
EUROGRAPHICS 2005 / J. Dingliana and F. Ganovelli Short Presentations

Real-Time Marching Cubes on the Vertex Shader

Frank Goetz†, Theodor Junklewitz and Gitta Domik

Research Group Computer Graphics, Visualization and Image Processing, University of Paderborn, Germany

Abstract
In this paper we propose a new approach for visualizing volumetric datasets by their isosurfaces. For an interactive
isosurface reconstruction an optimized version of the well-known marching cubes algorithm is used. We extend the
original algorithm by an additional vertex shader program. Contrary to other hardware-accelerated solutions our
program is not based on a tetrahedral algorithm and thus the implementation for structured grids is more effective.
Furthermore, surfaces of time-varying datasets at distinguished threshold values can be extracted in real-time.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Isosurface computation
and rendering

1. Introduction

The visualization of volumetric datasets by their isosurfaces
(e.g. retrieved from computer tomography (CT), magnet res-
onance tomography (MRT), or positron emission tomogra-
phy (PET)) is an interesting and useful method to represent
unknown data (Figure1). This can help to gain insights into
the dataset to detect diseases in a very early phase. Until now
a reconstruction of such surfaces was not possible in real-
time, though a real-time solution is necessary to work inter-
actively. In this case "interactively" means that the threshold
value, determining the represented surface, can be changed
on the fly.

2. Related Work

Nearly all approaches that try to enhance interactive recon-
struction of isosurfaces by using vertex or fragment shader
programs are based on a generalization of the marching
cubes algorithm [LC87], the so called tetra-cubes algorithm
[CSK96]. Instead of calculating up to five surfaces in a sin-
gle grid cell (cube) they calculate up to one surface in up to
six tetrahedrons per grid cell of a structured cartesian grid.
An advantage of the tetrahedral-based solutions is that they
can easily be adapted to unstructured grids. Currently, this
additional feature is not important for us since we are only
working with regularly structured grids.

† frank.goetz@uni-paderborn.de

A tetrahedral solution based on vertex shaders is de-
scribed by Pascucci in [Pas04] and Reck et al. in
[RDG∗04]. Klein, Stegmair, and Ertl presented an im-
proved and fragment-based version usingATI’s SuperBuffers
in [KSE04]. Other hardware-accelerated volume render-
ing techniques are not based on polygons: e.g. texture-
based volume rendering can be used to display shaded sur-
faces [WE98,RSEB∗00]. For unstructured grids a hardware-
accelerated cell-projection technique is available [RKE00].
In the last two years hardware-accelerated ray-casting meth-
ods became popular, too. Different approaches in this area
can be found in [RGW∗03], [WKME03], [KW03], and
[RW04].

Figure 1: CT of human phantom & PET of heart ventricle
(datasets from Heart & Diabetes Center NRW)

The main problem of all direct volume rendering meth-
ods is that the isosurface is computed on a per-pixel basis
without constructing a polygon mesh. Thus, a lot of common
polygon-based computer graphics algorithms – like texture

c© The Eurographics Association 2005.

F. Goetz T. Junklewitz & G. Domik / Real-Time Marching Cubes on the Vertex Shader

mapping, bump mapping, environment mapping, or even
shading – cannot (easily) be used with these approaches.

3. Implementation

Our implementation of the isosurface reconstruction focuses
on time-varying structured volumetric datasets. In our appli-
cation users like scientists or engineers have the possibility
to change threshold values on the fly (Figure2), allowing
them to get the resulting image immediately. This is ensured
by a regular recalculation of the polygon mesh that is con-
structed from the underlying dataset. Our current implemen-
tation supports only volumetric datasets with values from 0
to 255.

The fastest way to display polygon meshes of static
datasets at distinguished threshold values is using appropri-
ate caching methods likeVertexBufferObjects, VertexArrays,
or Display Lists. However, by using such methods the recal-
culation of the polygon mesh is very time consuming when
the threshold value and/or the dataset are changed. There-
fore, to get a better performance when reconstructing the
surface, we take advantage of the current graphics hardware.
In our special case we needShader Model 3.0to make a 2D
texture lookup in the vertex shader.

Figure 2: Skull displayed with three different threshold val-
ues (dataset fromvolvis.org)

3.1. Marching Cubes

A lot of marching cubes implementations pass each grid
cell in turn to the algorithm until a transition, the surface, is
found. In contrast we iterate over all cells of the dataset (al-
gorithms that follow the isosurface across the dataset are not
suited for a hardware-accelerated implementation). Our im-
plementation is adapted from Paul Bourke’s article: "Poly-
gonising a scalar field" [BBC97]. The value of each vertex
is compared against the threshold to label it as ’inside’ or
’outside’. After this, the list determining if vertices are in-
side/outside the volume is used to determine which edges
and where the surface intersects. The algorithm is well suited
for parallel processing, because each grid cell can be calcu-
lated independently. The location of where the surface in-
tersects the given edge is found by linearly interpolating be-
tween the isovalues of the vertices at either end of the edge.
With 256 different combinations of vertices up to five trian-
gles can be created. Since we are using amarching cubes
code lookup table, which describes the 256 possible inter-
sections of the triangles with the 12 edges of a cube, it is

not necessary to reduce the problem to only 15 cases, like
other solutions do. Due to the determination of vertices that
lie inside/outside the volume also grid cells that consist of
no surfaces can directly be rejected without sending them
to the GPU. This reduces the bus transfer to the graphics
board enormously, particularly if the isosurface consists of
only a few triangles. Furthermore, by using themarching
cubes codewe know the necessary number of triangle-points
within a grid cell. These numbers are stored in an additional
table. The eight scalar values of the vertices and the index
of the current point, which describes one of the 256 possible
cases for having a polygon mesh inside a grid cell, are stored
in three integer values. The current grid coordinate (position
of the current cell in the grid) is stored in another integer
value. Now, one triangle-point on the vertex shader can be
calculated with oneglVertex4i.

In an earlier implementation the dataset was stored in a 3D
texture. Since the 3D texture lookups in the vertex shader are
emulated in software and thereby are very time-consuming,
we save a lot of GPU time with our latest solution. Use of
2D textures for volumetric 3d datasets is not recommended
either, because the accuracy of floating points would be in-
sufficient to index large datasets.

3.2. Vertex Shader

At this point, the vertex shader which distinguishes this so-
lution from other implementations comes into play. The data
that was sent withglVertex4i is unpacked, e.g. the current
grid coordinates are extracted into temporary variables. The
same is done with the scalar values and the index of the cur-
rent point. After that, the necessarymarching cubes codeis
calculated again. Themarching cubes codewill not be sent
in a free vertex attribute to the vertex shader because this is
inefficient and costs more GPU time. Here theShader Model
3.0 is necessary because we store themarching cubes code
table in a 2D texture. In afor loop, iterating the scalar values
of all 12 edges, the exact intersections for the triangle-points
are determined and stored. Only the current point and two
additional points for the surface-normal calculation are nec-
essary. Subsequently, a 2D texture lookup is accomplished
to assign the earlier found intersection-point to the current
triangle-point. The 2D texture lookup uses, as indices, only
themarching cubes codeand the computed index of the cur-
rent point as parameter. At this point the calculation is nearly
finished, if no further surface-normal computation is nec-
essary. Only a matrix multiplication with the ModelView-
Projection matrix, which is stored as a uniform parameter,
has to be calculated.

For the surface-normal calculation two more edges have
to be looked up in the 2D texture (marching cubes codeta-
ble) in correct order. The normal vector at each triangle-point
has to point into the correct direction. Finally, the surface-
normals can be used to calculate the diffuse and specular
lighting as shown in Figure3.

c© The Eurographics Association 2005.

F. Goetz T. Junklewitz & G. Domik / Real-Time Marching Cubes on the Vertex Shader

Figure 3: Engine block with diffuse and specular lighting
(dataset fromvolvis.org)

3.3. Time-Varying Datasets

Since we are not using 3D textures, 2D textures, orVertexAr-
raysand since we send the parameters of each grid cell to the
vertex shader separately, it is very easy to extend our imple-
mentation to the use of time-varying datasets. These datasets
are previously loaded into the main memory. They can be
loaded continuously from the hard drive, if not enough main
memory is available.

4. Results

For our tests three different system configurations were used.
A graphics board comparison was accomplished on an Intel
Pentium IV system with two different NVIDIA GeForce 6
boards (Table1). Furthermore, an optimized CPU version
of our algorithm was compared to the GPU version on an-
other Intel Pentium IV 2.0 GHz system. It is pointed out that
the clock speed of the Intel CPU (2000 MHz) is nearly six
times higher than the clock speed of the NVIDIA GPU (350
Mhz), but the NVIDIA Geforce 6800GT board has six ver-
tex shader units (Table2).

Table 1: Comparison between GeForce 6600GT & GeForce
6800GT in frames per second (both on Pentium IV 2.8 GHz)

Dataset Size Triangles GPU GPU

skull 256x256x225 829978 1.4 2.4
engine 256x256x110 584420 1.9 3.6
neghip 064x064x064 31456 28.0 61.6
phantom 128x128x063 94978 10.0 18.6
heart 128x128x063 3982 49.2 50.0

Table 1 shows that the performance of the NVIDIA
GeForce 6800GT is in some cases twice as fast as the
NVIDIA GeForce 6600GT because the NVIDIA GeForce
6600GT has only three instead of six vertex units.

Table 2: Comparison between CPU and GPU version in
frames per second (both on Pentium IV 2.0 GHz)

Dataset Size Triangles CPU GPU

skull 256x256x225 829978 1.1 1.9
engine 256x256x110 584420 1.8 3.1
neghip 064x064x064 31456 49.7 56.8
phantom 128x128x063 94978 14.8 16.7
heart 128x128x063 3982 43.3 45.7

Table2 shows that the GPU version is faster than the CPU
version. Especially with large datasets enormous differences
are reached. The skull and the engine are nearly one third
faster on the GPU than on the CPU. By using small datasets
the differences between GPU and CPU version are not worth
mentioning.

5. Conclusion

Currently, we integrate our marching cubes algorithm into
OpenSG (an open source and platform independent scene
graph system). This makes our implementation available on
various platforms like Linux, IRIX, Windows, or Mac OS
X. While reconstructing isosurfaces instead of using other
volume rendering techniques a lot of common polygon-
based computer graphics methods like texture mapping and
(Phong) shading can be used with our approach. One benefit
of our algorithm is that no preprocessing step (e.g. conver-
sion of the dataset) is necessary. The application would even
work if only a continuous data stream from an external de-
vice is provided. Our approach automatically improves with
an increasing amount of parallel shaders in next generation
GPUs (XBox360 game console from Microsoft has 48 par-
allel shaders capable of operating on data for both pixels and
vertices). Finally we should mention, that especially on slow
systems our approach is an alternative to updating the current
computer, by only buying an off-the-shelf graphics board.

References

[BBC97] BOURKE P., BLOYD C. G., CHAN-
DRASHEKARA R.: Polygonising a scalar field from
http://astronomy.swin.edu.au/˜pbourke.

[CSK96] CARNEIRO B. P., SILVA C., KAUFMAN A.:
Tetra-cubes: An algorithm to generate 3d isosurfaces
based upon tetrahedra. InProc. SIGGRAPH ’96(1996),
pp. 205–210.

[KSE04] KLEIN T., STEGMAIER S., ERTL T.: Hardware-
accelerated reconstruction of polygonal isosurface repre-
sentations on unstructured grids. InProc. Pacific Graph-
ics 2004(2004), pp. 186–195.

[KW03] KRUEGER J., WESTERMANN R.: Acceleration
techniques for gpu-based volume rendering. InProc.
IEEE Visualization ’03(2003).

c© The Eurographics Association 2005.

F. Goetz T. Junklewitz & G. Domik / Real-Time Marching Cubes on the Vertex Shader

[LC87] LORENSEN W. E., CLINE H. E.: Marching
cubes: A high resolution 3d surface construction algo-
rithm. Computer Graphics 21, 4 (July 1987), 163–169.

[Pas04] PASCUCCI V.: Isosurface computation made sim-
ple: Hardware acceleration, adaptive refinement and tetra-
hedral stripping. InProc. Eurographics/IEEE TVCG Sym-
posium on Visualization ’04(2004), pp. 293–300.

[RDG∗04] RECK F., DACHSBACHER C., GROSSO R.,
GREINERG., STAMMINGER M.: Realtime isosurface ex-
traction with graphics hardware. InProc. Eurogrpahics
2004 Short Presentations(2004), pp. 33–36.

[RGW∗03] ROETTGER S., GUTHE S., WEISKOPF D.,
ERTL T., STRASSER W.: Smart hardware-accelerated
volume rendering. InProc. VisSym 2003(2003), pp. 231–
238.

[RKE00] ROETTGER S., KRAUS M., ERTL T.:
Hardware-accelerated volume and isosurface render-
ing based on cell-projection. InProc. IEEE Visualization
’00 (2000), pp. 109–116.

[RSEB∗00] REZK-SALAMA C., ENGEL K., BRAUER

M., GREINER G., ERTL T.: Interactive volume rendering
on standard pc graphics hardware using multi-textures and
multi-stage rasterization. InProc. Graphics Hardware ’00
(2000).

[RW04] REIS G., WAGNER D.: Hardware accelerated,
interactive, time-dynamic volume rendering. InProc.
VIIP’04 (2004), pp. 602–607.

[WE98] WESTERMANN R., ERTL T.: Efficiently using
graphics hardware in volume rendering applications. In
Proc. SIGGRAPH ’98(1998), pp. 169–177.

[WKME03] WEILER M., KRAUS M., MERZ M., ERTL

T.: Hardware-based ray casting for tetrahedral meshes.
In Proc. IEEE Visualization ’03(2003), pp. 333–340.

Appendix

// ** CPU SOURCE CODE OF THE OPENGL DISPLAY LOOP** //

void display(void)

{

int pos, eFlag, m0, m1, m2, mc_code = 0;

static unsigned char mc[8];

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

triCount = 0;

setcamera();

cgGLEnableProfile(cgVertexProfile);

glBegin(GL_TRIANGLES);

// scan the complete volume cell by cell (t = time step)

for (int z=0; z< (VOX_Z - 1); z++)

{for (int y=0; y < (VOX_Y - 1); y++)

{for (int x=0; x < (VOX_X - 1); x++)

{mc[0]=vol[t][z][y][x];mc[1]=vol[t][z][y][x+1];

mc[2]=vol[t][z][y+1][x+1];mc[3]=vol[t][z][y+1][x];

mc[4]=vol[t][z+1][y][x];mc[5]=vol[t][z+1][y][x+1];

mc[6]=vol[t][z+1][y+1][x+1];mc[7]=vol[t][z+1][y+1][x];

mc_code = 0;

// calculate the marching cubes code

for(int vCube = 0; vCube < 8; vCube++)

{if(mc[vCube] <= (iISO)) mc_code |= 1«vCube;}

// which edges are intersected ?

eFlag = eFlags[mc_code];

// if no edge is intersected

if(eFlag == 0) continue_with_next_grid_cell;

// else pack data for the vertex shader

m0=mc[0]|(mc[1]«8)|(mc[2]«16);

m1=mc[3]|(mc[4]«8)|(mc[5]«16);

m2=mc[6]|(mc[7]«8); pos=x|(y«8)|(z«16);

for (int w=0; w<countTriTab[mc_code]; w++)

{glVertex4i(pos, m0, m1, m2|(w«16));}

triCount+= (w/3); }

}

}

glEnd();

cgGLDisableProfile(cgVertexProfile);

glutSwapBuffers();

}

// ** CG SOURCE CODE OF THE VERTEX SHADER PROGRAM** //

#define NUMBER_OF_EDGES 12

void main(

float4 in_Pos:Pos, out float4 hpos:Pos, out float4 col:Col,

uniform float4x4 modelViewP, uniform float4x4 imodelViewP,

uniform float3 lightPos, uniform float3 lightCol,

uniform float3 eyePos, uniform float shininess,

uniform float3 gridOffset[8],uniform float3 edgeDirect[12],

uniform float iso, sampler2D trisEdgeTab)

{

int powerOfTwoArray[12]={1, 2, 4, 8, 16, 32,

64, 128, 256, 512, 1024, 2048};

int mapEdgeToVert[12][2] = { {0,1}, {1,2}, {2,3}, {3,0},

{4,5}, {5,6}, {6,7}, {7,4},

{0,4}, {1,5}, {2,6}, {3,7}};

float3 gridPos; float voxVal[8]; float3 VertPos[12];

// get the current grid cell at x,y,z

gridPos.x = floor(fmod(in_Pos.x, 0x100));

gridPos.y = floor(fmod(in_Pos.x/0x100, 0x100));

gridPos.z = floor(fmod(in_Pos.x/0x10000, 0x100));

// get the 8 voxel values of the current grid cell

voxVal[0] = floor(fmod(in_Pos.y, 0x100));

voxVal[1] = floor(fmod(in_Pos.y/0x100, 0x100));

voxVal[2] = floor(fmod(in_Pos.y/0x10000, 0x100));

voxVal[3] = floor(fmod(in_Pos.z, 0x100));

voxVal[4] = floor(fmod(in_Pos.z/0x100, 0x100));

voxVal[5] = floor(fmod(in_Pos.z/0x10000, 0x100));

voxVal[6] = floor(fmod(in_Pos.w, 0x100));

voxVal[7] = floor(fmod(in_Pos.w/0x100, 0x100));

// which point from 0 to 15 should be calculated ?

float triVert=floor(fmod(in_Pos.w/0x10000,0x100));

// calculate marching cubes code

int mc_code = 0;

for(int i = 0; i < 8; i++)

if(voxVal[i] <= iso) mc_code += powerOfTwoArray[i];

for(int i = 0; i < NUMBER_OF_EDGES; i++) {

float voxVal1 = voxVal[mapEdgeToVert[i][1]];

float voxVal0 = voxVal[mapEdgeToVert[i][0]];

float diff = voxVal1 - voxVal0;

float mid =(iso - voxVal0);

VertPos[i] = gridPos.xyz +

gridOffset[mapEdgeToVert[i][0]]+mid * edgeDirect[i]/diff;

}

int triFirstEdgeOffset=(floor(triVert/3.0) * 3);

int triEdges[3];

for (int i=0; i<3; i++) triEdges[i]=fmod(triVert+i,3);

// get 3 triangle edges from 2D texture

int edge[3];

for (int i=0; i<3; i++) edge[i] = (tex2D(trisEdgeTab,

float2((triFirstEdgeOffset + triEdges[i])

* (1.0/16.0), mc_code * (1.0/256.0))).r) * 255.0;

float3 triVertPos0,triVertPos1,triVertPos2;

for(int i=0; i<NUMBER_OF_EDGES;i++){if(edge[0]==i)

triVertPos0 = float3(VertPos[i]);}

hpos = mul(modelViewP, float4(triVertPos0, 1));

// calc normal ... (code here)

// calc diffuse lightning ... (code here)

// calc specular lightning ... (code here)

}

c© The Eurographics Association 2005.

