

5.0 Representation

Goals of this chapter:

- introduce students to wealth of (visual) representations
- aid student in choosing best representation for special case
- aid student in combining or designing new representations

5.1 General discussion

teach how to choose from representations by considering

- Reality problem domain
- data
- computer environment
- viewer

5.2 Techniques

We will show visualization techniques organized into two categories

- Single techniques, such as surface view, glyphs or image display
 - presented in form of a non-exhaustive list of techniques
 - discussing their relevant properties
- Organizational structure that usually encompass several single techniques
 - presented in form of a few examples

5.2.1 List of Single Visualization Techniques

5.2.1.1 Histograms (1-d and 2-d), Pie and Bar charts

Representative data characteristics

1-d arrays of scalars, continuous or discrete data values

Techniques [BRO92]

- bar chart: length of bar indicates value of (class of) items
- 1-d histogram: length of bar indicates number of elements in sub-category
- 2-d histogram: brightness/color indicates number of elements in sub-category
- pie chart: sector of circle indicates values of (class of) items as fractions of a whole

5.2.1.2 Line Graphs

- Representative data characteristics
 - 1-d, (continuous), scalar data arrays, e.g. y = f(x)
- Technique
 - curve drawn through single data points
- Special note on effectiveness
 - no mental interpolation necessary
 - use interpolation method meaningful to problem space
- Reference(s) [BRO92]

5.2.1.3 (n-dimensional) Scatter Plots

Data characteristics: multivariate data space, such as botanical observations

Technique

- define coordinate system appropriate for data
- project data and coordinate system to display space
- use points or symbols to define data element locations

Effectiveness

- position is primary visual cue
- animation (change of view point) for 3-d effect
- dimensions > 2: use projections ("Grand Tour")

Interaction: control over view point, rotation, "rocking"; "conditional box" Reference [CRA90]

Example of Scatter Plots

[CRA90]

5.1.2.4 Glyphs/Icons

Representative data characteristics

multivariate data spaces, such as computer performance measurements, census data

Technique

- define 1,2, or 3 data variables as spatial dimensions
- compose small graph (glyph/icon) for each additional variable
- display each glyph as "complex pixel" in 1,2,or 3d space

Special note on effectiveness

- distinguish between macroscopic/microscopic interpretation of glyphs
- several visual attributes used in each glyph
- "The whole is greater than the sum of its parts" (Gestalt Theory)
- Special note on interaction
- convert (parts of) glyphs to original data elements **References** [GOR89], [GRI90], [BED90], [INS94]

Example of Glyphs

5.2.1.5 Contour Lines (Isolines)

- Representative data characteristics
 - 2-d scalar data arrays, e.g. z = f(x,y), such as elevation map
- Technique
 - trace lines of constant value (=threshold value) of 2-d raster
- Special note on effectiveness
 - annotate selected isolines

5.2.1.6 Surface View

Representative data characteristics

- 2-d scalar data arrays, e.g. z = f(x,y), such as elevation map

Wireframe technique

- treat "z" as elevation over 2-d terrain and use projection from 3-d to 2-d
- project mesh of lines parallel to x and y axes

Shaded surface technique

- treat "z" as elevation over 2-d terrain and use projection from 3-d to 2-d
- project each data element / remove hidden surfaces
- assign grey value / color value

Special note on effectiveness

source of grey value/color value must be transparent to viewer

5.2.1.7 Image Display

- Representative data characteristics
 - 2-d scalar data arrays, e.g. z = f(x,y), such as LANDSAT image
- Technique
 - straightforward: map each 2-d data element to brightness or color of screen pixel
- Special note on effectiveness
 - color/brightness scale necessary

5.2.1.8 Color Transformations

Representative data characteristics

- up to three scalar data arrays defined over same two dimensions, e.g. zi = f(x,y), i=1,2,3 such as three TM (Thematic Mapper) channels of same terrain

Technique

- choose same technique (e.g. image display or surface) for each data array
- read zk = f(i,j), k=1,2,3 for each pixel location on screen, resulting in 3 brightness values (z1, z2, z3)
- use (z1, z2, z3) as coordinates to color space, e.g. RGB, HSV \xdf 'color'
- use 'color' to paint pixel at screen location (i,j)

Special note on effectiveness

- use RGB for data arrays of same data type; use HSV or HLS for different data types
- effective for correlation/association of data elements

Examples of Color Transformations

Digital Elevation Map of Oetztal, Austria: hue is elevation; intensity is illumination.

RGB transformation of three IRAS images. Data by NASA/JPL.

5.2.1.9 Volume Slices

Representative data characteristics

- 3-d scalar data arrays, e.g. w = f(x,y,z), such as medical scans of human organs

Technique

- intersect 2-d plane(s) with volume
- use image display for visual representation
- project planes to screen

Special note on effectiveness

- use appropriate coordinate system to depict location of plane(s) in volume
- animation (change of view point), hidden surfaces and perspective geometry for 3-d effect

5.2.1.10 Basket Weave

Representative data characteristics

- 3-d scalar data arrays, e.g. w = f(x,y,z), such as medical scans of human organs

Technique

- calculate contour lines at cross-sections parallel to coordinate planes
- project contour lines to screen
- draw thick, opaque bands

Special note on effectiveness

- use appropriate coordinate system to depict location of plane(s) in volume
- hidden surfaces and perspective geometry for 3-d effect

Reference [SEW88]

Example of Basket Weave

[SEW88]

5.2.1.11 Surface Rendering

Representative data characteristics

- 3-d scalar data arrays, e.g. samples of w = f(x,y,z), where w (voxel value) might indicate color, opacity, density, material, or time.

Technique

- surface reconstruction (define surfaces in 3-d raster) (e.g. by using marching cubes algorithm or surface detection)
- surface rendering (illumination, shading, projection)

Reference - [KAU91]

5.2.1.12 Volume Viewing

Representative data characteristics

3-d scalar data arrays

Technique [KAU91], [KAU94]

- project volumetric data elements onto the display space, by either
- backward projection (object-order): scan voxel space and project to screen
- forward projection (image-order): scan screen pixels and determine voxel contributions
- combination
- assign pixel brightness/color

Special note on effectiveness

transparency/translucency

5.2.1.13 Tiny Cubes

- Representative data characteristics
 - discrete 3-d scalar data array
- Technique
 - place small objects, such as cubes and spheres, in the volume
 - determine brightness/color of pixel by the value at the corresponding location
- Special note on effectiveness
 - open space between objects allows insight

Reference(s) [NIE90]

Example of Tiny Cubes

[NIE90]

5.2.1.14 Arrows

Representative data characteristics

vector fields

Technique

 use arrow as glyph, vary following attributes of arrow depending on variables: direction/length/width/reflection properties of shaft, type/color of arrow head

Special note on effectiveness

- avoid cluttering by reducing amount of data to display
- additional problems in 3-d through directional ambiguity

Reference(s) [POS94]

Good and bad examples of arrows

Examples of Arrows

5.2.1.15 Particle traces and motion, streamlines, stream

ribbons and surfaces

- Representative data characteristics
 - vector fields
- Techniques [POS94], [HEL94]
 - particle traces: polyline tracing particle path
 - particle motion: animation of particle movement
 - streamlines: polylines tracing lines tangent to vector field
 - stream ribbons: surface between two adjacent stream lines
 - stream surfaces: surface defined by set of adjacent stream lines

Special note on interaction

- special interaction tools (DataGlove) and methods (gesturing) necessary
- interactive steering and interactive computation on data necessary

Example

Figure 10. Topological surfaces in the experimentally measured low around a circular cylinder.

[HEL90]

Example

Figure 9. Time slice of the topological surfaces in the computed low around an airfoil at 90 degrees.

[HEL90]

5.2.1.16 Cone Trees

Representative data characteristics

content of hierarchical data base

Technique

- hierarchies laid out uniformly in three dimensions
- top of hierarchy is apex of a cone
- place children evenly spaced along base of cone
- nodes are drawn as index cards and contain textual information
- body of cone is transparent

Special note on interaction

cones may be rotated to reveal information

Reference(s) [ROB93]

Example of a Cone Tree

[ROB93]

5.2.1.17 Program Flow Diagrams

Visual Programming

- Representative data characteristics
 - program modules and relations to solve specific problem
- Technique, e.g. AVS, Khoros, SGI Explorer, apE
 - iconize each module/function of software system
 - connect selected modules by (multi-colored) pipes into network
 - activate network to execute program
- Special note on interaction
 - interactive generation of program network

5.2.1.18 Ball-and-Stick Technique

- Representative data characteristics
 - molecular structures
- Technique
 - represent atoms as balls and bonds a sticks
- Special note on effectiveness
 - reflections and shadows enhance 3-d effect and reduce concealed surfaces
- Special note on interaction
 - "conditional boxes", if large amount of atoms/molecules

Reference(s) - [KEL93], [FOL94]

5.2.1.19 Missing Data Technique

- Indicate the difference between real and assumed data!
- If interpolation is permitted
 - use interpolation method meaningful to problem space
 - use color for measured data
 - brightness alone for missing data

[TWI94]

5.2.2 Organizational structure

5.2.2.1 Animation

Representative data characteristics

sequence of pictures changing over one parameter, usually time,
spectral properties, temperature, view points

Technique

- careful interpolation may be used between keyframes
- rapid updating of screen to present sequence of phenomena
- creates illusion of movement

Special note on effectiveness

- update of frames necessary: at least 10 frames/sec
- can be used to create 3-d effect (e.g. fly-over, rotation)

Reference(s) [BRY94], [THA94]; for algorithm visualization see [BRO84]

5.2.2.2 N-Visions/Worlds within Worlds

Representative data characteristics

2-d continuous functions in n-dimensional space, such as financial data

Technique

- hierarchy of nested heterogeneous coordinate systems (worlds)
- each world may contain graph encoding subset of the relation encoded by parent world
- subset is determined by position of the world's origin relative to parent
- most subsets are presented as 2-d surface

Special note on effectiveness

exchange order of worlds to explore specific worlds and relationships

Special note on interaction

- interactive exploration using DataGlove, dipstick
- user can grab each world and move it throughout the space defined by parent

Reference(s) [BES94]

5.2.2.3 Perspective Wall

Representative data characteristics

content of relational data base

Technique [ROB93]

- folds a 2-d layout into a 3-d wall
- integrates a central region for viewing details with two perspective regions, one on each side, for viewing context.

Special note on effectiveness

- efficient space utilization
- smooth transitions of views

Special note on interaction

move along linear direction

5.2.2.4 Fish-Eye View

- to provide focus within larger (continuous) information space
- modified technique: table lens