

3.0 Goals and Introduction

Goals of this chapter:

- Increase awareness of the importance to know abilities, disabilities and goals of user
- show methods by which such knowledge can be applied in the visualization process
- evaluate success

3.1 What we need to know

- What characteristics **enable** / **disable** the user to interpret a picture in a correct / desired way?
 - we need to know about human visual perception
 - we distinguish between general / individual characteristics

- How can a developer / visualizer **make sure** that an image is correctly interpreted?
 - take stock of abilities, characteristics
 - test / evaluate

3.1.1 What characteristics **enable** / **disable** the user?

1) How does human visual perception work? Explain by:

- biological / psychophysical / cognitive facts
- perception theories
- 2) Distinguish between general and individual characteristics, e.g.
 - "color blindness" (individual) vs. Illusions (general) or insensitivity to short wavelenghts (general)

3.1.2 How can a developer / visualizer make sure that an image is correctly interpreted?

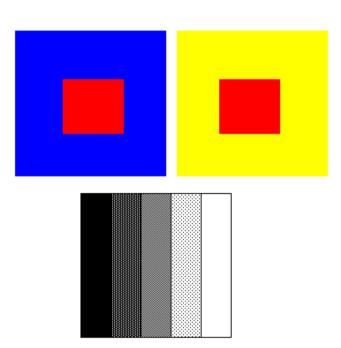
1) Take stock of

- abilities, disabilites
- visualization aims, desires, habits
- education, culture

2) Test / evaluate

- "special tasks"
- "thinking aloud"
- statistical analysis

3.2 Human Visual System


It is important to know about

- Biological, psychological, and cognitive aspects of the visual system
- Visual perception and computer-generated images
- Theories of visual perception
- Human memory system
- Visual context how it aids in the interpretation of images

3.2.1 Human Visual System – General Background

- biological issues
 - eye, neurons
 - effective sensory stimuli
- psychophysical issues
 - e.g. hue, saturation, brightness
- visual phenomena
 - e.g. simultaneous contrast, Machband effect [SEK85]

Individual abilities -color blindness

User Modeling for Adaptive Visualization Systems, G.O. Domik and B. Gutkauf, pp. 217-223.

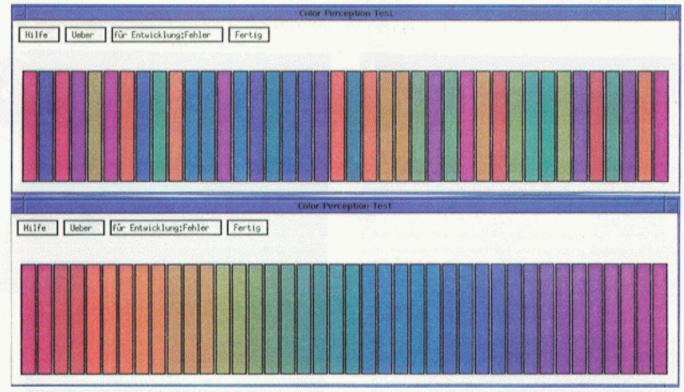


Figure 2: (upper row) Arrangements of color chips at start of color perception test. (lower row) Correct result after rearranging chips.

[DOM94]

Individual abilities - Fine motor skills

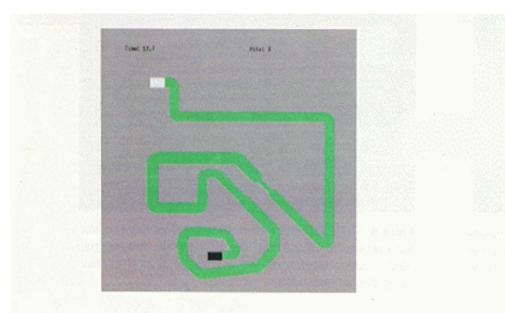
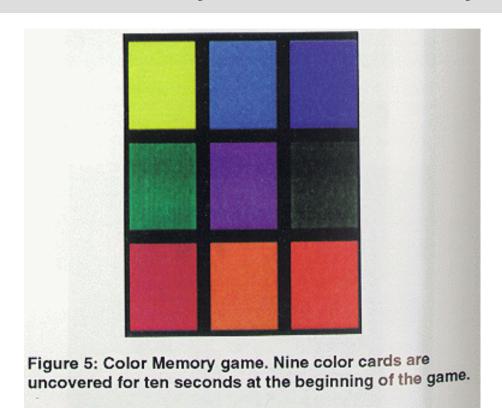


Figure 7: Fine motor coordination test. User traces green path from white rectangle to black rectangle. Errors (leaving green path) are counted and speed is measured.

[DOM94]


Individual abilities – ranking of color

[DOM94]

Human Visual System – color memory

[DOM94]

3.2.2 Theories of visual perception

- Gestalt laws
 - E.g. similarity, closeness, continuation
- Integration of images across time

3.2.3 Human memory system [SHN97]

- Short-term memory capacity
 - "The magical number seven plus or minus two" (G. Miller, 1956)
 - recognize seven "chunks" of information
 - hold for 15 to 30 seconds
 - forget or move to long-term memory
- Short-term memory in conjunction with working memory
 - short term memory: process perceptual input
 - working memory: generate and implement solutions
 - disruptions, anxiety cause loss of information

3.2.4 Contribution of senses other than vision

• e.g. sound, force-feedback, smelling, etc.

3.3 Visual Perception and Computer-Generated Images

Visualizations / Pictures

 Entirety of graphical objects and their visual attributes as result of visualization process

Visual attributes

- Mode ("flavor") of presentation chosen, e.g. color, size, orientation
- Clever choice of visual attributes is paramount to visualization process
- Redundancy of visual attributes enhances interpretability [BER67], [TUF83], [KEL93]

3.3.1 Interpretation of visual attributes

- Innate reaction to visual attributes
 - natural to interpret, usually simple
 - example: increasing brightness gives impression of increasing numerical values
 - preconscious/preattentive interpretation
- Acquired reaction to visual attributes
 - acquired through education, usually more complex
 - example: color ranking, street/travel signs, isolines, isosurfaces
- Illusory visual attributes
 - well documented illusions (not nec. well understood)
 - example: illusory triangle, color contrast, Machband effect, etc.

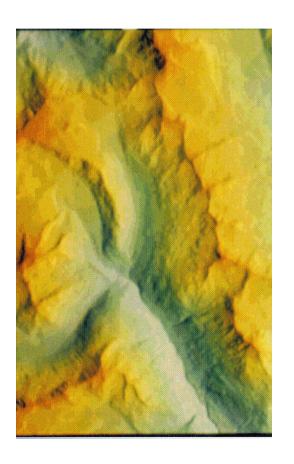
3.3.2 Visual attributes discussed in depth

Color

- psychophysical process
 - physics: relates to wavelengths, spectral distribution and amount of light entering eye
 - psychology: perceived sensation with no linear relation to physics
- no complete theory (three types of cones: S,M,L; opponent theory)
- variety of color spaces: geometric descriptions of color gamut
- perceptual dimensions of color: hue, saturation, intensity
 - may be varied independently or in connection to each other
 - hue: "colors" of rainbow (relates to wavelength)
 - saturation: "paleness" of color is lack of saturation (relates to spectral distribution)
 - intensity: light/dark colors (relates to amount of light entering eye) brightness

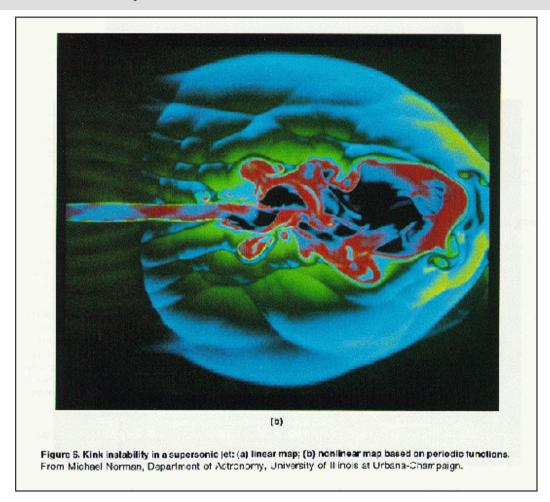
Hue

- effective use for nominal data types and ordinal data types (color scale!)
- hints
 - small blue objects: disadvantage for short-wavelengths cones
 - blue (cool colors): farther away, cooler, lower or negative values
 - red (warm colors): nearer, warmer, higher and positive values; danger
 - shape of object displayed with rainbow scale may not be readily apparent
 - hues may change appearance on different backgrounds
 - "color-blindness"
 - ranking of hues not inherent
 - discontinuous color scales


Saturation

- effective use of saturation for ordinal data types
- careful when interpreting saturation and brightness independently
- 2-dimensional color scales for effectiveness

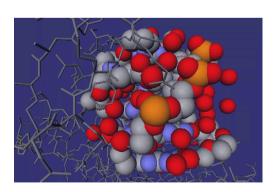
Brightness


- effective use of brightness for ordinal (and quantitative) data types
- hints
 - bright objects on dark background look bigger than dark objects on bright background
 - fading brightness gives impression of distance/depth
 - absolute brightness not perceived linearly
 - change of brightness not perceived linearly (Machband)
 - brightness contrast influences perception of brightness
- 2-dimensional color scales for effectiveness

Example IHS + RGB

Example: Color Tables

Texture


- effective use for nominal data types
- hints
 - careful with overlapping textures
 - textures may give rise to other impressions, e.g. density
- include legend

Orientation

- hints
 - familiarity of shape often connected to orientation
 - symmetry around vertical axis preferred
- use various orientations to assure correct view of objects

Depth Attributes

- Use depth attributes to enhance the perception of 3-d structures
 - fading brightness to show increasing depth
 - perspective geometry to show increasing depth
 - occlusion to distinguish back/front
 - transparency/translucency to distinguish back/front
 - change of brightness (**shading**) to simulate surfaces
 - rotation/"rocking" to enhance 3-d perception
 - stereo effect: anaglyph, shutter glasses, VR
- Example: complex molecules

Motion

- Frame update rate to perceive motion
 - at least 10 frames/sec [BRY94]
- Examples
 - animation
 - flicker two or more images to depict differences, similarities

3.3.3 Visual context / Necessary aids for the interpretation

- Adhere to the conventional meaning of colors
- Annotations aid the interpretation of visual attributes
- Examples of annotations
 - in textual form: labels, titles, legends
 - color/brightness scales
 - distance scales (scale bars) to relate world and screen coordinates
 - orientation signs, e.g. North arrow
 - animation annotation: time/spectral indicator

3.4 Visualization Goals / Visualization Tasks / Interpretation Aims

- = focus of a user on a particular domain of interest during interpretation of image
- application dependent visualization goals
- application independent classification of visualization goals

3.4.1 Examples of Visualization Goals

- Scientific visualization, e.g.
 - identify objects, compare values, distinguish objects, categorize objects
- Software visualization, e.g.
 - focus on text/ or data structures/ or performance/ or algorithm
- Information visualization, e.g.
 - focus on detail with overall view, view relations

3.4.2 Task analysis [SHN97]

- determine task before determining representations
- tasks often determined informally or implicitly
- high-level tasks / middle-level tasks / atomic actions
- advantage: one representation can serve one high-level task

3.4 Evaluation of progress

- establish a goal that can be assessed
- start evaluation at early stages
 - change is still easy
- determine progress towards that goal
 - choose appropriate procedure, e.g. thinking aloud

3.5 User

User

- What characteristics enable / disable the user to interpret a picture in a correct / desired way?
 - general / individual characteristics
 - how does visual perception work?
- How can a developer / visualizer make sure that an image is correctly interpreted?
 - take stock of abilities, characteristics
 - test / evaluate

What characteristics **enable** / **disable** the user?

- 1) General / individual characteristics, e.g.
 - "color blindness"
 - fine motor skills
 - mental rotation
 - color memory
 - ranking of color
 - illusions
 - insensitivity to short wavelenghts
- 2) How does visual perception work? Explain by:
 - Perception theories
 - biological / psychophysical / cognitive facts

How can a developer / visualizer make sure that an image is correctly interpreted?

1) Take stock of

- abilities, disabilites
- visualization aims, desires, habits
- education, culture

2) Test / evaluate

- "special tasks"
- "thinking aloud"
- statistical analysis