stored in A[i] are stored in A[2i + 1] and A[2i + 2] respectively.

(c) The parent of the element stored in A[i] is stored in A
�

b i−1
2 c
�

.

Tasks

(a) Observe the array A= [5,10, 10,4, 9,6, 8,3, 2,8, 6].
Draw the binary tree implied by this array and the rules given above.

(b) Does array A store a correct binary max heap?
If not, state which of the heap’s properties are violated.

(c) Apply the operation MAXHEAPIFY(A,0) given below to array A.
Draw the corresponding tree before each (recursive) execution of MAXHEAPIFY.

© Paderborn University

Self-Assessment Master CS

Algorithm 1 MAXHEAPIFy(A,i)
1: n←− SIZE(A) . Denotes the maximal number of elements in A
2: l ←− 2i + 1
3: r ←− 2i + 2
4: lar gest ←− i
5: if l < n and A[l]> A[lar gest] then
6: lar gest ←− l
7: if r < n and A[r]> A[lar gest] then
8: lar gest ←− r
9: if lar gest 6= i then

10: SWAP(A[i], A[lar gest]) . Swaps the elements in A[i] and A[lar gest]
11: MAXHEAPIFY(A, lar gest)

Exercise 23. Dijkstra’s Algorithm.

Given an undirected weighted graph G := (V, E, w) and a stating node s ∈ V Dijkstra’s algorithm can
be used to find the shortest path from s to all other nodes. The following pseudocode describes the
algorithm:

Algorithm 2 DIJKSTRA(G:=(V,E,w),s)
1: for v ∈ V do
2: d[v]←∞
3: π[v]← nil
4: d[s]← 0
5: S←− ;
6: Q←− V
7: while Q 6= ; do
8: u← EXTRACTMIN(Q) . Removes element with lowest distance from Q
9: S← S ∪ {u}

10: for (u, v) ∈ E do
11: if d[u] +w(u, v)< d[v] then
12: d[v]← d[u] +w(u, v)
13: π[v]←− u

Task

Observe the following unidirected weighted graph G:

s a

b

f

e

c

d

10

5

2

1

3

5

4

6
3

5

1

1

36

5

Apply Dijkstra’s algorithm to G with s as the starting node.
After each execution of the while loop give the following properties:

(a) The content of the set S.

(b) The length of the most recently found path.

(c) For each node v ∈ V \ S its current distance d[v] to s and its predecessor π[v].

© Paderborn University

Self-Assessment Master CS

4 Operating Systems and Computer Architecture, Security

4.1 Operating Systems

Exercise 24. Scheduling – Round Robin.

We assume a single CPU and single core system!

Let P1 to P5 be processes with the arrival and service times given in Table 1. A process is selected by
Round Robin scheduling and then processed using a time quantum of 2 time units. New processes will
be appended at the end of the ready queue. If a process is completed within its time quantum, the next
waiting process is scheduled immediately.

Process Arrival time Service time

P1 1 5
P2 2 4
P3 4 3
P4 6 8
P5 7 6

Table 1: Properties of the processes P1 to P5.

Fill the following Gantt diagram indicating which process is scheduled at which time unit. Processes
that are ready-to-run shall be marked ’o’ and the currently scheduled process shall be marked ’X’. To
ease the algorithm, we assume that the process switch takes 0 time units.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P1

P2

P3

P4

P5

Calculate the average response time:

Average response time tm = .

. .

. .

Exercise 25. Resource allocation – Mutual Exclusion.

Consider the C program on page 16. We assume the C program has been compiled with the following
options -std=c11 and -O0, and linked with the option -lpthread. The program compiles without
errors.

(a) Identify and mark critical sections by listing the respective line numbers.

. .

. .

. .

(b) Which output would be naively expected?

© Paderborn University

Self-Assessment Master CS

. .

. .

. .

(c) What’s the name of the underlying problem?

. .

. .

. .

(d) Which output could appear due to this problem?

. .

. .

. .

(e) Modify the number (sticking to the original objective) in order to fix this bug (indicate line numbers
and new code lines)!

. .

. .

. .

1 #include <pthread.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4

5 int a = 3;
6 int* b;
7 int num = 0;
8

9 pthread_mutex_t calc_mutex;
10

11 void* print(void* id_p) {
12

13 if (num++ == 0) pthread_mutex_lock(&calc_mutex);
14

15 printf("%d\n", a + *b);
16

17 if (--num == 0) pthread_mutex_unlock(&calc_mutex);
18

19 return 0;
20 }
21

22 void* calc(void* id_p) {
23

24 pthread_mutex_lock(&calc_mutex);
25

26 --a;
27 b[0]++;
28

29 pthread_mutex_unlock(&calc_mutex);

© Paderborn University

Self-Assessment Master CS

30

31 return 0;
32 }
33

34 int main(int argc, char* argv[]) {
35 pthread_t id[10];
36 b = malloc(sizeof(int));
37 *b = 4;
38

39 for (int i=0; i < 10;) {
40 pthread_create(&id[i++], NULL, calc, 0);
41 pthread_create(&id[i++], NULL, print, 0);
42 }
43 for (int i=0; i < 10; i += 1) {
44 pthread_join(id[i], NULL);
45 }
46

47 free(b);
48

49 return 0;
50 }

Exercise 26. Computer networking – Round trip time.

We assume a client is connecting to a server using TCP. The data rate between client and server is limited
to 10 Mbit/s. The distance between both systems is l = 10000 km and we assume a propagation speed
of c = 3× 108 m/s. For simplicity, we also assume that our messages have a length of 0 B.

(a) Calculate the Round Trip Time (RTT) between client and server; provide the complete equation.

(b) What changes if the data rate is increased to 100 Mbit/s?

(c) What changes if the propagation speed is reduced to cneu = 2× 108 m/s?

4.2 Computer Architecture and Security

Exercise 27. Logic minimization.

(a) Given the circuit in Figure 1.

Determine the set of minterms for the logic function z = f (a, b, c, d, e):

E = {

© Paderborn University

Self-Assessment Master CS

&

&

&

&

&

&

&

&

&

&

≥ 1

≥ 1

≥ 1 z

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

Figure 1: Circuit Netlist

}

(b) Given the set of minterms

E = {11000,11100, 01011,11011, 00011,

00111,10011, 00001,01001, 00000}

Find the set of all prime implicants P out of E using the Quine-McCluskey algorithm. Use the
given table.

© Paderborn University

Self-Assessment Master CS

L0 Ø

P ={ }
(c) Given the logic function f with four inputs a, b, c and d. The sum-of-products form is given by

f = m2 +m5 +m6 +m7 +m9 +m10 +m11 +m12 +m13 +m14 +m15

Fill out the truth table given in Table 3.

Hint: Each entry in the truth table represents a binary coded number. The entry 0000 is abbreviated
with m0.

(d) Assume that the first phase of the Quine-McCluskey algorithm provides the following prime
implicants:

−− 10,−1− 1,−11−, 1−−1,1− 1−, 11−−
Find a minimum subset of prime implicants covering all minterms using the second phase of the
Quine-McCluskey algorithm.

Prime implicant chart 1:

P m m m m m m m m m m m

© Paderborn University

Self-Assessment Master CS

a b c d f

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Table 2: Truth table for f

List all essential prime implicants which can be identified in the first round:

{ }

Prime implicant chart 2:

P m m m m m m m m m m m

List the minimum subset of prime implicants covering all minterms:

{ }.
(e) Given the set of minterms

E = {0010,0101, 0110,0111, 1001,1010,

1011,1100, 1101,1110, 1111}

for the logic function f (a, b, c, d). Find the minimal sum-of-products form for f using the given
Karnaugh-map:

© Paderborn University

Self-Assessment Master CS

1 1

1

1

1 1

1

1

00

0

0

0

0

0 0

a

b

c

d

f
1 1

1

1

1 1

1

1

00

0

0

0

0

0 0

a

b

c

d

f

Ersatzdiagramm, ungültige Lösung streichen!
Spare K-map. Cross out invalid solution!

Minimal sum-of-products form for f :

{ }.

Exercise 28. Multiple choice.

For the following questions, there might be none, one or several correct answers per question. Tick off
all correct answers.

(a) What is the result of this MIPS assembly language program:

x in $t0, y in $t1
xor $t1, $t0, $t1
xor $t0, $t1, $t0
xor $t1, $t1, $t0

x in $t0, y in $t1

x in $t0, x in $t1

0 in $t0, 0 in $t1

y in $t0, x in $t1

(b) What are characteristics of a RISC instruction set architecture?

fixed instruction length

many and complex instructions

load/store architecture

register/memory operations

(c) Which statements hold for a write-back cache?

Cache and main memory are kept consistent.

© Paderborn University

Self-Assessment Master CS

Each cache block requires a dirty bit.

Write-back works only for set associative caches.

(d) What is the average rotational latency for a hard disk with 15000 rpm?

0.5 ms

1 ms

2 ms

3 ms

(e) What are similarities of superscalar and VLIW processors?

Both are multiple issue processors.

For both the compiler assigns instructions to execution units.

Both have an ideal CPI of less than one.

Both can profit from instruction caches.

Exercise 29. Pipelining.

Consider a processor with a 5-stage pipeline (IF, ID, EX, ME, WB). The processor does not use forwarding
and the register file can either be read or written within a single clock cycle.

The following assembly language program is executed on this processor:

1: lw $1, 100($3)
2: sub $2, $4, $1
3: add $5, $2, $1
4: mul $6, $2, $1
5: or $7, $2, $1
6: add $8, $2, $1
7: sw $8, 100($3)

(a) Resolve any pipeline hazards by stalling the pipeline and fill in the diagram in Figure 2 to show
the pipeline allocation.

(b) Consider an improved processor design that supports forwarding and where writes to the register
file occur in the first half of a clock cycle and reads occur in the second half of the clock cycle. Fill
in the diagram in Figure 3 to show the pipeline allocation. Indicate forwarding with arrows.

(c) What is the speedup achieved with version (b) over version (a)?

Exercise 30. Consider a 2 GHz processor with a two-level cache. The L1 cache has a hit time of 0,5 ns
and a miss rate of 10%. The L2 cache has a hit time of 24 clock cycles, a hit rate of 95% and a miss
penalty of 200 ns. Both caches use the same block size.

(a) What is the average memory access time for this two-level cache?

© Paderborn University

Self-Assessment Master CS

lw $1, 100($3)
sub $2, $4, $1
add $5, $2, $1
mul $6, $2, $1
or $7, $2, $1
add $8, $2, $1
sw $8, 100($3)

IF ID EX ME WB

1 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22clock cycle 23 24

Figure 2: Pipeline allocation (a)

lw $1, 100($3)
sub $2, $4, $1
add $5, $2, $1
mul $6, $2, $1
or $7, $2, $1
add $8, $2, $1
sw $8, 100($3)

IF ID EX ME WB

1 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22clock cycle 23 24

Figure 3: Pipeline allocation (b)

(b) Designers have come up with an alternative solution that employs a one-level cache. This cache
has a hit rate of 99%, a miss penalty of 200 ns and a hit time of 0,5 ns. What is the average
memory access time for this cache? Should it be preferred over the two-level cache?

Exercise 31. IT-Security.

(a) What is "Salting" in the context of password hashing, and which type of attacks does it prevent?

(b) What is a SYN-Flooding Attack? Which technique can be used to prevent this attack?

(c) Explain "Kerckhoffs’ Principle" and its meaning for cryptography!

© Paderborn University

Self-Assessment Master CS

Part II

Solutions

5 Mathematics

Solution to Exercise 1:

(a) We test whether v1, v2, v3 are linearly independent. Let α1,α2,α3 ∈ R with

α1v1 +α2v2 +α3v3 = 0. (1)

This equality is equivalent to the following three equations

−α1 + −2α3 = 0,
3α1 + α2 + 3α3 = 0,
α1 + α2 − α3 = 0.

The first equation yields α1 = −2α3. The second equation then yields α2 = −3α1 − 3α3 =
6α3 − 3α3 = 3α3. The third equation yields no further information: it is a consequence of the first
two equations by adding twice the first equation to the second equation.

Hence for any α3 ∈ R there is a unique solution (α1,α2,α3) of the equation (1). For example,
choosing α3 = 1 yields the linear dependence relation

−2v1 + 3v2 + v2 = 0.

Hence v1, v2, v3 are not linearly independent. In particular, they do not form a basis of R3.

(b) From the lecture course we know that v1, v2, v4 form a generating set of R3 if and only if the
determinant of the matrix

A :=





−1 0 1
3 1 t2 − 2
1 1 t





(whose columns are the given vectors) is non-zero. We compute this determinant using the rule of
Sarrus.

det(A) = −t + 0+ 3− (1+ 0− (t2 − 2)) = t2 − t = t(t − 1).

This determinant is zero if and only if t ∈ {0, 1}. Hence the vectors v1, v2, v4 form a generating set
of R3 if and only if t ∈ R \ {0,1}.

Solution to Exercise 2:

We compute the characteristic polynomial χA of A.

χA = det
�

X − a −b
−b X − c

�

= (X − a)(X − c)− b2 = X 2 − (a+ c)X + ac − b2.

The zeros of χA in R are the eigenvalues of A: R2→ R2 (known from the lecture course). The solution
formula for the zeros of a quadratic polynomial shows that the zeros of χA (in C) are

1
2

�

a+ c ±
Æ

(a+ c)2 − 4(ac − b2)
�

.

Let D be the term under the square root sign. Then

D = a2 + 2ac + c2 − 4ac + 4b2 = a2 − 2ac + c2 + 4b2 = (a− c)2 + (2b)2

is a sum of squares of real numbers and hence a non-negative real number. We distinguish two cases.

Case D > 0: Then χA has the two distinct zeros 1
2 (a + c +

p
D) and 1

2 (a + c −
p

D), i. e. A has two distinct
eigenvalues. From the lecture course it is known that any linear endomorphism of Rn with n
distinct eigenvalues is diagonalizable. Hence A is diagonalizable.

Case D = 0: From 0 = D = (a− c)2 + 4b2 we deduce a− c = 0 and b = 0. Hence A=
�

a 0
0 a

�

is a diagonal

matrix and trivially diagonalizable.

© Paderborn University

Self-Assessment Master CS

6 Programming, Programming Languages, Software Engineering,
Databases

Solution to Exercise 3:
public class EvenCounter {

public static int countEven(int[] arr) {
int count=0;
for (int i=0; i < arr.length; i++) {

if (arr[i] % 2 == 0)
count = count + 1;

}
return count;

}
public static void main(String[] args){

int[] arr = {5,56,23,77,−5,99,100,−6};
System.out.println(countEven(arr));

}

}

Solution to Exercise 4:

The function f calculates the sum of all numbers from a to b. It uses direct recursion. Sample source
code (Python version):
def f(a, b):

if a == b:
return b

m = int((a + b) / 2)
return f(a, m) + f(m + 1, b)

Solution to Exercise 5:
public class BinTree {

BinTree left;
BinTree right;
int data;

public BinTree (BinTree l, BinTree r, int d) {
left = l;
right = r;
data = d;

}

public BinTree (int d) {
left = null;
right = null;
data = d;

}

public int countLeafs() {
int number = 0;
if (left != null)

number = number + left.countLeafs();
if (right != null)

number = number + right.countLeafs();
if (left == null && right == null)

return 1;
else

return number;
}

}

public class BinTreeExercise {

© Paderborn University

Self-Assessment Master CS

public static void main(String[] args) {
BinTree bt = new BinTree

(new BinTree(new BinTree(4),new BinTree(5),2),
new BinTree(3),
1);

System.out.println(bt.countLeafs());
}

}

Solution to Exercise 6:
def f(m):

def g(L):
return [x for x in L if x >= m]

return g

g = f(2)
print(g([1, 2, 3]))

Solution to Exercise 7:

It outputs Forty-Two and 42, in this order. Solution to Exercise 8:

(a) The sets of terminals T and nonterminals N:

T = {’ifac’, ident, ’extends’, ’;’}
NT = {spec, interfaces, interface, super, idents]

(b) The derivation tree for the sentence:

ifac ident ; ifac ident extends ident ident ;
spec

interfaces

interfaces interface

interface ifac ident extends super ;

ifac ident ; idents

ident idents

ident

(c) A grammar is ambiguous if there is a sentence in the language of this grammar for which there
are two derivation trees. For our grammar such a sentence is

ifac ident extends ident ;

© Paderborn University

Self-Assessment Master CS

It has two different derivation trees:
spec

interfaces

interface

ifac ident extends super ;

idents

ident idents

spec

interfaces

interface

ifac ident extends super ;

idents

ident

Solution to Exercise 9:

(a) Runtime stack snapshot at the point of time where “Halt” is being output.

main
1k

 1 proc main() {
 2 k = 1;
 3 proc a(n) {
 4 proc b() {
 5 if (n == k) {
 6 print "Halt";
 7 }
 8 }
 9
 10 if (n == 1) {
 11 a(n + 1);
 12 }
 13 b();
 14 }
 15 a(k);
 16 }

a
1n

a
2n

b

b

(b) The static link points to the frame of the function that contains the definition of the current
function. It is necessary for languages with nested functions to allow access to values (parameters,
variables) stored in the stack frames of surrounding functions.

For our example the static links are needed to access the values of k and n in function b.

Solution to Exercise 10:

© Paderborn University

Self-Assessment Master CS

Solution to Exercise 11:

(a)

(b)

© Paderborn University

Self-Assessment Master CS

Solution to Exercise 12:

(a)

© Paderborn University

Self-Assessment Master CS

Class in Reference Role in Composite Pattern Role in Observer Pattern

AbstractButton /Composite /Subject

ActionEvent n/a /State

ActionListener n/a /Observer

Application /Client /ConcreteObserver

Component /Data n/a

Container /Composite n/a

Graphics n/a n/a

JButton /Composite /ConcreteSubject

JFrame /Composite n/a

JComponent /Composite n/a

JPanel /Composite n/a

MainPanel /Composite n/a

Window /Composite n/a

(b)

Method in Reference Method in Composite Pattern Method in Observer Pattern

actionPerformed update

add add_child

addActionListener attach

paint do_something

paintComponents do_something

(c) There are no Leaf Nodes. Leaf nodes must be a sub-class of component (see class diagram).

Solution to Exercise 13:

(a) {EF} is a superkey, because EF → RA (according to the RAP algorithm). But EF → RA (F → E),
{F} which is a proper subset of {EF} is a superkey as well. Thus, {EF} is not minimal and
therefore, {EF} is not a unique key.

Given are RN = {A, B, C , D, E} and Fmin = {A→ C , B→ A, BE→ D, D→ B}. Unique keys are {BE} and
{DE}.

(a) A→ C breaches 3NF as A is no superkey and C is no prime attribute.

B→ A breaches 3NF as B is no superkey and A is no prime attribute.

(b) For BE→ D create:
R1 = {B, D, E}
F1 = {BE→ D D→ B}
For A→ C create:
R2 = {A, C}
F2 = {A→ C}
For B→ A create:
R3 = {A, B}
F3 = {B→ A}
As R1 already contains a unique key, no further relation is created.

(a) (a) Simplifying the right-hand side: F → AD is replaced by F → A and F → D; E → BC D is
replaced by E→ B, E→ C and E→ D

(b) Simplifying the left-hand side: FB→ C is replaced by F → C , because F → B

(c) Remove all redundant FDs: F → B is redundant, because F → A and A→ B

(d) Combine all FDs with identical left-hand side: Fmin = {A→ B, F → AC D, E→ BC D}

Solution to Exercise 14:

© Paderborn University

Self-Assessment Master CS

(a)

Replacement strategy A B C D

steal, force 10 20 30 0

¬steal, ¬force 0 0 30 0

¬steal, force 10 0 30 0

steal, ¬force 0 20 30 0

(b)

LSN TA ID Page ID Redo Undo Prev-LSN

#1 T1 BOT

#2 T2 BOT

#3 T1 PA A+=10 A-=10 #1

#4 T2 PB B+=20 B-=20 #2

#5 T1 PC C+=30 C-=30 #3

#6 T1 commit #5

#7 T2 PD D+=40 D-=40 #4

#8

(c) 6 lines: According to WAL principle, before executing the commit of line 6, all log entries have to
be written securely (i.e., to disk). Line 7 might be already written to log but does not need to be.

(d) Assume that we use the combination of replacement strategies steal and ¬force and the following
data is stored on disk:

(a) Redo: #4, #5

Undo: #7, #4

(b)
LSN TA ID Page ID Redo Prev-LSN Undo-NextLSN
<#8> T2 PD D-=40 #7 #4
<#9> T2 PB B-=20 #8 #0

Solution to Exercise 15

(a)

πt i t le

σN .name=works f or∧Aut.name=author∧age>50∧price>310(1)

×(320)

×(40) Ar t.(8)

N .(5) Aut.(8)

(In total 40+ 320+ 1= 361 intermedate results are computed.)

© Paderborn University

Self-Assessment Master CS

(b)

πt i t le

\Aut.name=author (1)

πAut.name

\N .name=wors f or (1)

πt i t le,author

Ar t.(8)

πname

σprice>310(2)

πname,works f or

σage>50(2)

Z .(5) πname,age,works f or

Aut.(8)

2+ 2+ 1+ 1= 6 intermediate results are computed. Selectivities:

• 2
5 = 0.4 for σprice>310

• 2
8 = 0.25 for σage>50

• 1
2·2 = 0.25 for \N .name=works f or

• 1
1·8 = 0.125 for \Aut.name=author

7 Modelling, Algorithms and Complexity

Solution to Exercise 16:

• (a)

A B C β A∨ C ¬B ∧ C ¬A∨ (¬B ∧ C) α

0 0 0 1 0 0 1 0

0 0 1 0 1 1 1 1

0 1 0 1 0 0 1 0

0 1 1 1 1 0 1 1

1 0 0 1 1 0 0 0

1 0 1 0 1 1 1 1

1 1 0 1 1 0 0 0

1 1 1 1 1 0 0 0

(b) α is satisfiable.

(c) no

(d) no

• yes

Solution to Exercise 17:

(a) U = ; ∪ {;} ∪ {{;}}

U = {;, {;}} |U |= 2

© Paderborn University

Self-Assessment Master CS

(b) V = (A× A)∩ (A× B)

V = {(a, b), (b, b)} |V |= 2

(c) W = (A× B) \ ((A× {;})∪ (B × A))

W = {(b, a), (b, b)} |W |= 2

Solution to Exercise 18:

(a)

a, b

c

d

(b) (a∗.c.b)∗.c

Solution to Exercise 19:

Let M1 be a DTM that decides L1 and M2 a DTM that decides L2. We construct the following 2-band
DTM ML1∆L2

that decides L1∆L2.

ML1∆L2
: Input w

(a) Copy w to band 2.

(b) Simulate M1 with input w on band 1 and M2 with input w on band 2.

(c) If both simulations accept or both reject, reject. Otherwise, accept.

We have to show that L1∆L2 is the language that is decided by ML1∆L2
and that the DTM decides the

language.

Let w ∈ L1∆L2 be the input. That means that w is exactly of one of the two languages L1, L2. Therefore,
the input w is accepted by exactly one of the turing machines M1 and M2, and rejected by the other one.
This causes the machine ML1∆L2

to accept the input w which yields w ∈ L(ML1∆L2
).

Let us now assume that w /∈ L1∆L2. That is, w is either in both languages or in none of them. But then
the Turing machines M1 and M2 will either both accept the input w or both reject the input. So ML1∆L2

will also reject the input w and therefore, w /∈ L(ML1∆L2
).

From the fact that ML1∆L2
rejects any input that is not in L1∆L2 follows, that ML1∆L2

decides the language
L1∆L2.

Solution to Exercise 20:

a) L1 is recursively enumerable.
Proof by construction of a DTM M ′, which works as follows with input w ∈ {0,1}∗:

(a) If w 6= 〈M〉 for a DTM M , reject.

(b) Set i = 1.

(c) Simulate successively M for all x with |x | ≤ i for i steps.

(d) If M holds with input x within the i steps, accept.

(e) Otherwise set i = i + 1 and go to step c).

It remains to be shown that the DTM M ′ accepts the language L1, i.e., it accepts all words from L1
and does not accept all words that are not from L1 (i.e., rejects or does not hold).

Let w ∈ L1. Then w= 〈M〉, where M holds for at least one input z. Name s the number of steps
after which M with input z holds. At the latest in step i =max{|z|, s}, M is simulated with input z
for i steps and holds. Thus, also M ′ holds.

Let w /∈ L1. Then w 6= 〈M〉 for a DTM M and M ′ rejects or w= 〈M〉, where M does not hold on
any input. In particular, there is no i and no input x with |x | ≤ i for which M holds within i steps.
Thus, also M ′ does not hold.

© Paderborn University

Self-Assessment Master CS

b) L2 is not recursively enumerable.
We show H̄ ≤ L2. Define f : {0, 1}∗→ {0, 1}∗ for this:

f (w) =

¨

〈M accept〉 w 6= 〈M〉x für eine DTM M und x ∈ {0,1}∗

〈Mx〉 w= 〈M〉x für eine DTM M und x ∈ {0,1}∗

where M accept is a DTM that accepts any input and Mx works as follows for input z ∈ {0,1}∗:

(a) Simulate M with input x for |z| steps.

(b) If M with input x does not stop within |z| steps, accept z.

(c) Otherwise, enter an infinite loop.

The f function is computable for the following reasons:

• The check if w= 〈M〉x for a DTM M and x ∈ {0,1}∗ can be done with a DTM.

• M accept is a DTM, which goes from the start state directly into the accepting state at every
input, so M accept is easy to construct and 〈M accept〉 is also computable.

• Mx can be constructed from 〈M〉 and x by adding an additional counter to the simulation of
M , which is checked after each step to see if a certain limit (length of the input word) has
already been exceeded. 〈Mx〉 can also be computed.

It remains to show: w ∈ H̄⇔ f (w) ∈ L2.

Let w ∈ H̄.
⇒ w 6= 〈M〉x for a DTM M and x ∈ {0,1}∗ or w= 〈M〉x , where M is a DTM that does not hold
with input x ∈ {0,1}∗.
Case 1: f (w) = 〈M accept〉, where M accept holds with all inputs⇒ f (w) ∈ L2.
Case 2: f (w) = 〈Mx〉. Since M with input x does not hold within finite many steps, there is no
input z, so M holds within |z| steps on input x . Mx thus accepts any input in the second step.
⇒ f (w) ∈ L2.

Let w /∈ H̄.
⇒ w= 〈M〉x , where M is a DTM that holds with input x ∈ {0, 1}∗. Let s be the number of steps
after which M will hold with input x . Only for inputs z ∈ {0, 1}∗ with |z|< s, M with input x does
not hold, i.e., only for these inputs Mx holds. Since the number of z ∈ {0, 1}∗ with |z|< s is finite,
Mx holds only on finite many inputs.
⇒ f (w) /∈ L2.

c) L3 is not recursively enumerable.
We reduce from the emptiness problem (should have been introduced in the lecture): L; =
{〈M〉 | L(M) = ;}.

f (w) =

¨

(〈M;〉, 〈M〉, 〈Maccept〉) w= 〈M〉 für eine DTM M
(〈M;〉, 〈Maccept〉, 〈Maccept〉) otherwise

Here Maccept is a DTM which accepts every input and M; is a DTM which accepts no input, so
L(Maccept) = {0,1}∗ and L(M;) = ;. It is clear that there are corresponding DTMs with a trivial
transition function, so f is computable.

Let w ∈ L;. Then w = 〈M〉 with L(M) = ;. So also the intersection of this language with every
other set is empty and it follows tahtL(M;) = ;= L(M)∩ L(Maccept). Thus, f (w) ∈ L3.

Let w /∈ L;. Then either w is not a valid Gödel number, which obviously implies f (w) /∈ L3, or
w= 〈M〉 with {x} ⊆ L(M) for a x ∈ {0,1}∗. But then L(M;) = ; ⊂ {x} ⊆ L(M)∩ L(Maccept) and
f (w) /∈ L3.

Solution to Exercise 21:

We prove this by reducing 3SAT into 1in3SAT.

The transformation works as follows: For each of the ci = {x i1, x i2, x i3}, we add 4 new variables,
ai , bi , ci , di and produce three new clauses:

{ x̄ i1, ai , bi}, { x̄ i2, bi , ci}, { x̄ i3, ci , di}

© Paderborn University

Self-Assessment Master CS

Suppose the original c1 ∧ c2 ∧ . . .∧ cm has n variables and k clauses, our transformation will produce an
instance of n+ 4k variables and 3k clauses. This transformation is obviously carried out in polynomial
time.

Then, we need to prove that our transformed instance will have a solution under 1in3SAT condition if
and only if the original instance does under 3SAT condition.

(⇒) Firstly, suppose our transformed instance has a solution, which means exactly one literal per clause
is set to true. We want to show that the original instance will have a solution, too.

Suppose in the original instance clause ci , x i1, x i2, x i3 are all set to false. This means that in the second
clause we produce, either bi or ci (but not both) must be true. Otherwise it is a contradiction to exactly
one literal has to be true. So either in the first or the third transformed clause, there will be at least
two variables set to true (either x̄ i1 and bi or x̄ i3 and ci , but not both). This is a contradiction to our
1in3SAT condition. So in the original clause ci , at least one of three literals has to be true. Therefore,
the original instance must have a solution under 3SAT condition.

(⇐) Secondly, suppose the original instance c1 ∧ c2 ∧ . . .∧ cm has a solution. Therefore, there must be at
least one literal set to be true in each clause.

Suppose in clause ci ,

a) x i2 is set to true, we can set bi and ci to false in the second transformed clause and set ai = x i1
and di = x i3.

b) x i2 is set to false and both x i1 and x i3 are set to true. We can set ai to true, bi to false, ci to true
and di to false.

c) only x i1 is set to true. We can set bi to true and ai , ci and di to false.

d) only x i3 is set to true. We can set di to true and ai , bi and ci to false.

In all these cases, the three transformed clauses corresponding to ci will have exactly one literal set to
true in each clause. Therefore, the transformed instance will have a solution under 1in3SAT condition.

Solution to Exercise 22

(a) The implied tree looks as follows:

5

10

4

3 2

9

8 6

10

6 8

(b) No. The heap invariant is violated as A[0] = 5 is the parent of A[1] = 10, but it holds 5< 10!

(c) MAXHEAPIFY(A, 0):

5

10

4

3 2

9

8 6

10

6 8

MAXHEAPIFY(A, 1):
10

5

4

3 2

9

8 6

10

6 8

© Paderborn University

Self-Assessment Master CS

MAXHEAPIFY(A, 4):
10

9

4

3 2

5

8 6

10

6 8

MAXHEAPIFY(A, 9):
10

9

4

3 2

8

5 6

10

6 8

Solution to Exercise 23

(a) S = {s}, d(s) = 0
V \ S a b c d e f

d[v] 10 5 ∞ ∞ ∞ 6
π[v] s s nil nil nil s

(b) S = {s, b}, d(b) = 5
V \ S a c d e f

d[v] 8 10 ∞ 9 6
π[v] b b nil b s

(c) S = {s, b, f }, d(f) = 6
V \ S a c d e

d[v] 7 10 7 9
π[v] f b f b

(d) S = {s, b, f , a}, d(a) = 7
V \ S c d e

d[v] 10 7 9
π[v] b f b

(e) S = {s, b, f , a, d}, d(d) = 7
V \ S c e

d[v] 10 8
π[v] b d

(f) S = {s, b, f , a, d, e}, d(e) = 9
V \ S c

d[v] 10
π[v] b

(g) S = {s, b, f , a, d, e, c}

8 Operating Systems and Computer Architecture, Security

Solution to Exercise 24:

© Paderborn University

Self-Assessment Master CS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P1 X XP1 o oP1 X XP1 o o o o o oP1 X

P2 oP2 X XP2 o o o oP2 X X

P3 o o oP3 X XP3 o o o o o o oP3 X

P4 o o o o oP4 X XP4 o o o oP4 X XP4 o oP4 X XP4 o oP4 X X

P5 o o o o o o oP5 X XP5 o o oP5 X XP5 o oP5 X X

Average response time tm =
14+19+6+6+21

5 = 66
5 = 13.2

Solution to Exercise 25:

(a) 15
26–27
13 and 17

(b) Five times the number seven

(c) Reader-writer-problem

(d) Five times another sum as seven

(e) New global pthread_mutex_t, ..._lock and ..._unlock before and after modifying num.

Solution to Exercise 26:

(a) RTT= 2×
l
c
= 2×

10× 106 m

3× 108 m/s
=

1
15

s= 0.066667 s

(b) Nothing

(c) RTT= 2×
l

cneu
= 2×

10× 106 m

2× 108 m/s
= 0.1 s

Solution to Exercise 27:

(a) E = { 11111,01100,11011,10011,00011,

00100,10111,11101,01101,00000 }
(b)

© Paderborn University

Self-Assessment Master CS

L0 Ø L1 Ø L2 Ø

00000 Ø 0000- 0-0-1

00001 Ø 000-1 Ø - -011

00011 Ø 0-001 Ø

01001 Ø 00-11

11000 Ø 0-011 Ø

00111 Ø -0011 Ø

01011 Ø 010-1 Ø

10011 Ø 11-00

11100 Ø -1011 Ø

11011 Ø 1-011 Ø

P = {0000−, 00− 11,11− 00, 0− 0− 1,−− 011}

(c)

a b c d f

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

(d) Prime implicant chart 1:

© Paderborn University

Self-Assessment Master CS

P m2 m5 m6 m7 m9 m10 m11 m12 m13 m14 m15

0010 0101 0110 0111 1001 1010 1011 1100 1101 1110 1111

- - 1 0 X X X X

- 1 - 1 X X X X

- 1 1 - X X X X

1 - - 1 X X X X

1 - 1 - X X X X

1 1 - - X X X X

List all essential prime implicants which can be identified in the first round:

{ −− 10(cd),−1− 1(bd), 1−−1(ad), 11−−(ab) }
Prime implicant chart 2:

P m m m m m m m m m m m

List the minimum subset of prime implicants covering all minterms:

{ −− 10(cd),−1− 1(bd), 1−−1(ad), 11−−(ab) }
(e)

Spare K-map. Cross out invalid solution!

Minimal sum-of-products form for f :

{ cd, bd, ad, ab }
Solution to Exercise 28

(a) x in $t0, y in $t1

© Paderborn University

Self-Assessment Master CS

x in $t0, x in $t1

0 in $t0, 0 in $t1

X y in $t0, x in $t1

(b) X fixed instruction length

many and complex instructions

X load/store architecture

register/memory operations

(c) Cache and main memory are kept consistent.

X Each cache block requires a dirty bit.

Write-back works only for set associative caches.

(d) 0.5 ms

1 ms

X 2 ms

3 ms

(e) X Both are multiple issue processors.

For both the compiler assigns instructions to execution units.

X Both have an ideal CPI of less than one.

X Both can profit from instruction caches.

Solution to Exercise 29

© Paderborn University

Self-Assessment Master CS

(a)

lw $1, 100($3)
sub $2, $4, $1
add $5, $2, $1
mul $6, $2, $1
or $7, $2, $1
add $8, $2, $1
sw $8, 100($3)

IF ID EX ME WB

1 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22clock cycle 23 24

IF MEID EXID WBIDID

IF IF IF IF

IF

ID ID ID ID EX ME WB

IF IF IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID ID ID ID EX ME WB

(b)

lw $1, 100($3)
sub $2, $4, $1
add $5, $2, $1
mul $6, $2, $1
or $7, $2, $1
add $8, $2, $1
sw $8, 100($3)

IF ID EX ME WB

1 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22clock cycle 23 24

IF MEID EX WBID

IF IF

IF

ID EX ME WB

ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

(c) Speedup = clock_cycles(a) / clock_cycles(b) =
20
12 = 5/3.

Solution to Exercise 30:

Consider a 2 GHz processor with a two-level cache. The L1 cache has a hit time of 0.5 ns and a miss
rate of 10%. The L2 cache has a hit time of 24 clock cycles, a hit rate of 95% and a miss penalty of 200
ns. Both caches use the same block size.

(a) average_memory_access_time = average_memory_access_timeL1.
average_memory_access_timeL1 = hit_timeL1 + miss_rateL1×miss_penaltyL1.
miss_penaltyL1 = average_memory_access_timeL2.
average_memory_access_timeL2 = hit_timeL2 + miss_rateL2×miss_penaltyL2.
1 clock cycle takes 0.5 ns.

average_memory_access_timeL2 = 24×0.5 ns + (1-0.95)×200 ns = 22 ns.

average_memory_access_timeL1 = 0.5 ns + 0.1×22 ns = 2.7 ns.

(b) average_memory_access_time = hit_time + miss_rate×miss_penalty =
0.5 + 0.01×200 ns = 2.5 ns

The solution with the one-level cache has a lower average memory access time than the two-level
cache and should thus be preferred.

Solution to Exercise 31:

(a) Salting essentially means that a username-password combination is stored as tuple

(username, pwdhash, salt)

where pwdhash = H("Password" || salt). salt is a bit string of sufficient length (typically 16 bits
or more), chosen at random and individually for each user.

Salting makes attacks with precomputed hash tables, such as Rainbow Tables, infeasible.

(b) A SYN-Flooding attacker sends many TCP SYN packages to a server. For each packet, the server
may then have to reserve memory for a TCP connection (e.g. to store sequence numbers, ports

© Paderborn University

Self-Assessment Master CS

numbers, IP addresses, etc.). The goal of the attacker is to exhaust the server’s memory, and thus
make it impossible for honest users to connect.

The standard countermeasure implemented in many modern computer systems are TCP Cookies.

(c) Kerckhoffs’ Principle states that the security of a cryptosystem must depend only on the secrecy of
keys, but not on the secrecy of the algorithms used. In practice, algorithms are very difficult to
keep secret, and often easily recovered by reverse engineering. A prime example where hiding the
encryption algorithm has failed dramatically is DVD encryption, which is completely broken today.

© Paderborn University

