Master Thesis

Computer Science

GPGPU Techniques for Real Time Tone

Mapping in the Context of Virtual
Night Driving

by

cand. M.Sc. Erik Bonner
Matr.-Nr. 6545572

Supervisors:

Prof. Dr. Gitta Domik

Prof. Dr. Friedhelm Meyer auf der Heide
Dr. Jan Berssenbriigge Paderborn, September 27, 2011.

Master Thesis Nr. MA0OO12

GPGPU Techniques for Real Time Tone Mapping in the Context of Virtual Night
Driving
September 27, 2011

Heinz Nixdorf Institut
Universitidt Paderborn

Fachgebiet Produktentstehung
Prof. Dr.-Ing. Jiirgen Gausemeier
Fiirstenallee 11

D-33102 Paderborn

Statutory Declaration:

I hereby declare that I have developed and written this thesis on my own, and no external
sources were used except as acknowledged in the text and footnotes.

Paderborn, September 27, 2011

Abstract

The range of brightness that occurs in the real world far exceeds that attainable on stan-
dard display devices. As a result, computer graphics has traditionally restricted virtual
illumination to the displayable range. In recent years there has been a shift in paradigm
towards illumination using an intensity range commensurate with that of the real world,
compressing the results to the displayable range by a post-processing operation known as
tone mapping.

Algorithms for tone mapping, called tone mapping operators, can be classified as global
or local. Global operators are efficient to compute at the expense of scene quality. Local
operators preserve scene detail, but, due to their additional computational complexity, are
rarely used with interactive applications.

This thesis proposes a local tone mapping operator suitable for use with interactive appli-
cations. The long-term goal is to use this operator with a virtual night driving simulator
used at the Heinz Nixdorf Institute.

To develop a suitable tone mapping operator, a state of the art local tone mapping method
was optimized using work-efficient parallel scan algorithms. Two GPU implementations
of this optimized method were developed: one using CUDA and one using GLSL shaders.
CUDA was chosen because it exclusively exposes GPU hardware suitable for optimizing
the computations used by the proposed method. The GLSL implementation was used to
determine whether performance gains over the current state of the art can be attributed to
the modified algorithm or its implementation in CUDA.

Both implementations perform better than the current state of the art. The GLSL im-
plementation produced higher frame rates than the CUDA version, at the expense of a
significantly larger memory footprint. To exploit the strengths of both implementations,
an additional, hybrid CUDA/GLSL method was conceived. The hybrid method achieved
an optimum of both performance and memory usage. Both the hybrid and GLSL imple-
mentations operate above 60 fps for full HD resolutions on a standard PC system.

To implement all tone mapping operators presented in this thesis, an OpenGL prototyping
platform was developed. Using this platform, tone mapping operators with high perfor-
mance requirements can be developed, tested and compared.

Contents

1

2

3

4

5

HDR Concepts in Imaging and Computer Graphics
Color and luminance

The tone mapping problem

Introduction to digital images

Introduction
1.1 Problem description
1.2 Am
1.3 Thesis structure
Background Theory
2.1
2.1.1
2.1.2 Dynamic range . .
2.1.3 HDR Imaging . . .
2.1.4 HDR Rendering .
2.1.5
2.2 Image processing
221
2.2.2 Image convolution
2.3 GPU Concepts
2.3.1

Requirements Specification

Shader programming
2.3.2 General-Purpose GPU (GPGPU) programming
2.3.3 The CUDA programming model

ooooooooooooooooooooooooo

Enabling HDR Renderingin VND

ooooooooooooooooooooooooooooooooo

Reinhard’s method for photographic tone reproduction.

Global luminance compression
4.1.2 Local dodging-and-burning

Local tone mappingonthe GPU
A GPU pipeline for local photographic tone reproduction . .
4.2.2 Convolution optimization by texture resampling

4.2.3 Approximating Reinhard’s local operator using GPU-based

Summed-AreaTables

3.1
3.2 Tone mapping requirements
3.3 Summary
Related Work
4.1

4.1.1

4.1.3 Performance . . .
4.2

4.2.1
4.3 Summary and discussion .
Approach
5.1

ooooooooooooooooooooooooooooooooooo

Slomp and Oliveira’smethod

5.1.1

Method description

O O —

~N O\ Ut W W W

11
12
13
17
17
18
20

25
25
26
28

31
31
32
34
37
37
37
40

42
44

47
47
47

Page 2 Chapter 0

5.1.2 Optimization opportunities 49
5.2 Optimizing SAT generation 50
5.2.1 The building block of SATs: all-prefix-sums 50
5.2.2 Sequentialscan 51

5.2.3 The non-work-efficient parallel scan used by Slomp and
Oliveira i it i e 51
5.2.4 A work-efficient parallelscan 54
5.2.5 Leveraging GPU hardware with CUDA 60
5.3 Using CUDA with OpenGL for post processing 62
53.1 Procedure 62
5.3.2 Resultsanddiscussion 63
533 Conclusion Lo 64
54 ACUDA tone mappingmodule 65
5.4.1 Luminance extraction. 68
542 Reductiono 68
5.4.3 Computing scaled luminance 69
544 SAT generation 69
5.4.5 Dodging-and-burningo 70
5.5 Ashader tone mappingmodule 72
5.6 Summary e 74
6 Implementationc000iitiitiieeieean 75
6.1 Tone mapping with CUDA 75
6.1.1 Luminance extraction. 75
6.1.2 Reduction. 77
6.1.3 Scaled luminance computation 79
6.1.4 SAT generation 80
6.1.5 Dodging-and-burningo L. 82
6.2 Tone mapping with shaders 98
6.2.1 Abypassvertexshader 98
6.2.2 Luminance extraction. 99
6.2.3 Scaled luminance computation 100
6.24 SAT generation 101
6.2.5 Dodging-and-burning L 106
6.3 TMStudio: An OpenGL test platform 107
6.3.1 UsingTMStudio 107
6.3.2 Implementational details 109
6.3.3 Outlook 111
6.4 Summary e e 111
7 Results i i e e e e e e 113
7.1 Tone mapping HDR night driving scenes 113
7.1.1 Global vs local tone mapping 113
7.1.2 Tone mapping parameters 115
7.1.3 Summary 119
7.2 The CUDA tone mappingmodule 120
7.2.1 Performance 120

7.2.2 Kernel properties o 121

Contents Page 3
7.3 Globaltone mapping 123
7.4 Comparison of CUDA and shader implementations 124
7.4.1 A shader implementation of Slomp and Oliveira’s original
methodo 124
74.2 SAT generation 125
7.4.3 Local tone mapping performance 129
744 Ahybridmethod 130
7.4.5 High Definition resolutions in the HD Visualization Center . 131
7.5 Balancing speed and qualityo oL 132
7.6 Conclusion. L e 135
8 ConclusionandOutlook 137
8.1 Thesissummary 137
82 Futurework 138
9 Bibliography i e e e e 139
Appendix
A Toolsand Equipmentttt ittt 1
A.1 Thedevelopment system 1
A.2 The HD VisualizationCenter 2
A3 HDRimages 3
B SourceCodettt ineenan 9
B.1 CUDA e 9
B.1.1 Luminance computation 9
B.1.2 Reduction 10
B.1.3 Scaled luminance computation 12
B.1.4 SAT generation 12
B.1.5 Dodging-and-burning 15
B2 GLSL e 20
B.2.1 Luminance compuation. 21
B.2.2 Scaled luminance computation 21
B.2.3 SAT generation 22
B.2.4 Dodging-and-burning 26

Page 4 Chapter 0

Introduction Page 1

1 Introduction

1.1 Problem description

Virtual Reality (VR), the practice of simulating reality using computers, is a rapidly grow-
ing field with many areas of application. One such area is Virtual Prototyping (VP) in
which Virtual Reality simulations are used for prototyping products that have not yet
been built. Virtual Night Drive (VND), developed at the Heinz Nixdorf Institute, is a
Virtual Reality tool for the Virtual Prototyping of automotive headlights [BEROS]. Its
primary focus is to support the development of headlights and headlight-based driver as-
sistance systems by providing a realistic illumination of virtual scenery using complex
beam patterns acquired from headlight prototypes. The illumination takes place as a user
interactively guides a virtual car along a test track at night.

The prototypic beam pattern data that VND projects onto a virtual test track is a map
of real world luminance (intensity) data with a range that spans well beyond that repre-
sentable on standard display devices. Because there is no formal limit on this range, this
type of data is called High Dynamic Range (HDR) data.

At present, as a preprocessing step, VND compresses input HDR beam pattern data into
a restricted, Low Dynamic Range (LDR). For more accurate simulation, however, it is
necessary to use original beam pattern data for illuminating the virtual test track, and,
as a post processing operation on each frame, compressing the resulting HDR output so
that it can be displayed on a standard monitor. Compressing HDR data into the limited,
displayable intensity range is known as tone mapping.

Tone mapping has been the subject of intense research in recent years. There are two
classes of tone mapping operators: global and local operators. Global operators apply a
single transformation to all pixels in an image, while local operators consider local inten-
sity variations during mapping. Local operators are substantially more computationally
demanding than their global counterparts, but they effectively preserve local contrast that
is lost by global operators. Although local operators produce favorable results, their com-
putational complexity presents a great performance challenge for virtual reality operations
with real time requirements. Therefore, until recently, interactive HDR applications have
been restricted to using global tone mapping operators. Due to recent advances in graph-
ics processing hardware, however, real time GPU-based local tone mapping is becoming
possible, albeit at relatively conservative resolutions.

In order for VND to reach its full Virtual Prototyping potential, it would be highly desir-
able to extend its rendering system to support HDR rendering using a local tone mapping
operator. Because VND is designed to be run on the HD Visualization Center at the HNI,
on which VR applications are executed at very high resolutions, a local tone mapping
operator that allows interactive frame rates at high resolutions is necessary. Since, as far
as could be determined, no such operator exists, one must be developed.

Page 2 Chapter 1

1.2 Aim

The aim of this thesis is to develop a local tone mapping operator capable of tone mapping
very high resolution Virtual Reality applications at interactive frame rates. To accomplish
this, a promising existing tone mapping method is modified using modern, work-efficient
parallel algorithms. Furthermore, an investigation into the potential for performance gains
attainable by implementing this operator on the GPU using CUDA - a parallel program-
ming language in the rapidly emerging field of General Purpose GPU (GPGPU) program-
ming - is undertaken.

Because the long term goal of this research is the integration of local tone mapping into
VND, the tone mapping operator is implemented as a self-contained GPU-based module,
which can be integrated into any interactive HDR application.

1.3 Thesis structure

After the problem introduction and statement of aim are given in this chapter, Chapter 2
introduces the basic terminology and background thoery used throughout the remainder
of the thesis, including a short introduction to the target applications of VP and VND,
an overview of High Dynamic Rendering and coverage of basic GPU programming con-
cepts.

The problem introduced in Section 1.1 is considered in greater detail in Chapter 3, which
specifies research requirements derived from VND.

A review of the relevant previous work in high speed tone mapping is undertaken in
Chapter 4. An existing tone mapping operator with potential for meeting the requirements
specified in Chapter 3 is selected, and the most promising attempts at implementing it at
real time frame rates are discussed.

Chapter 5 discusses the approach taken to developing a high speed local tone mapping
operator that satisfies the requirements given in Chapter 3. After identifying a method for
optimizing the most suitable implementation currently in the Literature, a pair of GPU-
based software modules are designed for realizing the proposed method.

Focus is shifted from high level design concepts to implementational details in Chapter
6, where the procedure of implementing each module introduced in 5 is described in
detail. Furthermore, a custom software platform developed to assist with evaluating tone
mapping modules is introduced.

The results of the efforts of the preceding chapters are given in Chapter 7. After a visual
presention of tone mapping in the context of virtual night driving, the performance of the
modules developed in Chapters 5 and 6 is evaluated in detail.

Finally, Chapter 8 concludes by summarizing the work presented throughout this thesis,
as well as discussing future research directions.

Background Theory Page 3

2 Background Theory

This chapter covers the basic background theory necessary to understand the work pre-
sented in the remainder of this thesis.

Section 2.1 introduces the concept of High Dynamic Range (HDR) in the context of com-
puting imaging and graphics. This is followed by cursory discussion in Section 2.2 of
image processing, concentrating on image convolution. Finally, Section 2.3 discusses
programming on the GPU, including an introduction to General-Purpose GPU program-
ming with CUDA.

2.1 HDR Concepts in Imaging and Computer Graphics

2.1.1 Color and luminance

Humans perceive the world that they inhabit using a number of senses. One of these is
sight: light, an electromagnetic radiation that travels through space, is reflected from sur-
faces in the environment and subsequently perceived by the human visual system. Since
each reflection alters its spectral composition, the wavelength of the light arriving at the
observer’s eye conveys information about the light source itself, as well as the surfaces
from which it was reflected.

The human visual system is capable of perceiving electromagnetic wavelengths within a
range of approximately 380 to 780 nanometers (nm) [GV97, p. 52], known as the visible
spectrum. The visible spectrum is shown in Figure 2-1. Each wavelength in the visible
spectrum constitutes a colour.

L | | | | | | 1 1]
350nm 400nm 450nm 500nm 550nm 600nm 650nm 700nm 750nm 800nm

Figure 2-1: The visible portion of the electromagnetic spectrum. Different wavelengths
are perceived as different colors. Wavelength is specified on the scale above
in nanometers (nm) (1 nm = 107 m).

Typically, light of a certain colour is a spectral distribution, i.e an additive mix of wave-
lengths different proportions. A colour represented by light of a single wavelength is
called a pure colour. Experiments in the field of colorimetry have found that each colour
in the visible spectrum can be visually matched by a linear combination of pure colors,
called primary colors. In particular, pixels in computer display devices are colored using
a linear combination of the primary colors red, green and blue.

Page 4 Chapter 2

Specifying the visual colour spectrum in terms of red, green and blue primary colour com-
ponents gives rise to the CIE-RGB colour space. The wavelengths of the three primary
components, as defined by the Interational Lighting Commision (Commission Interna-
tionale de I’Eclairage - CIE), are specified on the left in Figure 2-2. The depiction on the
right in Figure 2-2 shows the RGB colour space represented as an RGB colour cube in 3D
space. Each of R, G, and B axis represent the weighting of red, green and blue primary
colour components, where the maximum weighting is normalized to 1.

B

Ar = 645.2
Ag = 525.3
Ap =444.4

~

Figure 2-2: CIE-RGB colour space, represented as a unit cube. Cube image adapted from
[Nie05]. Wavelength data from [RWP*06, p. 28].

The CIE-RGB colour space is consistent with the trichromatic colour perception of the hu-
man eye; in the human visual system, three types of photoreceptors, sensitive to red, green
and blue wavelengths, combine their input to produce any color in the visual spectrum.
The three types of photoreceptor cells do not occur in equal numbers in the eye, and,
furthermore, are not equally sensitive to input light intensity. Therefore, the perceived
brightness of a light source depends not only on its power, but also on its wavelength.

Photometry, the science of measuring visible light according to how it is perceived by the
human eye, defines an experimentally obtained luminous efficiency function, V (X\), which
specifies the eye’s sensitivity to light of different wavelengths [GV97, p. 67]. Figure 2-3
shows a plot of this function.

Given red, green and blue light sources of the same power, Figure 2-3 shows that the
green one would be perceived as brightest of the three. The red light source would be
seen as less bright than the green, and the blue one would be considered the darkest of the
three.

To gauge brightness, photometry defines a measure of luminance, which specifies the
perceived brightness of a surface when viewed from a certain direction, given in candela
per square meter (cd/m?) [RWPT06, p. 27]. Luminance can be computed from the red,
green and blue primary component weightings of a coloured light source, by means of

Background Theory Page 5

Luminous Efficiency Function
1.0

0.9
0.8
0.7
0.6
0.5 —V(A)
0.4

0.3

Normalized Response

0.2
0.1

0.0
350 400 450 500 550 600 650 700 750

Wavelength

Figure 2-3: The luminance efficiency function. The x-axis shows the wavelength (\) of the
input light and the y-axis shows the normalized response of the visual system.
The area under the curve is filled to indicate the perceived colour at each
wavelength. For light of constant power, the curve indicates the intensity with
which the light will be perceived by the visual system.

linear combination. There are a number of standards specified for the coefficients of this
linear combination. For example, computing luminance from RGB components according
to the ITU-R BT.709 [ITU90] standard is shown in Equation 2.1. Note that the weightings
used are consistent with the relative light-efficiency function in Figure 2-3.

R
L = [0.2126,0.7152,0.0722] * |G 2.1)
B

Luminance is the standard unit of measurement used to represent brightness in HDR
Rendering.

2.1.2 Dynamic range

The dynamic range of a scene denotes the ratio between its highest and lowest measur-
able luninance. Figure 2-4 shows, on a logarithmic gradient, the luminance of common
real-world light sources and environments. Examining the values in the Figure, it can be
concluded that a moonlit scene would typically have a dynamic range of 2 order of magni-
tude, while an indoor environment with a window through which sunlit, outdoor scenery
is visible (such as the scene in Figure 2-4, would exhibit a dynamic range of about 3 order
of magnitude. If objects in the outdoor scenery were particularly reflective, or the sun

Page 6 Chapter 2

itself were to be visible, this dynamic range would increase dramatically.

Candle LCD monitor
Starlight Moonlight Indoor lighting Outdoor shade Sunlight
4 1 (T -l 4
10 10 10 10 1 10 10 10 10 10 10

Figure 2-4: A logarithmic scale of the ambient illumination in a number of real-world
environments. Values from [Wan95], [HDR].

The human visual system is capable of discerning a range of about 5 orders of magnitude
in a single scene simultaneously. It can be seen in Figure 2-4 that the difference between a
daylight scene and one lit by starlight is 8 orders of magnitude. Yet, both starlit and sunlit
scenes can be perceived - because the eye is capable of adapting to lighting conditions
that vary by close to 10 orders of magnitude [FerO1]. Because the difference between
starlight and and daylight exceeds the dynamic range discernable by the human eye at
one time, stars are not visible in the sky on a clear, sunny day. If, however, the sun were
suddenly “turned off”, after a period of adjustment, the stars would reveal their presence
to the observer (who would likely nonetheless not perceive them, as they would have more
pressing matters at hand).

2.1.3 HDR Imaging

Modern, general purpose LCD monitors produce a maximum luminance of about 250 to
350 cd/m?, and therefore have a dynamic range of 2 orders of magnitude. Accordingly,
most image encodings use a single byte for each of the red, green and blue color compo-
nents of each pixel, restricting the luminance representable in the image to a maximum
of 256 discreet levels. An image of this type contains only a fraction of the information
present in the real-world scene it represents. Since their dynamic range is fixed to a con-
stant 2 order of magnitude, such images are called Low Dynamic Range (LDR) images.

Rather than encoding images according to the limitations of the devices on which they are
displayed, it is more prudent to capture them with a range of luminances representative of
the scene they depict. Images encoded in such a manner have a dynamic range matching
the scene they represent, and are accordingly called High Dynamic Range images. The
science of working with HDR images is called HDR Imaging.

A number of HDR image encoding have arisen in recent years. Particulalry widely used
encodings are the radiance [LS98] and OpenEXR [KBHO7] formats. The details of how
these encodings work are unimportant in the context of this thesis; it is simply necessary
to note that each format uses 16-, 24- or 32-bit floating point representations to extent the
range and precision of the red, green and blue (and alpha) channels of each image pixel.

Figure 2-5 shows a digital image encoded using a standard, LDR encoding. Each pixel is
represented by a 3-tuple of 8 bit integer values, representing the red, green and blue colour
weightings. An digital image encoded in a HDR format is shown in Figure 2-6. Using this
encoding, each colour weighting is specified with a high precision, floating point value.

Background Theory Page 7

Furthermore, the range of intensities that can be specified extends well beyond that of
[0, 255] possible in traditional encodings.

(232,120,119)

Figure 2-5: A digital image represented with a standard, LDR encoding. The RGB color
channels of each pixel are specified with 8 bit integer values.

(568981.23,30146.45,30140.11)

Figure 2-6: A digital image encoding using a HDR image format. The RGB color chan-
nels of each pixel are specified with high precision, floating point values.

There are a number of approaches to capturing HDR images. One common method is to
capture a series of LDR images of a scene at different exposures, and consolidate them
into a single, HDR scene representation. Another is to use modern, high-fidelity hardware
to directly capture a HDR representation of a real-world scene. For more information on
HDR image capture, see [RWP106].

2.1.4 HDR Rendering

Similary to traditional imaging, in computer graphics, to adhere to display device bright-
ness limitations, light sources are typically clamped to a luminance range of [0, 1], where
0 represent complete absence of light and 1 represents maximum brightess. Within this
range, intensity can be specified with 8 bits of precision. This is greatly inhibitive for
lighting computations; using this system, a candle, a car headlight and the sun are all

Page 8 Chapter 2

clamped to 1, and are consequently considered equally bright in the simulation! Further-
more, due to the lack of precision, during lighting computation, it is difficult to distinguish
between light sources of similiar intensity, thus losing fine detail in the final scene.

An NVIDIA presentation [GC] aptly formulated the following points, which are used here
to relate to real-world scenery:

e “Bright things can be really bright.
e Dark things can be really dark.

e There is detail in both.”

To facilitate lighting computation more representative of the real world, HDR Rendering
removes the artificial [0, 1] intensity restriction and increases bit depth per color channel
to 16-, 24- or 32- bits, depending on the target application. This allows light sources to
be modeled after their real-world equivalents. For example, a candle could be given a
brightness of 300, a battery operated flashlight 1000 and a car headlight 10000.

By representing intensity with unrestricted, high precision floating point values, far more
accurate lighting computations are possible. Consider the following simulation. Two light
sources emit light of similar intensity that passes through a 99% absorbent medium before
reaching an observer. Figure 2-7 (a) depicts this situation in traditional, LDR Rendering.
For simplicity of illustration, the 8 bit intensity range is represented with integers in the
range [0, 255]. Although the light sources have different intensities, after passing through
the absorbent medium, due to lack precision, the intensities of both light sources are both
truncated to 2 and are no longer be discriminated from each other. Figure 2-7 (b) shows
the same situation using HDR Rendering. In this case, the light source intensities now
represented with full precision floating point numbers. After passing through the medium,
both light sources may still be distinguished from each other. Furthermore, since the light
source intensities model very bright, real-world entities, the light on the other side of the
medium can still be recognized as “bright”.

2.1.5 The tone mapping problem

Regardless of the dynamic range used for encoding a digital image or generating a vir-
tual scene in computer graphics, the result will ultimately be shown on an LDR display
device. Therefore, until sufficient progress is made in the development of HDR display
devices, mapping HDR output pixel data into LDR before sending it to the display device
is unavoidable.

The question is, how can HDR pixels be compressed to LDR? Simply clamping all HDR
pixels to the displayable range would map most pixels to pure black or white, resulting
in a scene similar to that on the left in Figure 2-8. An intuative approach could be to
compress all luminances by linearly scaling them against the miminum and maximum
values in the image. This would result in a scene similar to that on the right in Figure 2-8.
In both cases, a mapping from HDR to LDR has been performed. The results, however,
are most probably not desirable for the majority of applications.

Typically, the mapping from HDR to LDR should be performed in such a way that the
result visually matches the scene the scene being represented [RWP06, p. 187]. This is

Background Theory Page 9

99% absorbent

medium Light source 1

Intensity = 255 O
No discernible difference.
Intensity =2
——
-
—
ot
observer -
T Light source 2
Intensity =2 Intensity = 254 O

()

99% absorbent
medium Light source 1

Intensity = 255000.0 O
Detectable difference.

Intensity = 2550.0

e

]

—

g

observer |_
=] Light source 2

Intensity = 2540.0 T O

Intensity = 254000.0

(b)

Figure 2-7: The difference in accurracy between LDR Rendering (a) and HDR Rendering
(b). In both cases, two light sources of similar intensity are viewed through
a 99% absorbent medium. In the LDR case, due to 8 bit intensity represen-
tation, the observer is unable to detect any difference between the two light
sources. In the HDR case, intensity is represented using unrestricted, floating
point numbers. As a result, the observer can detect an intensity difference
between the two light sources.

Page 10 Chapter 2

5

—

NS

Clamping Linear scaling

Figure 2-8: Two attempts at mapping the “Memorial Church” HDR radiance map (see
Appendix A) to LDR. The most simple solution, on the left, clamps HDR into
LDR. Another simple idea, shown on the right, is to scale luminance linearly
against largest and smallest values in the image. In both cases, undesirable
results are attained.

known as the tone mapping problem.

There is a large body of research on the tone mapping problem. An algorithm that solves
the tone mapping problem is called a tone mapping operator. The tone mapping operators
proposed in the literature can generally be classified as global or local operators'.

Global operators compress the luminance of each pixel independently of its surroundings.
Using a global operator, a dark pixel surrounded by other dark pixels is compressed in
exactly the same way as a dark pixel located in a bright region. Global operators are
generally efficient and highly parallelizable. The penalty of their performance benifits,
however, is that detail, particulalry in regions of high contrast, is lost.

Local operators customize the compression process of each pixel to its local surroundings.
By accounting for the local properties of each pixel, significant scene detail can be pre-
served. Individually examining each pixel’s local neighbourhood during tone mapping,
however, is computationally expensive. Local operators are therefore seldom used with

I'This is true within the group of spatial operators, i.e operators that operate on the spatial domain. Tone
mapping operators have also been proposed for the frequency and gradient domains [RWPT06]. How-
ever, since the most efficient operators for GPU implementation found during the literature review were
all spatial operators, the focus of this work is on tone mapping in the spatial domain.

Background Theory Page 11

interactive applications.

The results of global and local tone mapping are compared in Figure 2-9. For coverage
of the fundamental principles of tone mapping, see Chapter 4, which presents a detailed
case study of a commonly used tone mapping operator.

Local Operator

Figure 2-9: Comparison of global and local tone mapping operators, applied to the HDR
scene ”Snow “ (for radiance map source, see Appendix A). Detail in the snow
is preserved better by the local operator.

2.2 Image processing

This thesis uses some basic concepts from the field of image processing. Image process-
ing the science of a analysing and manipulating digital images. There is a large body
of research and literature on the topic of image processing; this section humbly aims to
provide a simplified view of the concepts referred to in later chapters. For a more com-
prehensive introduction to image processing, see [Ton05], [Bov08], [GVI7].

Page 12 Chapter 2

2.2.1 Introduction to digital images

The fundamental structure in image processing is a digital image. Digital images can be
represented in many forms; in this thesis, two dimensional (2D) images are of primary
interest. A 2D image is simply a matrix of n-tuples, with n > 1. Each matrix entry is
refered to as a pixel. Figure 2-10 illustrates this concept, where each pixel is represented
by the n-tuple v(x, y).

Two particularly common image types are greyscale and color images. The distinguish-
ing factor between these image types is length of v. In greyscale images |[v| = 1. In
other words, each pixel is represented by a scalar, which specifies its intensity, typically
visualized by grey value on gradient between black and white, known as a greyscale. In
color images, each pixel is typicall represented by a 4-tuple, where each value in the tu-
ple is referred to as a channel. The first three channels specify the intensity of the red,
green and blue primary components used in linear combination to specify the colour to
use when visualizing the pixel (see Section 2.1 for more information on colours). The
fourth channel is called the alpha channel, and specifies pixel transparency. The number
of bits used to specify each channel is called the image’s bit-depth. The images on the left
and right in Figure 2-11 are visualization of greyscale and colour images, respectively.

v(1,1)|v(1.2) [v(1.3)|v(1,4)| Qreyscale

vix,y|=ilx,)

v(2,1)|v(2,2) [v(2.3) [v(2.4)

colour

v(3,1)|¥(3,2) |v(3.3) |v(3.4) vix,y)=(rlx,»), glx,y), blx,y) alx,p))

v(4,1)|v(4,2) [v(4.3) |v(4.4)

Figure 2-10: A digital image is a matrix of n-tuples. Two common types of images are
greyscale images, where each matrix element is single intensity scalar, and
colour images, where each matrix element is a vector specifying colour
channel intensities and transparency.

Figure 2-11: Example of greyscale (left) and colour (right) image representations.

Background Theory Page 13

2.2.2 Image convolution

A digital image can be viewed as a discrete digital signal. As such, it can be filtered
using a common operation in signal theory called convolution, a process known as image
convolution. In the context of this thesis, image convolution can be seen as a modification
of each pixel in an image by computing the scalar product of the union of the pixel and
its local neighbourhood with a matrix of filter weights called a filter kernel. Figure 2-12
illustrates this process for a 3x3 filter kernel.

Input image Output image
Filter kernel
|11 |12 IIS R11 R‘IZ R‘IS
R l21 .l lz | # |Rzi|R22|Raz| = A
N\ st | k2 |lss| |Rsi|Rs2|Res
Target pixel
Local neighbourhood
i»:jihi:LBJﬁ*Rﬁ

Figure 2-12: An example of image convolution. The target pixel (red) is convoluted by
computing the scalar product of the region containing the pixel and its local
neighbourhood (blue) with a 3x3 fitler kernel (orange). The result is written
fo an output image.

The process of convolving an image [by a kernel R to produce a result, or response, V'
is often denoted:

V=I®R (2.2)

This concept will be clarified in the following subsections, which describe the image
convolutions used in this thesis.

2.2.2.1 Box filtering

Box filtering computes an equally weighted average of a given region around each pixel
in an image. To apply a box filter to an image, the image is convolved by filter kernel
with all elements set to 1/(n?), where n is the length of one side of the filter. Figure 2-13
shows an example of computing a 3x3 box filter.

The result of applying a box filter to a digital image is a uniform blur. Figure 2-14 shows
the effects of box filtering a sample image by box kernels of different dimensions.

2.2.2.2 Gaussian convolution

Like box filtering, Gaussian convolution computes the local average around each pixel.
Unlike box filtering, however, the weightings in the filter kernel are not uniform. Instead
filter weightings are determined by a Gaussian distribution, defined as:

Page 14 Chapter 2

Input Box kernel

1132 1/9(1/9|1/9

2 5 | « [1/91/9]1/9 =.

7121 1/9(1/9|1/9

Figure 2-13: An example of computing a box filter.

original 3x3 kernel
6x6 kernel 9x9 kernel

Figure 2-14: The effects of box filtering an image with a variety of kernel sizes.

Gla,y) = e (#9720 2.3)

2mo?

where x and y are the x and y distances from an origin at the filter kernel center, o is
the standard deviation, also known as the kernel radius, and G(x,y) is the resulting pixel
weighting. Figure 2-15 shows a plot of an example Gaussian distribution. It can be
seen that the kernel weightings decrease as the distance from the origin (kernel center)
increases. As a result, the blurring effect achieved by Gaussian convolution is smoother.
Figure 2-16 shows the results of Gaussian blurring on a digital image.

Seperability
Convolving an image by an mxn Gaussian kernel requires mxn multiplications for each

Background Theory Page 15

0. o ff[j’,*’ .““‘\ -
weight jflf ‘_ ‘ \
0z 7 m#ﬂ#’%\!ﬁ\ﬁ

Figure 2-15: A plot of the weighting of a Gaussian kernel. Filter weights decrease as the
distance from the origin increases.

original o=2
8

c=5 o

Figure 2-16: The effects of Gaussian convolution, applied to an image with a variety of
kernel radii.

Page 16 Chapter 2

pixel in the image. Therefore, the amount of work required per pixel scales by O(n?).
This is an expensive operation.

Fortunately, Gaussian kernels are seperable. This means that a mxn kernel matrix with
weights given by the 2D Gaussian distribution specified by Equation 2.3 can be replaced
by two, 1D vector kernels, of length m and n, with weights specified by the 1D Gaussian
distribution [T6n05]:

Glz) = — /2 (2.4)

2o

By applying the two mx1 and 1xn 1D convolutions consecutively to the input image,
the same result will be obtained as if it were convoluted by the original mxn matrix,
with a total of m+n multiplications. Therefore, by exploiting the seperability of Gaussian
kernels, the asymptotic complexity of convoluting each image pixel is reduced to O(n).

2.2.2.3 Efficient box filtering with Summed-Area Tables

Like the Gaussian kernel, a box filter kernel is seperable. Therefore, the per pixel com-
plexity of convolution can be reduced from O(n?) to O(n). It is possible, however, to
further optimize this operation to constant complexity (O(1)) per pixel.

Constant per-pixel box filtering complexity is achieved with the help of a special data
structure called a Summed-Area Table (SAT) [Cro84]. A SAT S is a table computed from
a input image [such that each element S(i,7) in S contains the sum of all elements
I(p,q), with p < i and ¢ < j [SO08]. Formally, from an mxn image I, a SAT of
equivalent dimension is constructed, where each entry in S is given by:

1 J

S@,5) =YY 1(p.q) 2.5)

p=1 ¢=1

Figure 2-17 shows a SAT constructed from an example 4x4 input image.

original SAT
1 4 0 2 1 5 7
0l 2| 1]5 1 8 | 15
3 1 4 2 4 | 11|16 | 25
4 |70 3 8 22|27 | 39

Figure 2-17: An example 4x4 image and corresponding SAT. Image source [SOO0S].

Using an image’s SAT, the sum of all pixels within any rectangular image region can be
computed with four fetches. For example, to compute the sum of the blue region in the
example 4x4 image on the left in Figure 2-18, the delimiting elements A, B, C' and D
marked in the image’s corresponding SAT on right are summed:

Background Theory Page 17

Sum=A—-B—-C+D (2.6)

original

Figure 2-18: Computing the average of the region marked in blue by applying Equations
2.6 and 2.7 to the elements marked in the SAT on the right. Image source
[SO08].

The average of the region can be obtained by computing:

Sum
w' * b

2.7)

Average =

where w’ and b’ are the region dimensions.

Since box filtering equates to computing a series of region averages in an image, given an
image and its corresponding SAT, a box filter convolution can be applied with constant
complexity per pixel.

Chapter 5 investigates efficient parallel methods for generating SATs on the GPU.

2.3 GPU Concepts

This section discusses concepts related to programming Graphics Processing Units
(GPUs). GPUs are powerful and cheap computing devices present in each PC, laptop
and workstation, as well as many portable devices. Originally designed to execute the
fixed-functionality graphics pipeline (Section 2.3.1), they have evolved over the years to
become fully programmable, parallel processing tools.

2.3.1 Shader programming

GPUs were originally designed to generate 2D and 3D graphics for display on the com-
puter monitor. For many graphics applications, this was accomplished by mapping math-
ematical scenes, represented by theoretical constructs such as points or polygons, via
a sequence of transformations in GPU hardware to an array of pixels for display on the
screen. This set of transformations was known as the fixed-functionality graphics pipeline,
since the functionality of each transformation was hardwired into the GPU harware.

With each new generation of GPUs, the fixed-functionality graphics pipeline became
increasingly configurable to meet the evolving demands of developers. In the early

Page 18 Chapter 2

2000s, key stages of the graphics pipeline became fully programmable, leading to the
programmable graphics pipeline.

Figure 2-19 shows a schematic of the programmable graphics pipeline. Vertices from the
virtual scene are processed by the Vertex Processor, which transforms them from their lo-
cal coordinate systems to consistent, global coordinate system. The transformed vertices,
together with their associated primitives are then clipped against the virtual camera’s view
frustrum by the Clipper and Primitive Assembler, which also performs occlusion op-
erations. Once the visible primitive in the global coordinate system have been identified,
the Rasterizer converts the visible vertex and primitive information to fragments, which
are essentially uncoloured pixels that are still not guarenteed to make it onto the screen.
Fragments are processed by the Fragment Processor, which assigns them colour. The
output of the fragment shader is a set of pixels, which are shown on the display device.
For more information on the basics of computer graphics, see [Angl1].

Clipper and

LR Primitive Assembler

Rasterizer Fragment Processor

A

Figure 2-19: The programmable graphics pipeline. Programmable stages are marked in
blue.

The vertex and fragment shaders shown in Figure 2-19 are programmable, which means
that developers can replace their standard functionality with custom procedures. This
opens many possibilities; for example, a blur effect can be added the output scene by
programming the fragment shader to apply one of the image convolutions described in
Section 2.2.

There are a number of languages specified for programming shaders, which are called
shader programming languages. Some of the most common of these are: Microsoft’s
High Level Shader Language (HLSL), NVIDIA’s C for graphics (Cg) and the OpenGL
Shading Language (GLSL). Shader languages are special purpose languages, designed
specifically for manipulating vertices and fragments.

2.3.2 General-Purpose GPU (GPGPU) programming

GPUs are designed for processing primitives and producing pixels for display on the
screen. Many of the applications for which they are used have real time performance
requirements, which means they have to produce images at up to 60 frames per second,
for increasingly high resolutions. Furthermore, the problems that GPUs are designed to
solve are very specific and highly parallelizable. As a result, GPUs compute using the
Single Instruction Multiple Data (SIMD) model, where a collection of specialized, high-
performance Streaming Processors (SPs) perform the same instructions on multiple data
simultaneously.

Due to their specialized, high performance, parallel architecture, GPUs have become ex-
tremely powerful computing devices. Figure 2-20 compares the floating point operations
per second and memory throughput of a number of modern GPUs to CPUs.

Background Theory Page 19

Theoretical
GFLOP/s
1500

=g MNVIDIA GPU Single Precision
1250 ——NVIDIA GPU Double Precision

=ge=|ntel CPU Single Precision

==t Intel CPU Double Precision

1000

750
Tesla C2050

500

IED 5 For e r8 .. .'- A wl!tFI'- ere
Pentiunt4 Harpertown
Sep-01 Jan-03 Jun-04 Oct-05 Mar-07 Jul-08 Dec-09

Theoretical GBfs
200

180

= CPU
=== GPU

160

140

120

100

80

60

beForce 6800 / Westmere
<« _ es

Harpertown

0 “Nerthwood ' ' ' ' ' '
2003 2004 2005 2006 2007 2008 2009 2010

Figure 2-20: Comparison of Floating-Point Operations per Second and memory band-
width of recent GPUs and CPUs. Image from the NVIDIA CUDA Program-
ming Guide [NVII1].

Page 20 Chapter 2

Motivated by the processing power offered by GPUs, developers, particulalry the scien-
tific community, began using GPUs to solve general-purpose problems unrelated to com-
puter graphics. This was often awkward, however, because it was necessary to formulate
problems in terms of graphics-related concepts, such as vertices, textures and fragments,
in order to solve them with shader languages. Using the GPU to solve general-purpose,
non-graphical problems is known as General-Purpose GPU (GPGPU) programming.

In late 2006, NVIDIA introduced the Compute Unified Device Architechture (CUDA) - a
scalable, parallel programming model for GPUs, that allows programmers to bypass the
graphics API and solve general-purpose problems on the GPU directly in C or C++.

2.3.3 The CUDA programming model

CUDA is an extension of the C and C++ languages. A CUDA program is specified as
a special C or C++ function called a kernel. Kernels are executed concurrently as a col-
lection of parallel threads. Groups of threads are organized as blocks and blocks in turn
comprise a grid. Threads within a block cooperate using barrier synchronization primi-
tives and common access to a shared memory space exclusive to each block. A grid is a
set of independently executing thread blocks. Figure 2-21 illustrates this concept.

Grid

Block (0, 0) Block (1,0) Block (2, 0)

Block (0, 1) Block (1, 1) -Block (2, 1)

Block (1, 1)

Figure 2-21: CUDA thread heirarchy [NVII1].

The dimensions of the processing grid, as well as of each block, are specified when the
kernel is invoked. Typically, a kernel is invoked such that there is one thread for each

Background Theory Page 21

element of data to be processed. For example, when using CUDA for image processing,
the thread grid is set up with a number of threads commensurate with the number of image
pixels, and each thread is mapped to an input pixel by matching its position within the grid
to the pixel’s position within the image.

2.3.3.1 Memory heirarchy

The CUDA memory heirarchy is shown in Figure 2-22. Threads have access to multi-
ple memory spaces during their execution. Each thread has set of local registers and a
private local memory space that it uses for storing local variable and computing local
results. Within each block, each thread has access to a common, shared memory space
called shared memory. Shared memory is only slightly slower than registers. Finally, all
threads in the system have access to a global, high-latency memory space called global
memory.

Registers and shared memory are on-chip memory, while gobal memory is off-chip. On-
chip means that the memory is locate directly on the chip with the processing unit. Off-
chip memory is stored in a random access DRAM memory unit, which resides off the
processor chip, so global memory requests must be fetched across a bus. As a result,
registers and shared memory are very fast but with small capacity, and global memory is
large but slow.

Thread
_ . Per-thread local
b memory
Thread Block

Per-block shared
memory

IYY ¥ 3

YYvyy

i

Block (0, 0) Block (1,0) Block (2, 0)

Grid 0

Global memory

Block (0,1) Block (1,1) Block (2, 1)

Figure 2-22: CUDA memory heirarchy. Adapted from [NVII1].

There are two additional, read-only memory types available to all threads: texture memory
and constant memory. Constant memory resides in the global memory space, and, unlike
global memory, is cached on chip. Texture memory is similarly cached, where the caching
procedure is optimized for 2D spatial locality, i.e data located close together in 2D will
be cached.

A summary of the memory types is given in Figure 2-23.

Page 22 Chapter 2
Memory Cached Access Scope Capacity
Register No Read/Write | Single thread Bytes
Shared No Read/Write Block Kilobytes
Global No Read/Write | All threads | Mega-/Gigabytes
Constant Yes Read All threads | Mega-/Gigabytes
Texture | Yes (spatially) Read All threads | Mega-/Gigabytes

Figure 2-23: Summary of CUDA memory spaces.

2.3.3.2 Performance considerations

Avoiding thread divergence

Within each block, threads are further logically divided into warps, which consist of 32
threads each. All threads within a warp execute in lock-step, i.e all 32 threads execute the
same instruction at the same time, operating on different data. If threads of warp diverge
on a data-dependent branch, the warp must be re-executed for each executional path taken,
each time disabling all threads not following that path. In a very unfortunate case, the
warp would be re-executed 32 times, thereby losing all parallelism. This situation is
known as warp divergence.

Coalescing global memory access

Global memory requests are serviced via 32-, 64-, or 128-byte memory transactions.
When the threads of same half-warp (16 threads executing in lock-step) issue a mem-
ory request, their collective request can be satisfied with a single memory transaction,
provided that:

e The request size per thread is 4, 8 or 16 bytes. 4 byte requests will be serviced with
a single 64 byte transaction; 8 byte requests with a single 128 byte transaction and
16 bytes requests with two 128 byte requests.

e All threads are accessing memory within a segement of global memory whose start-
ing address is a multiple of the transaction size.

e Threads request words in order: thread £ in the half-warp requests word £ in trans-
action.

The procedure of optimizing the response to the requests of a half-warp into a single
memory transaction is known as memory coalescing. If the requirements above are not
met, coalescing will not take place and the half-warp will be serviced with 16 seperate,
32-byte memory transactions.

It should be noted that more recent GPU-capable GPU architechtures more relaxed in their
coalescing requirements. However, since the GPU used for the majority of development
and testing in this thesis is one of the earlier models (see Appendix A), all of the conditions
above apply.

Avoiding shared memory bank conflicts

To achieve high bandwidth, shared memory is organized into 16 equally sized modules,
called banks, where sequential 32-bit words are organized into sequential banks. Memory
requests that fall into seperate banks can be serviced simultaneously. However, if n si-
multaneous requests fall into the same bank, these requests must be serviced sequentially.

Background Theory Page 23

This is known as an n-way bank conflict. Bank conflicts can only occur within each half-
warp. Therefore, it is important to design shared memory requests in a half-warp to fall
into seperate banks.

Page 24 Chapter 2

Requirements Specification Page 25

3 Requirements Specification

The long term goal of this research is to enable HDR Rendering in Virtual Night Drive.
To accomplish this, a suitable tone mapping operator must be conceived, which can meet
the rendering requirements implied by VND.

This chapter begins, in Section 3.1, by examining the current LDR rendering process in-
corporated by VND and highlighting necessary modifications required for more accurate,
HDR headlight simulation. Section 3.2 discusses the requirements on the tone mapping
operator to be developed in this thesis in the context of its intended future integration into
VND.

3.1 Enabling HDR Rendering in VND

At present, the headlight prototyping procedure used by VND consists of two major
stages: one preprocessing step, performed by an offline converter, and an interactive simu-
lation, which uses the output of the offline converter to illuminate the virtual environment
as the user guides a vehicle about a test track. This procedure is overviewed in Figure
3-1.

The VND rendering process in Figure 3-1 is divided into major phases, and the location
of each phase within the overall simulation is indicated by the color of the diagram region
in which it is drawn. Furthermore, the dynamic range of data that each phase operates on
is specified in the far right column of the diagram.

Phase 1 in Figure 3-1, performed by an offline converter, involves processing and sim-
plifying the raw headlight data provided by the client headlight manufacturer, saving the
results into a collection of textures suitable for interactive projection into a virtual envi-
ronment. The data passed to the converter is a map of headlight beam pattern intensity
data containing luminances of up to 10°cd/m?. This HDR data is tone mapped as a part
of the preprocessing process, producing a set of LDR textures that can easily be used for
projection and lighting computation in the interactive driving simulation.

Phases 2 and 3, shown in the bottom, light grey region in Figure 3-1, are performed during
the interactive driving simulation. Phase 2, performed on the GPU using a vertex shader,
projects the LDR headlight textures produced by Phase 1 from each virtual car headlight
onto test track. This projected region is illuminated in Phase 3, using fragment shaders,
according to the LDR illumination data stored in the textures produced by Phase 1.

It would be desirable to remove tone mapping from the preprocessing step and use the
original, HDR headlight data for environment illumination, allowing more accurate light-
ing computations. Illuminating the virtual test track with HDR beam pattern data will
result in HDR output from the illumination fragment shader (Phase 3 in Figure 3-1). In
order to display this frame data, tone mapping must be performed as an additional, post-

Page 26 Chapter 3

Dynamic

Component Phase Task Result range

5 Preprocessing of beam § conyert beam pattern data to texture
o+ pattern data suitable for projection
£ - :
E £ Tone map

O 1 - LDR beam pattern

Beam pattern projection

c
= Distribution of light data
k 2 on test track
E
(7]
1]
£
5 lllumination

llluminated virtual test track
displayed on screen

Figure 3-1: The current rendering process in VND. Input HDR beam pattern data is com-
pressed into LDR format as a preprocessing step. As a result, only LDR
illumination is performed during simulation. Figure inspired by [BEROS, p.
78].

processing phase. This situation is shown in Figure 3-2. Because each pixel produced by
the illumination fragment shader (Phase 3) must be tone mapped, and this process must
take place as rapidly as possible, Phase 4 in Figure 3-2 should be implemented on the
GPU.

3.2 Tone mapping requirements

The goal of this thesis is to implement a tone mapping operator that can, in future, be used
in Phase 4 in Figure 3-2. Consequently, it is important that the use of this operator does
not affect VND’s ability to meet its original requirements. Therefore, the requirements on
the tone mapping operator can be extrapolated from those of VND.

Four key requirements on the tone mapping operator have been identified. These require-
ments are specified below.

Requirement 1: Preservation of local details in high contrast regions

Driving simulation in VND takes place in a night time environment, where the only source
of light in the scene is that of the test vehicle’s headlights. Projecting the original, HDR
beam pattern data into the environment will lead to a very high contrast range in the
resulting scene. In particular, when a headlight itself becomes visible in the view frustum,
such as when the test vehicle is approached by oncoming traffic, the dynamic range of the
scene can reach 5 orders of magnitude.

Requirements Specification Page 27

Dynamic
Component Phase Task Result range
- Preprocessing of beam
o £ pattern data IC‘-'"-"M'—t beam pattern
et data to texture suitable
E = for projection.
°8 1 > HDR beam pattern I

Beam pattern projection
Distribution of light data
2 on test track

lllumination

Online Simulation

HDR scene data

Tone mapping ILocaI tone mapping
on illuminated HDR
ﬁ Scene. llluminated virtual test track I

- displayed on screen

Online
post-process

Figure 3-2: To support HDR environment illumination in VND, the tone mapping oper-
ation originally performed in Phase 1 (Figure 3-1) must take place in an
additional, post-processing module, which tone maps each output frame in
real time.

Because VND is designed for headlight protyping, it is important that the fine detail in
the environment illumination caused by any given headlight prototype are clear, even
in very high contrast scenes. Since global tone mapping operators notoriously favour
performance at the expense of local detail in high contrast regions, this suggests that the
appropriate operator for VND will be local.

Requirement 2: Interactive frame rates at high resolutions

VND is designed to be run on two classes of platforms. The first is that of standard
PCs equipped with mid-range GPUs, which will typically run VND at resolutions up to
1920x1200. The second is that of high definition Virtual Reality visualization systems.
In particular, VND has been designed to run in the HD Visualisation Center at the Heinz
Nixdorf Institute. As described in Section A.2, the HD Visualisation Center is a system of
interconnected computers that drive multiple high resolution projectors, which together
create a highly immersive simulation enironment. The largest of the projectors generate
images at a resolution of 3840x2160.

Since VND is an interactive application, the introduction of a tone mapping operator
can not interfere with its interactivity, which entails maintaining a minimum frame rate

Page 28 Chapter 3

of 30 fps!. Therefore, the tone mapping implementation must be capable of supporting
interactive frame rates, i.e a minimum of 30 fps, for the following configurations:

i. PC systems equipped with mid-range GPUs at resolutions up to 1920x1200.

ii. The HD Visualization Center at a resolution of 3840x2160.

Although 30 fps is the minimum frame rate required for interactivity, in order for VND
to maintain its current high level of responsiveness, a framerate of 60 fps is necessary?.
Therefore, the tone mapping operator should be able to maintain a desired frame rate of
60 fps on the system configurations i. and ii. specified above.

Clearly, this requirement directly contradicts Requirement 1; preserving detail in high
contrast regions during the tone mapping requires advanced local adjustment at each pixel,
penalizing performance. It is possible that the most suitable tone mapping operator for
VND will need to find a reasonable balance between these requirements.

Requirement 3: Implementation as a self-contained post-processing module
Although the primary focus of this paper is developing a tone mapping operator for fu-
ture integration into VND, there is no reason to restrict the area of application solely to
VND. The growing trend towards using HDR in VR and other interactive applications
[PB10] [YNC106] [McT06] [Che08], coupled with continued progress in computing
hardware capabilities, implies that there will be an increasing requirement for powerful,
post-processing local tone mapping procedures. Therefore, the tone mapper developed
in this paper should be implemented as a self-contained module, which can easily be in-
tegrated into existing interactive applications with tone mapping requirements, of which
VND is but one instance.

Requirement 4: Efficient post-processing of OpenGL applications that use shaders
VND is based on OpenGL and makes heavy use of vertex and pixel shaders. Hence, how-
ever the tone mapping module is internally implemented, it must efficiently interoperate
with OpenGL applications that use shaders. This requirement must be taken into consid-
eration particularly when choosing a technology for implementation of the tone mapping
module.

3.3 Summary

This chapter examined the current VND implementation and discussed the necessary con-
ditions for introducing HDR rendering. With the intention of future integration into a
future HDR version of VND, the requirements on a suitable tone mapping operator were
specified. These requirements were inferred from those of VND.

I'The definition of interactivity depends on the area of application. When interacting with Computer Aided
Design (CAD) systems, for example, a frame rate of 5-10 fps is sufficient. Virtual Reality applications,
on the other hand, aim to provide the user with a fluid impression of a dynamically changing virtual
environment. To achieve this, a frame rate of 25-30 fps is necessary (motion pictures are typically
shown on television at 25 fps).

ZWhen driving through a virtual scene at high speed, the position of the viewer can change significantly in
the 33 ms required to render each frame at 30 fps. This results in a reduction in simulation fluidity that
is particularly noticeable on high resolution displays. By targeting a simulation rate of 60 fps or more,
the limiting factor on rendering speed is shifted from the simulation itself to the refresh rate of common
display devices.

Requirements Specification Page 29

The remaining chapters of this thesis investigate developing a tone mapping module that
meets the requirements specified here.

Page 30 Chapter 3

Related Work Page 31

4 Related Work

The tone mapping problem has been the focus of extensive research in recent years. Dur-
ing this time a multitude of global and local methods, operating in the spatial and fre-
quency domains [RWP06], of varying complexity, and with varying performance and
visual results have been proposed. Despite the enormous variety, a property common to
all methods is that global operators are much faster to compute, while local operators pre-
serve more detail in high contrast image regions. Because preservation of high contrast
detail is one of the requirements specified in Chapter 3, the focus of this research is on
local tone mapping.

Some of the most widely cited local tone mapping algorithms are the Fairchild iCAM
method [FJ02], Pattanaik Multiscale Observer model [PFF1t99], Ashikhmin Spatially
Variant operator [Ash02], Pattanaik Gain Control method [PYO02], Fattal Gradient Do-
main Compression method [FLWO02], Tumblin and Turk Low Curvature Image Simplifier
(LCIS) method [TT99] and Reinhard Photographic Tone Reproduction method [RSS™02].
Due to their complexity, a review of these methods lies outside the scope of this the-
sis. For a comprehensive survey of the most common local tone mapping methods, see
[RWP*06], [DCW'02].

Reinhard’s Photographic Tone Reproduction method [RSS*T02] has been chosen as the
basis for this investigation, because its visual output consistently scores highly in evalu-
ation studies [CWN'08] [LCT'05], it requires few parameters, and a number of recent
optimizations and GPU adaptions show promising performance gains. Reinhard’s local
operator focuses on enhancing local contrast during compression, satisfying Requirement
1 in Chapter 3, and requires few parameters, making it favourable for implementation as
a self-contained post-processing module (Requirement 3). Furthermore, if need be, the
amount of detail preserved by the operator can be reduced to increase performance, which
creates leeway for finding a possible balance between visual quality (Requirement 1) and
performance (Requirement 2).

Section 4.1 explains Reinhard’s photographic tone reproduction method in detail. Section
4.2 then presents a series of successive adaptions of Reinhard’s operator to the GPU, with
each adaption more closely approaching the goal of real time local tone mapping at high
resolutions. Finally, Section 4.3 reviews the papers presented here, and discusses the
outlook from the current state of the art, with respect to the goals outlined in Chapter 3.

4.1 Reinhard’s method for photographic tone reproduction

The tone mapping method presented here, Photographic Tone Reproduction for Digital
Images proposed by Reinhard et al. [RSS*02], is the foundation for the work in this
thesis. Throughout the remainder of this thesis, this is referred to as Reinhard’s method
or Reinhard’s operator.

Page 32 Chapter 4

Reinhard’s method takes inspiration from formal techniques in photography, which are
based on Ansel Adam’s Zone System[Ada80, Ada81, Ada83]. With these photographic
techniques in mind, a simple and computationally efficient global luminance compression
operator has been developed, as well as a complex, more computationally demanding lo-
cal tone mapping operator required for scenes with particularly high dynamic ranges. Sec-
tion 4.1.1 describes the procedure for global luminance compression, and Section 4.1.2
presents the additional measures that must be taken for local tone mapping.

4.1.1 Global luminance compression

The main idea behind global tone mapping is to map all pixel luminances in an image
to the range [0, 1]. In order to do this, a global image luminance characteristic must be
determined, which can then be used as the basis of the mapping. As a simple example,
such a characteristic could be the maximum luminance value of the image and the con-
squent mapping could be to divide the luminance of each pixel by this value. This would,
however, lead to a linear tone mapping, which, as can be seen in Figure 2-8, produces
undesirable visual results. Instead, Reinhard’s method uses the notion of an image key.

The key of an image is defined as its the log-average luminance:

1
L, = exp(5; > 1og(8 + Ly(x,y))) (4.1)

x?y

where L, is the image key, L, (z,y) is the luminance for pixel (z,y), N is the total
number of pixels in the image and is a small constant to ensure that the [og function is
still defined for input luminances of 0.

Scenes that are relatively bright, such as the sunset depicted in Figure 4-1 (a), are at-
tributed with high key values (Figure 4-1 (b)), whereas darker images, such as indoor
environments (Figure 4-1 (c)), have lower key values (Figure 4-1 (d)).

Once the scene key has been determined, it is used to compute a scaled luminance value
for each pixel in the scene:

L(z,y) = Ly(z,9) 4.2)

b*|| o

w

where L(zx,y) is the scaled luminance of pixel (z,y), L., is as defined in equation 4.1,
L, is the scene key and « is a parameter to which, through application of the above
equation, pixels with luminances surrounding or equal to the scene key are mapped. This
mapping of luminances near the scene key to the parameter « is analogous to setting
camera exposure in photography. Therefore, o can be considered an exposure parameter.
For “normal key* scenes, Reinhard chooses a default o value of 0.18, which is consistent
with the ("middle-grey*“ [RSS*02]) value used in standard photography. For high key
scenes, lower values of « are used, and vice-versa for low key scene. Typically, the value
of o ranges from 0.045 up to 0.72, depending on the scene. Figure 4-2 demonstrates the
effect of varying « for a sample HDR image.

Related Work Page 33

Histogram of log luminance for vine sunset'

2500 + —
L,
w 2000
T
=
o
G 1500
o]
£
S 1000 ¢
c
500 -
0 L L L
0 2 4 6 8 10 12
log(luminance)
Histogram of log luminance for "MPI atrium’
3500 | Ly
3000 r
w
T 2500 r
X
o
S 2000
o]
=]
£ 1500 ¢
=
=4
1000
500 -
0 L L L L
0 2 4 6 8 10 12
log(luminance)
© (d)

Figure 4-1: A high key HDR scene (“vine sunset“) (a) and its luminance histogram (b),
compared to a low key HDR scene (“MPI Atrium*) and its corresponding
luminance histogram. In both histograms, the scene key, L., is marked as a
vertical red line. See Appendix A for more information on the radiance maps

used.

Finally, the scaled luminances computed in Equation 4.2 for each pixel are mapped into
the interval [0, 1] using the following tone mapping operator:

L(z,y)

Ly(w,y) = Ty +1

4.3)

where L(z,y) is the scaled luminance for pixel p(z,y) computed in Equation 4.2 and
Lg(z,y) is the final, tone mapped LDR output luminance.

Equation 4.3 compresses high luminances by approximately 1/L, while low luminances
are scaled by a factor close to 1. Figure 4-3 shows a plot of this function, which converges
asymptotically to 1. Luminances surrounding the global average (which were mapped to
the key value a by Equation 4.2) are compressed nearly linearly, whereas large lumi-
nances are compressed more forcefully. As a result, slight luminance variations (detail)
in regions of near-average luminance are preserved, while similar detail in high lumi-
nance, such as cloud patterns in a bright sky or terrain lit by bright car headlights in a

Page 34 Chapter 4

=

key value 0.09 key value 0.18 key value 0.36 key value 0.72

Figure 4-2: Demonstration of how the selection of key value affects tone-mapping of the
"Memorial Church* (for radiance map source, see Appendix A).

night scene, will be lost during compression.

4.1.2 Local dodging-and-burning

While the global luminance compression operator given in Equation 4.3 is sufficient for
many HDR images, images with detail in regions of high luminance require additional
measures to avoid this detail being lost during luminance compression. In his solution,
Reinhard draws inspiration from a well established method in the field of tranditional pho-
tography, known as dodging-and-burning. Dodging-and-burning is a process in which,
during development of a photographic print, light is withheld from regions with high
relative brightness (dodging), while relatively dark regions are subjected to additional
exposure (burning). This has the effect of bringing whole regions of extreme relative
brightness or darkness closer to the scene average, while preserving their internal local
detail.

For example, if a photographer were working with an indoor scene in which a window
to brightly lit daytime scenery were visible, developing the print with uniform exposure
would cause the scenery in the window to appear extremely bright, while the indoor de-
tails in the foreground would appear undesirably dark. Instead, by dodging the bright
scenery in the window and burning the dark scenery in the foreground, details throughout
the entire scene would become more easily viewable.

The key concept behind Reinhard’s local tone mapping operator is an automatic imple-
mentation of the dodging-and-burning procedure. The first step in this procedure is to
identify the appropriate regions of relative brightness or darkness to which automatic
dodging-and-burning should be applied. Hence, for each image pixel p(z, y), the largest
surrounding neighbourhood of approximate isoluminance, known as that pixel’s local re-
gion L' (x,y), must be found. An example of a pixel and its corresponding local region is
shown in Figure 4-4.

In order to identify the local region surrounding a pixel p(z,y), a measure of average
luminance in the area surrounding that pixel is required. Convolving the image by a
Gaussian kernel (Section 2.2.2.2) centered at (x,y) with a radius s provides a suitable
weighted average (where the weighting favours pixels closer to the center) of the lumi-

Related Work Page 35

Luminance compression function

La(x.y)

L(xy)

Figure 4-3: Plot of scaled luminance L(x,y) against the resulting tone mapped LDR re-
sult Lqy(x,y) (Equation 4.3) for a given pixel p(x,y). Low scaled luminance
values (representing near-average scene luminances) are compressed approx-
imately linearly, while high scaled luminance values (representing scene lu-
minances many times that of the scene average) are compressed more force-

fully.

Pixel Local Area
p(X,y) L'(x,y)

Figure 4-4: The first step in automatic dodging-and-burning is to find the local region
L'(x,y) for each pixel p(x,y)

nances within a circular region of radius s surrounding the target pixel. By evaluating the
weighted average of a succession of circular regions of increasing radius, and comparing
each result with its predecessor, the largest region of approximate isoluminance surround-
ing the target pixel can be found. Therefore, for each pixel p(x, y) in the scaled luminance
map produced by Equation 4.2, a series of response functions V' are computed:

V(xungi) = L(xvy) ® R(.T,’y, Si) (44)

Page 36 Chapter 4

where L(z,y) is the scaled luminance at pixel p(z,y), R(x,y, s;) is a Gaussian kernel of
scale s; (see Section 2.2.2.2) and V' (x, y, s;) is the response generated by the convolution.
The scale of each kernel is 1.6 that of its predecesor, i.e 5,1 = 1.6s;. By default, a total
of 8 scales (z = 1 — 8) are computed for each pixel.

Computing a series of Gaussian convolutions with increasing kernel radius, such as those
in Equation 4.4, for a pixel p(x,y) is known as constructing a Gaussian pyramid for that
pixel. Figure 4-5 illusrates this concept. Starting from the target pixel (scale 0), each
layer represents a Gaussian convolution centered at the target pixel and of a larger than
its predecessor. By comparing adjacent levels in the pyramid, any sudden changes in
average luminance existing between them can easily be identified. Reinhard defines a
center-surround function for identifying such changes:

y 4 Layer1

i" : Y Layer2

! Layer3
Layer8

Figure 4-5: A Gaussian pyramid.

V(m,y, Si) - V(ffay, 3i+1)

W(x,y,si) = 20a/s? + V(z,y,s;)

4.5)

where the center V' (x, vy, s;) and surround V' (x,y, s;,1) are as defined in equation 4.4, «
is the same as in equation 4.2 and ¢ is a free sharpening parameter.

By evaluating W (z, vy, s;) for increasing scales until a certain threshold is exceeded, the
largest region around a pixel with no large contrast changes can be found. Formally, a
threshold ¢ is defined, and the largest scale s,,,, is found such that

(W (2, Y, Smaz)| < € (4.6)

holds. The Gaussian response computed for s,,,., 1s then used for the final, local tone-
mapping:

L(x,y)

L -
d(x’y) V(’QZ?y? Smaz‘) + 1

4.7)

Related Work Page 37

where L(z,y) is the scaled luminance value for image pixel p(z,y), V(Z, Y, Smaz) 1S as
defined in Equation 4.4 and L4(x,y) is the final, tone mapped LDR output luminance.
Naturally, in order tone map an entire image, L4, and hence the entire procedure described
above, must be computed for each pixel in the input image.

The additional detail that becomes visible when using automatic dodging-and-burning is
demonstrated in Figure 2-9, Chapter 2.

4.1.3 Performance

Although it produces desirable visual results, Reinhard’s local photographic tone repro-
duction method, in the form described here, remains too computationally intensive for
use in real time applications. Table 4-6 shows the time required for tone mapping a sin-
gle HDR image of various resolutions. Results were attained by measuring the execution
times of an open source C++ implemenation of Reinhard’s local operator, which was
executed on the system detailed in Appendix A.

Image resolution | Time
(ms)
720x480 1000
1024x1024 3000

Figure 4-6: Performance of a CPU implementation Reinhard’s operator.

Clearly, the execution times in Figure 4-6 greatly exceed the maximum time of ca. 30 ms
allowed per frame required for interactive frame rates (defined in Chapter 3 as 30 fps).

4.2 Local tone mapping on the GPU

The first generation of GPUs with fully programmable vertex and fragment shaders in-
troduced a new level of massively parallel computational power to the consumer market.
For example, in 2003 NVIDIA’s GeForce FX card could compute at a sustained rate of
51 GFLOPS, which was about 8 times that of the fastest Pentium 4 CPU available at the
time [GWHOS5]. Additionally, the introduction of vertex and fragment shading languages
allowed scientists to use GPUs to solve problems that were not strictly graphics related.
Because its major bottleneck is a per-pixel convolution by Gaussian kernels of multiple
scales, and convolving an image by a Gaussian kernel is a highly parallelizable process,
Reinhard’s local photographic tone reproduction method is well suited for implementation
on the GPU.

4.2.1 A GPU pipeline for local photographic tone reproduction

The first adaption of Reinhard’s local tone mapping operator to the GPU was proposed
by Goodnight et a.[GWW103] in 2003. By leveraging the massiviley parallel processing
powers of the GPU, they were able to achieve a significant speedup over traditional, CPU-
based implementations.

Page 38 Chapter 4

Goodnight’s proposed GPU pipeline is detailed in Figure 4-7. The shader-based tone
mapping system (right dashed rectangle) is designed as a post-processing module which
can be used by any OpenGL application (left dashed rectangle). The tone mapping system
is made up of a collection of shader programs (circular blocks) and intermediate data
storages (rectangular blocks). Rendering targets are referred to as buffers, and are denoted
by solid grey rectangles. After its processing pipeline has been executed, Buffer O contains
a scaled luminance map (Equation 4.2), which can then either be used directly for global
tone mapping (by applying Equation 4.3 inside the Operator global/local oval) or for local
dodging-and-burning (by passing it to the processing pipelines of Buffer 1 and Buffer 2).
The details of Goodnight’s GPU implementation of automatic dodging-and-burning are
described in the following subsection.

I ;
I OpenGL I I Tone mapping system |
I application 1 | | B R e e e e e e - |
[1 = origina ! N Buffer 1 * Buffer 2 |
I ! I f — Image | ' : : I
I ml?tﬂl?k I I Scaled Scaled !
I cal 1 I I
il L] _luminance 3 | luminance luminance |
[[N | |
I Ly 1 | I
7 1) | | luminance / I . convolution _convolution > | |
| - compress [log luminance I |
[1 . : I
' [no : : ¢ eduction 3 | Gaussian Gaussian l
: | : | pyramid pyramid |
i | I [1 (Level s) (Level s,) |
I 11 scaled _|_/ | - |
I I luminance |
(] Framebutier 1) I : : zone calculation I
1 [| I
1 ? S Buffer 0 : : |
) l Operator Zone map Zone map :

LOR image global / local —— — — {,..i+1} {0,i} :

I

Figure 4-7: The pipeline for implementation of Reinhard’s local tone mapping operator
on the GPU. Image source [GWW03].

4.2.1.1 Automatic dodging-and-burning

Although a convenient and intiuative approach to automatic dodging-and-burning would
be to compute all levels of the Gaussian pyramid, store each level in a seperate texture
and pass all textures to a shader program, which could, in a single pass, determine the
suitable local region of each pixel, such an approach is in practice infeasable. For higher
resolutions, storing several adjacent full resolution copies of the convolved input image
would require copious amounts of video memory. Additionally, the shader program in this
solution would necessarily contain conditionals for each level of the Gaussian pyramid;
when executed on a SIMD architecture, conditionals are very expensive [GWWT03].
Therefore, a more efficient multi-pass method has been proposed.

The appropriate area of approximate isoluminance surrounding each pixel required for
local tone mapping (see Section 4.1) can be determined by computing a so-called scale

Related Work Page 39

map' for the input image. A scale map is a texture of equal dimensions as the input im-
age, in which each texel stores the average luminance of the approximately isoluminant
neighbourhood of its corresponding input pixel. Given an input image and its correspond-
ing scale map, it is straightforward to write a shader program (the Operator global/local
elipse in Figure 4-7) that uses Equation 4.7 to produce a locally tone mapped output im-
age.

The advantage of using a scale map is that it can be accumulated using multiple offscreen
rendering passes, where each pass ¢ adds only the pixels belonging to scale 7 to the zone
map (Equation 4.4). Because membership to a given scale is determined by examining
two adjacent levels of the Gaussian pyramid (Equation 4.5), each pass requires only two
pyramid levels as input and contains no expensive branching code. Figure 4-8 illustrates
the first three passes of a zone map computation. The first pass takes the first and second
levels of the Gaussian pyramid as input, and outputs a partial scale map with only the
pixels identified as belonging to the first scale set. The second pass takes the second and
third levels of the Gaussian pyramid, as well as the partial scale map produced in the
first pass, and outputs a new partial scale map with only the pixels belonging the the first
and second scales set. This process continues for as many passes as required. In order
to implement Reinhard’s local operator to its default resolution of 8 scales, 8 passes are
required.

Level of
Gaussian pyramid

Scale Map Render Pass

Pass 1

Pass 2

Pass 3

Figure 4-8: Zone map computation. Diagram adapted from [GWWT03].

Gaussian convolution

Although potential memory usage and code branching pitfalls were avoided by computing
a scale map using the multi-pass method described in section 4.2.1.1, there still remains
a major bottleneck in the computation: for each pass in the scale map computation, the
scaled-luminance map must be convolved by a Gaussian kernel of an appropriate scale.
By exploiting the seperability of Gaussian convolutions (Section 2.2.2.2), Goodnight et al.

! Although Goodnight et al.[GWW*03] use the term zone map, we refer to this as a scale map in order
to avoid confusion with the term zone in photography, which is used frequently throughout Reinhard’s
paper [RSST02].

Page 40 Chapter 4

were able to implement each convolution by an nxn kernel as a two pass O(n) operation,
rather than the O(n?) required for non-seperable convolutions of equivalent dimensions.
Additionally, by packing the convolution kernels, as well as the input image luminances,
into collections 4-vectors when passing them to the GPU, convolution could be efficiently
implemented using highly optimized hardware dot-product instructions.

Performance

Despite their optimization efforts, at the time of publishing, Goodnight et al. could only
tone map a 512x512 input image at interactive frame rates (>30fps) using two scales
(see Figure 4-9), which is insufficient for preserving many details in images with very
high dynamic ranges. Figure 4-10 compares an image tone mapped using two scales
with one tone mapped using the default of eight. Significant loss of detail can clearly be
seen in the bright, snowy regions. Although their results were published several hardware
generations prior to the time of our research, and would certainly be more impressive if
the pipeline were run on today’s GPUs, the main pipeline bottleneck - repeated Gaus-
sian convolution of high resolution textures - remains a significant challenge for modern
hardware. Therefore, it is likely that a modern implementation of the proposed pipeline,
without additional optimization, would not deliver interactive frame rates for very high
resolutions.

———— 50256 (GPL —— 50256 (CPL)
. 5| 23256 (GPLT) . 5| 23256 (C P
——— 5151 2(GPLY — ¥ 51251 2(CPL)

1000

1040

Frames Per second

' I I ' I ' I
0 2 4 b B
Mumber of Adaptation Lones

Figure 4-9: Performance of Goodnight et al.’s [GWW'03] GPU implementation at the
time of publishing.

4.2.2 Convolution optimization by texture resampling

In 2005 Krawczyk et al.[KMSO0S5] proposed further optimizations to the pipeline intro-
duced by [GWWT03] (section 4.2.1). Downsampling the input texture by a carefully
selected factor, convolving the input by a scaled approximation of the desired Gaussian
kernel, then upsampling the convolved texture to its original dimensions led to signifi-

Related Work

‘

L of i

(b)

Figure 4-10: An HDR scene tone mapped with 2 scales (a), which is the maximum that
[GWW03] could achieve in real time for a 512x512 texture, compared to
the same scene tone mapped with the default of 8 scales (b). It can be seen
that significant detail in the snow is lost when operating with only 2 scales.
See Appendix A for more information on the radiance map used.

cant performance gains. Figure 4-11 shows the process for generating each level in the
Gaussian pyramid.

Horizontal i
Downsample . Vertlcql Upsample
convolution convolution

Figure 4-11: An optimization of Gaussian convolution proposed by Krawczyk et al.
[KMSO05], which allows full 8-scale local tone mapping at interactive frame
rates. Each input texture is downsampled by a carefully selected factor, con-
voluted horizontally and vertically by a down-scaled approximation of the

horizontal and vertical components of the Gaussian kernel, then upsampled
back to its original dimensions.

Using this technique, HDR image streams could be tone mapped using 8 scales at interac-

tive frame rates. The frame rates achieved on an NVIDIA GeForce 8800GTX GPU with
768 MB of memory are shown below?.

Image resolution | Frame rate
(fps)
256x256 189
512x512 157
1024x1024 74

Figure 4-12: Performance of local tone mapping with texture downsampling.

The significant performance gains won through approximate convolution of downsam-
pled textures, however, came at the cost of visual quality. Both the downsampling and

2Results shown are taken from [SO08], because the performance measurements given in [KMSO05] are
distorted by additional perceptual effects simulation.

Page 42 Chapter 4

upsampling operations used in this procedure have the effect of blurring sharp edges (and
thereby the local region boundries which the subsequent automatic dodging-and-burning
attempts to identify), which results in noticable halo artificats surrounding high contrast
edges in the final output [SO08]. Furthermore, implementation of the proposed method
using shaders requires storage of several intermediate results using textures, increasing
the memory footprint of the operator.

4.2.3 Approximating Reinhard’s local operator using GPU-based
Summed-Area Tables

Noting that the primary bottleneck of Reinhard’s local operator is repeated image con-
volution by a Gaussian kernel for each input image pixel, which is essentially repeated
computation of weighted averages surrounding each pixel, Slomp and Oliveira [SO08]
proposed an approximation of Reinhard’s method in which Gaussian convolution is re-
placed by simple box filtering. Conceptually, the only modification to Reinhard’s original
algorithm is that Equation 4.4 has been updated to:

V(z,y,s:) = L(z,y) Box(z,y,s;) (4.8)

where Box(x,y, s;) is a box filter kernel centered at (z,y) with radius s;. Additionally,
in order to account for the fact that box filter pixel weighting is uniform, while Gaussian
kernels weight pixels closer to the center higher than those near the kernel edges, the
threshold value € in Equation 4.6 modified to € = 0.025, rather than the default of ¢ = 0.05
used in Reinhard’s original method.

By computing the S-CIELAB [ZW97] spatial perceptual error metric between their re-
sults and gold standard images produced by a software implementation of Reinhard’s
original local operator, Slomp and Oliveira showed that approximating Reinhard’s auto-
matic dodging-and-burning procedure using box filters and a different e-threshold intro-
duces very little visual error to the tone mapping. Figure 4-13 shows a comparison of the
perceptual error introduced using Slomp and Oliveira’s method and compares it to that
caused by Krawczyk et al.’s texture resampling optimization described in Section 4.2.2. It
can clearly be seen that Slomp and Oliveira’s method produces favourable visual results.
Furthermore, a recent study by Linnemann et al. [LWR"09], in which a population of
test subjects were asked to compare images of simple objects tone mapped using Slomp’s
method with the same objects in real life, showed that Slomp’s method produces very
good visual results.

The box filtering used in Slomp’s method is performed very efficiently with the help of
Summed-Area Tables (SATs). As described in Section 2.2.2.3, given an image’s SAT,
the average pixel value in any given rectangular region of the image can be computed
with 3 additions, 1 subtraction and 1 division, i.e in constant (O(1)) time. Therefore, the
challenge of high speed box filtering on the GPU lies in efficiently constructing SATs for
each input frame. Slomp and Oliveira use a method proposed by Hensley et al. [HSCT05]
for efficient parallel SAT construction on GPU hardware by means of recursive doubling
[DR77]. Using Hensley’s method, the SAT for a wxh image can be computed using a
total of logy(w) + logx(h) parallel steps, where k is the number of pairwise additions
per step. The parameter £ is adjustable: Raising k increases the work per parallel step

Related Work

Page 43

(d)

Figure 4-13: A HDR image tone mapped using Krawczyk’s texture resampling method
(a), compared to the same image tone mapped using Slomp’s box filter ap-
proximation (b). Krawczyk’s method clearly produces visual artifcats, or
halos, surrounding high contrast images. The perceptual error, measured
using the S-CIELAB metric [ZW97] with the same scene tone mapped using
Reinhard’s original operator as the ground truth, is shown for Krawczyk’s
method (c) and Slomp’s method (d) bottom row. It can be seen Slomp’s
method produces considerably less error than that of Krawczyk. Images

taken from [SOO08].

and decreases the number of steps, while reducing & has the converse effect. Slomp and

Oliveira found an optimal balance when k = 8.

Image resolution | Frame rate
(fps)
256x256 385
512x512 243
1024x1024 102

Figure 4-14: Performance of local tone mapping using Slomp and Oliveira’s box filtering
approximation of Reinhard’s local operator.

Figure 4-14 shows the resulting frame rates for a number of images of varying resolu-
tions. Using their high speed box filter approach, Slomp and Oliveira were able to attain
substantially higher frame rates than Krawczyk’s texture resampling method, which, until
Slomp’s publication, was previously the fastest GPU implementaton of Reinhard’s local
operator. In addition to better performance, Slomp’s method also produces less visual
error to that of Krawczyk. Of the local Reinhard operator implementations presented in
this chapter, this method comes the closest to fullfilling Requirements 1 and 2 in Chapter
3, making it of great interest to the research in this thesis.

Page 44 Chapter 4

4.3 Summary and discussion

This chapter presented the relevant work in the field of real time local tone mapping. A
suitable method, which consistently produces high quality visual results and is well suited
for GPU-based acceleration, was selected from a multitude of existing local tone mapping
methods. The chosen method, Reinhard’s tone mapping operator [RSS*02], which is the
foundation upon which the research in this thesis is based, was explained in detail in
Section 4.1. Reinhard’s operator has both global and local components (Sections 4.1.1
and 4.1.2, respectively.), where the local component preserves many details lost by its
global counterpart, at the expense of significantly greater computational overhead. The
performance bottleneck of Reinhard’s local operator is caused by repeated, per-pixel con-
volution of input images by 8 scales of a Gaussian pyramid (Figure 4-5). As aresult, when
executed on a modern, multicore CPU, the local operator runs about 2 orders of magni-
tude too slowly for use in interactive applications. Therefore, all subsequent attempts
to execute Reinhard’s local operator at interactive frame rates has utilized the massively
parallel computing power of GPUs.

The first adaption of Reinhard’s local operator to the GPU was presented by Goodnight
et al. [GWWT03] (Section 4.2.1). Goodnight et al. considerably reduced the overhead of
applying 2D Gaussian kernels by using 1D separable kernels implemented on the GPU.
They also optimized convolution computation by packing Gaussian kernels, as well as
their target images, into 4-vectors and using special, optimized dot product instructions
in the convolution shaders. This produced interactive results at low resolutions, as long
as the height of the Gaussian pyramid was limited to 2 scales, which negatively impacted
visual results.

Krawczyk et al. [KMSO05] (Section 4.2.2) presented an optimization of Goodnight et al.’s
approach by down-sampling input images by a carefully selected factor, convoluting with
an appropriate Gaussian filter, then up-sampling back to original dimensions. While this
resulted in a significant speedup, it was prone to "halo artifacts* [Kra0O7, p.15] as well as
prohibitive memory requirements for high resolution images.

More recently, Slomp and Olivera [SO08] (Section 4.2.3) presented a method for imple-
menting a slightly modified version Reinhard’s local tone mapping operator using box
filters, rather than Gaussian filters, which was efficiently implemented using the method
proposed by Hensley et al. [HSCT05] for high speed construction of Summed-Area Ta-
bles (SATs) on the GPU. Their tone mapping performed superiorly to Krawczyck’s in
terms of computation speed and memory usage, while producing fewer halo artifacts.

Chapter 3 outlined the research goals of this thesis. Of particular importance are interac-
tive frame rates at very high resolutions and high quality visual results. In light of these
goals, Slomp and Oliveira’s method is the most interesting candidate at present. Their
reported results, however, are only given for image resolutions up to 1024x1024 which is
far from the VND operating resolutions of up to 1920x1200 on standard PC systems. It
is likely that the performance of their operator will drop below acceptable frame rates for
input images of the target VND resolutions, particularly in the HD Visualization Center.

Figure 4-15 shows where each of the methods presented in this Chapter lie in a Quality vs.
Performance plot, as well as where the goal of this thesis lies. Slomp and Oliveira’s shows
great potential, but there is room for further optimization to their method. Therefore,

Related Work Page 45

approximating Reinhard’s local operator by SAT-based box filtering is the starting point
for the investigation undertaken throughout the remainder of this thesis.

»
>

° [RSS*02] Target

4 [5008] ®

Visual Quality

o [KMS05]
[GWW-+03]
[]

CPU GPU

A -
Performance

Figure 4-15: Performance vs. visual quality of the methods presented in this chap-
ter. Reinhard’s local tone mapping operator [RSS*02] is the base method,
which all subsequent papers have attempted to optimize. Goodnight et al.
[GWWT03], Krawczyk et al. [KMS05] and Slomp and Oliveira [SO08] all
proposed adaptions of Reinhard’s operator to the GPU. The black target
indicates where the ideal operator would be placed in this context.

Page 46 Chapter 4

Approach Page 47

5 Approach

Chapter 4 presented the chosen tone mapping operator - Reinhard’s local photographic
tone reproduction method - as well as a number of recent implementations of this op-
erator on the GPU. The most promising of these implementations is that of Slomp and
Oliveira (Section 4.2.3), which achieves substantial performance gains by approximating
the Gaussian convolution central to Reinhard’s method with box filters.

Section 5.1 begins by reviewing Slomp and Oliveira’s tone mapping pipeline and
analysing it for potential points of optimization. Section 5.2 discusses ideas for ac-
celerating SAT generation - a central operation in Slomp and Oliveira method. It is
shown that the SAT generation method used by Slomp and Oliveira is not optimal, and
a more recent, efficient alternative is presented. It is then revealed that parallel scan
computation, the base operation used in SAT generation, performs extremely well when
implemented in CUDA. Encouraged by these results, Section 5.3 investigates the possi-
bility of implementing a CUDA tone mapping module by conducting a prelimary study
on CUDA’s suitability for high speed OpenGL post-processing. Given the positive re-
sults reported in Section 5.3, Section 5.4 moves on to present a CUDA post processing
module developed for tone mapping interactive HDR OpenGL applications. Finally, to
evaluate the benefits of using CUDA, Section 5.5 presents the same module implemented
in shaders.

5.1 Slomp and Oliveira’s method

5.1.1 Method description

The full process with which Slomp and Oliveira’s implementation of Reinhard’s operator
tone maps a HDR image is shown in Figure 5-1. In the example, a HDR scene (in this
case the “memorial” scene), represented in a 16-bit-per-channel RGBA format, is given.
The example illustrates how a single HDR image is tone mapped. Interactive applications
would need to process each output frame in the same manner as shown here. Each of the
5 main tone mapping steps in the Figure are described below.

Step 1: Extract luminance. The luminance for each pixel in the input HDR scene is
computed from its red, green and blue components. Computing luminance from an input
RGB image produces an image containing only monochrome luminance values, called a
luminance map. For the memorial scene in the example, the majority of pixel luminances
are well above the maximum displayable value of 1.0. These values are clamped to white
when rendered normally, producing the nearly entirely white image in the figure.

Step 2: Identify scene key. In this step, the luminance map generated in Step 1 is anal-
ysed and the scene key, defined as the scene’s average log luminance (Section 4.1.1), is
determined.

Page 48 Chapter 5

Input HDR image

global

1
Extract luminance

2
Identify scene key
i

———————————— HDR scene “Memorial Church”

B o 'I-.
s
I

{ . 1 \
m\ﬁ__ - Lm,:exp(vzl‘log(bJrL“]‘

W4

Y p€Memorial , L,=lum(p)

key

key

3
Compute scaled
luminance
4
Generate SAT
5
Dodge-and-burn

Qutput LDR image

LDR scene “Memorial Church”

Figure 5-1: The five major steps of Slomp and Oliveira’s approximation of Reinhard’s
local operator. Steps 1-3 are global operations (applied uniformly for all
pixels) and Step 4 prepares support data structure Step 5, which is a local
operation (computed individually for each pixel). The example HDR image
used is the “Memorial Church” scene detailed in Appendix A.

Step 3: Compute scaled luminance. Given the luminance map (Step 1) and its corre-
sponding scene key (Step 2), Step 3 computes the scaled luminance (Equation 4.2) for
each pixel in the luminance map, producing a scaled luminance map. As can be seen
in the figure, a large portion of the pixels in the luminance map have now been mapped
into the visible range (with pixels equal to the scene key mapped to the camera exposure
parameter o from Section 4.1.1). At this point, if a global tone mapping were desired, it
could easily be achieved by applying Reinhard’s global tone mapping function (Equation
4.3) to each pixel in the scaled luminance map. Since local tone mapping is of primary

Approach Page 49

interest, however, the realm of of local pixel operations is entered (light grey region in the
figure) by proceeding with Step 4.

Step 4: Generate SAT. A Summed-Area Table (SAT) is generated from the scaled lu-
minance map produced in Step 3. This operation is performed in [log,(w)] + [logk(h)]
passes using general-purpose shader programs.

Step 5: Dodge-and-burn. The SAT from Step 4 is used to efficiently compute a series
of regional averages of increasing scale for each pixel in the scaled luminance map. This
is visualized by the pyramid on the bottom right of Figure 5-1, where the top level rep-
resents a single pixel in the scaled luminance map, and each level below it represents
the average scaled luminance of a rectangular region surrounding that pixel. Because the
SAT enables computation of regional averages of any size in constant time, no complete
box filter pyramid is explictly computed prior to tone mapping. Instead, using the SAT,
these averages are dynamically computed to the necessary scale for each pixel during the
dodging-and-burning procedure.

By computing high speed box filters, the Local Region (Section 4.1.2) surrounding each
pixel in the scaled luminance map is identified. Once identified, the Local Region is used
to compress the luminance of its corresponding pixel into the displayable range [0, 1]
(Equation 4.7). This step deviates minorly from Reinhard’s method in that, because box
filters are used in the search for Local Region, the Local Region identified for each pixel
is rectangular. In the case of Reinhard’s original operator, Gaussian filters, which have
a circular distribution, are used for this search. Therefore, the resulting Local Regions
in Reinhard’s method are circular. It has been shown (Section 4.2.3) that this has little
impact on visual quality.

5.1.2 Optimization opportunities

This section investigates the potential for optimization of Slomp and Oliveira’s method,
which is, as far as could be determined, the fastest implementation of Reinhard’s method
to date. Potential peformance bottlenecks are found by analysing the steps described in
Section 5.1.1.

Steps 1-3 in the light grey region in Figure 5-1 are computed globally for the entire input.
If, rather than proceeding to step 4, the output of step 3 were compressed according to
Equation 4.3, the resulting LDR image would be tone mapped using Rheinhard’s global
operator (Section 4.1.1). It is well established that Reinhard’s global operator easily per-
forms at interactive frame rates when implemented on the GPU (consider Goodnight et
al.’s [GWW 03] results (Section 4.2.1) for 0 scales). Therefore, attention is focused on
the local steps (4-5) in Figure 5-1.

Step 4 involves constructing a SAT from the scaled luminance map produced in Step 3.
This operation must be performed once per input frame - at least 30 times per second for
interactive applications.

Slomp and Oliveira use a method proposed by Hensley et al. [HSC"05] for SAT gener-
ation, whereby SAT's are computed on the GPU by means of recursive doubling [DR77].
Using Hensley et al.’s method, when given a wxh image, the image’s SAT can be con-
structed in [logg(w)] + [logk(h)] parallel steps, where k is an adjustable parameter rep-

Page 50 Chapter 5

resenting the number of pairwise additions per step (Section 4.2.3). At this point a clear
opportunity for optimization presents itself: more recent work has shown that parallel pre-
fix sum computation - an operation central to SAT construction - can be computed more
(work-)efficiently than by the recursive doubling method used in Slomp and Oliveira’s
method. Section 5.2 provides a detailed discussion of Hensley et al.’s method and presents
a more efficient alternative.

Finally, in Step 5, the Local Region for each pixel is identified by iteratively comparing
box filter averages of ascending scale centered at each pixel. Evaluation of each layer of
the pyramid can be accomplished in O(1) computation time using the SAT generated in
Step 4. Thus, unlike in Reinhard’s original method, it is unlikely that arithmetic computa-
tion will be a limiting performance factor in this step. Consequently, the scale maps used
by Goodnight et al. [GWW 03] and Krawczyk et al. [KMS05] (Section 4.2), will likely
be unnecessary here, as their focus is to minimize the overhead involved in expensive
Gaussian convolution computation.

Since Step 5 access the input SAT four times for each box filter computed, and up to
eight such computations are possible for each pixel of each input frame, it is important to
optimize memory access. Chapter 6 examines optimization of SAT memory organization
and access.

5.2 Optimizing SAT generation

The central approach of this thesis is identifying and implementing methods for high
speed SAT generation, thereby accelerating Slomp and Oliveira’s local tone mapping im-
plementation.

Section 5.2.1 begins by introducing the concept of the all-prefix-sum, also known as scan,
which is the basic building block of SATs. The method by which they are computed
in parallel in Slomp’s tone mapping is then analysed in detail in Section 5.2.3 and sub-
sequently shown to be non work-efficient. An alternative, work-efficient parallel prefix
sum construction algorithm is then introduced in Section 5.2.4. Finally, the potential
for additional performance gains by implementing the work-efficient parallel prefix sum
algorithm in CUDA are discussed in Section 5.2.5.

5.2.1 The building block of SATs: all-prefix-sums

All-prefix-sums are a simple and widely used construct in computer science. The defini-
tion of all-prefix-sums, as stated in [B1e90], is given below.

Definition Given an ordered set of n elements

[a07 A1, -y a’n—l}

and a binary associative operator ®, the all-prefix-sums operation returns the ordered
set

Approach Page 51

[ao, (ao ® Cll), cey (ao R V...R an,l)].

Although this operation appears inherently sequential, efficient parallel implementations
have been proposed (see Sections 5.2.3 and 5.2.4). When applied to an array of data, the
all-prefix-sum operation is also referred to as a scan [HSOO07]. We will use the term scan
for the remainder of this document.

The Summed-Area Table (defined in Section 2.2.2.3) of a given matrix is simply a two
dimensional scan of its rows and columns, where the operator & is addition.

5.2.2 Sequential scan

Computing a scan on an input array data of size n sequentially is straightforward. The
procedure for sequential scan computation is given below.

Algorithm 1 Sequential scan on array data of size n.

fortr=1—-n—-1do
datali] < datali] + data[i — 1]
end for

Algorithm 1 performs exactly n — 1 addition operations to complete its task. In the
ensuing sections, a work-efficient parallel scan algorithm is searched for. The term work-
efficient indicates that the amount of work performed by a parallel algorithm shows the
same asymptotic behaviour as that of its sequential counterpart. In this case, a work-
efficient parallel scan algorithm will not execute more than O(n) addition operations.
The asymptotic bound of an algorithm’s work is denoted as its work complexity.

5.2.3 The non-work-efficient parallel scan used by Slomp and Oliveira

The SAT generation technique used in Slomp and Oliveira’s implementation is that of
recursive doubling, which was first implemented on the GPU by Hensley et al. [HSCT05].
Using Hensley’s method, a scan can be computed on a data array of length n using n
processors in [logi(n)]| parallel steps, where k is the customizable number of elements
added per step.

Method overview

We begin by considering the case in which each processor computes one pair-wise addi-
tion per pass, i.e k = 2. Given an input array data containing n elements, the parallel
algorithm listed in Algorithm 2 is executed.

An important property of the array data in the above algorithm is that any out of bounds
array accesses return 0, i.e V(j < 0 A j > n), datalj] == 0. Because 0 is the addition
identity, all accesses outside of array bounds will have no affect on the final outcome.

The steps executed by Algorithm 2 during scan computation are shown in Figure 5-2 for
an example input of 8 elements, labeled A through H. The first step (z = 0) updates each

Page 52 Chapter 5

Algorithm 2 Parallel scan using recursive doubling on array data of size n.

for d =0 — [loga(n)] — 1 do
for all j € [0,n — 1] in parallel do
datalj] < datalj] + datalj — 2]
end for
end for

element by adding to it the contents of its left neighbour (2¢ = 2° = 1). Because the
immediate predecessor of the first array element, A, lies outside of the input array, and
all out of bounds elements are evaluated as 0, A will remain unchanged. At this point,
A contains its final value and the remaining elements B through H contain partial sums.
The next iteration (¢ = 1) sets each element to the sum of itself and the element two
addresses to its left (2¢ = 2! = 2). After this step, A and B both contain their final values,
while elements C' through H contain partial sums. This process continues until the scan
is complete. At any given iteration i, the first 2 elements will contain their final values,
and the remainder partial sums requiring further processing.

A/B|C|DIE|F|G|H| d=0
e T T T T T T
R R T R T T

[J—

IR SR S R R B 2 |

A A+BE+CC+D{D+EE+F F+GG+H| 4 =1
I B e e e A

IR IR I R R SR 2 |

A |A+Blza clza D|ZB.E[fC . FED.GEE. H =2
E+ + e + + + -L

[¥ R ¥ ¥

A |A+Blza.clza.DlEAElEAFEA GEALH d =3

Figure 5-2: Recursive doubling with k = 2 applied to an 8 element example array. Light
blue elements contain final values, while dark blue elements contain partial
results requiring further processing. Each out-of-bounds array access returns
0, which has no effect on the element with which it is added (dashed lines). For
any iteration d, the left most 2% elements contain their final values. Therefore,
a total of [logan| passes are required to reduce an array of size n, where each
pass performs n additions (including the addition of final results with 0).

To reduce the number of passes required for scan computation, the amount of work per-
formed per pass can be increased. Algorithm 3 shows the algorithm for scan computation
in the general case, where k elements are added per step. The motivation behind increas-
ing the per-pass complexity lies in the fact that, in practice, there is a certain system-
dependent overhead involved in setting up each parallel computation step. When the
computation performed per processor per step is sufficiently small, the overhead of in-
voking each parallel pass outweighs that of the actual computation done per pass. On
the other hand, increasing k& in the Algorithm 3 has the effect of increasing the amount

Approach Page 53

of sequential work per processing unit, thereby reducing the parallelism of the algorithm.
Slomp and Oliveira found an optimal balance when & = 4 [SOO08].

Algorithm 3 Recursive doubling with £ work complexity per step.
ford =0 — [logr(n)] — 1 do
for all j € [0,n — 1] in parallel do
datalj] « S2"=F datalj — r * k%
end for
end for

Constructing SATs on the GPU

Hensley’s algorithm is intended for implementation on GPU hardware, which introduces
additional practical considerations. In particular, when implemented using shader pro-
grams, the array data in Algorithm 2 would be represented with a texture. At present,
shader programs are unable to read and write to the same texture in a single pass, so a
common technique called ping-ponging must be incorporated. Ping-ponging is a proce-
dure whereby a shader is called repeatedly, and its input and output textures are swapped
between each pass, which causes the output of a each pass ¢ to become the input of its
following pass ¢ + 1. Ping-ponging is illustrated in Figure 5-3.

in out
out in

Figure 5-3: Texture ping-ponging with shaders. Because shaders are unable to read and
write from the same texture during a single pass, a result is accumulated using
two textures, resultA and resultB, which swap roles as input and output for the
shader program for each pass.

In order to construct a SAT from a 2D wxh texture on the GPU, Hensley incorporates
texture ping-ponging to compute scans by means of recursive doubling for each row of
the input texture in parallel. Because each recursive doubling step is applied to all rows
simultaneously, a texture with each row containing a scan of its corresponding input row
is generated in [logy(w)]| passes (for the sake of simplicity, we consider the case when
k = 2). This texture is then passed as input to a simliar procedure, which computes
a parallel scan for each column of its input simultaneously in [loga(h)| passes. The
resulting texture contains the SAT of the original input texture. The algorithm described
here, Hensley’s shader SAT generation algorithm, is given in Algorithm 4.

Performance and work-complexity
Consider the case when k& = 2. Each of the [logy(n)] parallel steps in Algorithm 2
performs a total of n additions. Therefore, the work complexity of this operation is

Page 54 Chapter 5

Algorithm 4 Generating a SAT for input texture inl'ex of dimensions wxh.

to =wlex

// Horizontal pass
fori =0 — [logy(w)] — 1 do
for all (z,y) € ¢, in parallel do
tb(xvy) — tCL(x?y) + ta(.l’ - 227y)
end for
swap(ta, ty)
end for

/I Vertical pass
for i =0 — [loga(h)] — 1 do
for all (z,y) € ¢, in parallel do
ty(z,y) < to(z,y) + ta(x,y — 29
end for
swap(ta, t)
end for

// Texture t, contains result

©(nloga(n)). Similarly, in the general case, each of the [logi(n)]| parallel steps com-
putes n(k — 1) additions:

[logr(n)] (n(k — 1)) = O(n * k x logg(n))

Figure 5-4 shows a plot of the number of addition operations performed per pass for
k =2,k =4 and k = 8 in Algorithm 3, and compares this to the additions computed
by the sequential scan algorithm (Algorithm 1). By examining its work complexity, it can
be concluded that Hensley’s algorithm is not work-efficient, because O(n * k * logx(n))
exceeds the linear work complexity of its sequential counterpart.

It should be further considered that, for any given pass 4, the first &’ elements of the input
array already contain their final values. During this and all subsequent passes, these values
are copied by their assigned processing unit, tying up system resources for unnecessary
work. This problem is compounded by the fact that the GPU typically provides fewer
processors than fragments being processed, so fragments are batched into groups that are
processed sequentially. Particularly for large resolutions, performance will be impaired
by the sequentialization caused by processing fragments already containing their final
result.

5.2.4 A work-efficient parallel scan

The previous section discussed the parallel scan algorithm used in Slomp and Oliveira’s
tone mapping, and showed that these scans are not work-efficient and suffer from an
unnecessary level of sequentialization for high resolution input datasets. This section

Approach Page 55

Addition operations

Parallel scan using recursive doubling
20000 7

18000
16000 v
14000 ’ -

12000 £ -
ra - =2
4 - -—K=4
10000 7 > | --K=8
s -~ e —Sequential

8000 v P —

Number of additions

6000 v ”, "““,.,.
4000 s - il

2000 >

— — — w—
— —
32 95 160 224 288 332 416 480 544 608 672 736 800 864 928 99

Size of input array

Figure 5-4: Total number of addition operations performed by Hensley’s parallel scan al-
gorithm (Algorithm 3) for k = 2, k = 4 and k = 8, compared to the amount of
addition performed by a sequential scan. A significant discreptancy between
the parallel and sequential scans is apparent. This expected, as the parallel
algorithm has a work complexity of O(n * k x logi(n)), while the sequential
scan has O(n).

introduces a more recent, work-efficient parallel scan algorithm proposed by Sengupta
et al. [SLOO0O6]. Sengupta’s method consists of two phases. The first, reduce, phase
constructs a tree from an input array, where the union of all leaf nodes is equal to the
input array, the root node contains the sum of all leaf nodes, and the remaining internal
nodes contain partial sums. The second phase, called the down-sweep phase, traverses the
tree generated during reduce from top-down, using its contents to generate a scan of the
input array. This section describes each phase in detail, then provides an analysis showing
that this method is work-efficient.

Reduce phase

The reduce phase takes an input aq of length n, denoted by |ag| = n, and constructs
logs(n) partial sums, where each partial sum a, is half the size of its predecessor a,_1 and
each element 7 in a4 contains the pairwise accumulation of neighbouring elements 2: and
21 + 11in ay_q. Algorithm 5 shows the pseudo-code for this operation.

Figure 5 shows how the reduce operation is applied to an input array of 8 elements. Each

Page 56 Chapter 5

Algorithm 5 Reduction phase in work efficient parallel scan.

for d =1 — logy(n) do
fori =1 — (n/2¢ — 1) in parallel do
ad[i} — ad_l[Qi] + ad_l[Qi + 1]
end for
end for

partial sum ay4 contains the pairwise sums of the elements in a;_;. In general, each ele-
ment in ag is the sum of 2° elements of the input aq (bottom level in the figure). The root
node at level 3 (d = log2(8) = 3) contains the sum of all elements in the input array.

a, TA.H d=3

+—»

[1

a, A D[EE.H d=2
A .
("1 [
a, A+B(C+DE+F |G+H d=1
+/ +/ ‘\+ ‘\-i‘
[1 [1 [1 [1
a, |A|B|C|D|E|F|G|H]| «¢=0

Figure 5-5: The reduce phase applied to an 8 element input array. In this example, the
sum of all input elements is created in logy(8) = 3 passes, performing a total
of n — 1 = T additions.

Down-sweep phase

The down-sweep phase begins at the root of the tree in Figure 5-5 and traverses to the
leaves (level d = 0), accumulating the partial sums at each level to produce a complete
scan in ag. Algorithm 6 shows the pseudocode for this operation.

When implementing Algorithm 6 using shaders, each partial sum must be stored in a
texture. Furthermore, because shaders are unable to read from and write to the same
texture in a single pass, an additional set of logs(n) — 1 textures must be allocated for
storing the intermediate results generated during the down-sweep. This process is shown
in Figure 5-6 for an input array of 8 elements. The tree constructed during the reduce
phase (Figure 5-5) is shown on the left of the dashed line. A set of additional textures
corresponding to each level of the reduce tree, with the exception of the tree root, can be
seen to the right of the dashed line (marked in dark blue). Each pass d of the down-sweep
operates on the array a4 of partial sums generated during the reduce phase, as well as the
result of the previous (level d + 1 in the Figure) down-sweep pass. The output of the final
down-sweep pass is a complete scan of the original input array a.

As described in Section 5.2.3, a rectangular SAT can be generated from a 2D input texture
by computing scans for its rows and columns.

Analysis

Approach Page 57

Algorithm 6 Down-sweep phase in work efficient parallel scan.

for d = (loga(n) — 1) — 0 do
for i = 0 — (n/2¢ — 1) in parallel do
if 7 > 0 then
if 7 is odd then
aqli] = aas1[[i/2]]
else
aqli] = aqli] + aa1[[(/2)] — 1]
end if
else
Cld[i] = ad[z’]
end if
end for
end for

Unlike Hensley’s scan algorithm described in Section 5.2.3, Sengupta’s scan does no
wasteful computation in each pass. Furthermore, because the partial result textures con-
tain only values for which computation is necessary, the problem encountered by Hens-
ley’s algorithm, where high resolution inputs reduce parallism by sending large volumes
of unnecessary fragments to the shader, is not encountered here.

During the reduce phase, each of the logs(n) passes halves the size of its input. As a
result, each pass d operates on an array aq of size |ay| = n/2%, where n is the size of the
input array. When reducing an input array of size m by half, a total of m /2 additions are
required. Hence, a given pass d involves n/2%"! addition operations. The total number of
additions Wy performed by the reduce sweep on an input array of size n is:

n n n
WR = 5 + ? + ...+ —21092(n)

logz(n) 1

=n| D
d=1
logz(n) 1

=n| > 51
d=0

(e

=n-—1

Simlarly, the down-sweep phase requires logs(n) steps. By analysing Algorithm 6, it can
be seen that, for a given pass d, an addition operation is performed whenever ¢ greater than
0 and even. It follows that, for an input array with even length m, a single pass computes
m/2 — 1 additions. Each ay in Algorithm 6 has length |ag| = n/2¢, hence each pass d
computes a total of |ag|/2? — 1 = n/2%* — 1 addition operations. The total number of
additions W, performed by the down-sweep can now be deduced:

Page 58 Chapter 5

reduce result down-sweep

a, TA.H

a, TA D[EE.H | FA.D[ZAH
] \"“‘q. _J
v

a, A+B|C+DIE+F|G+H — A+B[EA.D[ZA. FEA. H

a, |A|B|C|D|E|F|G|H

A |A+Blza. clza. DiEa E|za Flza.clzaH

Figure 5-6: The down-sweep phase of Sengupta’s work-efficient parallel scan algorithm
applied to the results of the reduce phase shown in Figure 5-5 (light blue
arrays to the left of the center line). The down-sweep commences at the top
of the reduce tree and moves towards the leaves, generating a new set of
partial results at each step (dark blue arrays to the right of the dashed line).
When implemented with shaders, these new partial results must to stored in
additionally allocated textures.

n n n
WD:§—1+§—1+...+W—1
loga(n) 1
=n Z ok — logz(n)
k=1
loga(n) 1
=n Z @—1 — loga(n)
k=0
=n —loga(n) — 1

The total number of additions W performed by the complete scan algorithm is:

Wr =Wgr+Wp
=2n —logs(n) — 2
=0(n)

It follows from the above computations that Sengupta’s method is work-efficient.

Figure 5-7 shows the total number of addition operations required to compute a scan
for input arrays of sizes up to 1024 elements. For comparison, the work complexity of

Approach Page 59

Hensley’s method (Section 5.2.3) and the sequential scan given in Algorithm 1 are also
shown. It can be seen that Sengupta’s method has the same asymptotic behaviour as the
sequential scan.

Addition Operations

Sengupta's work-efficient parallel scan
12000

10000 o
o
o
a“a‘
¥
.“...‘"

" 8000 -

c"
5 . o —Sequential
g . ey —Hen05, k=2
o 6000 - —Sen06

o o

e

4]
s}

5
= 4000

2000

64 128 192 256 320 384 448 D512 576 640 T4 768 B32 8% 960 1024

Size of input array

Figure 5-7: Total addition operations required to scan input arrays of sizes up to 1024 el-
ements. Sengupta’s work-efficient parallel scan algorithm shows the same
linear asymptotic behaviour as the sequential scan, while Hensley’s par-
allel scan algorithm (Section 5.2.3, shown here with k = 2) is bound by
O(nlogan). The work difference between Hensley’s and Sengupta’s methods
increases monotonically with the size of the input array.

Although Sengputa’s method is work-efficient, implementions with shader programs do
not make optimal use of modern GPU hardware. Because shaders are unable to read and
write to the same texture in a single pass, each partial result generated during the reduce
and down-sweep scan phases must be stored in seperate textures, causing a significant
memory footprint for large input textures. When computing a scan on an array of n
elements, where each element is b bytes long, this overhead amounts to a total of

loga(n) 1
2n Y o~ 1| b=(4n—3)
k=0

bytes.

The intended area of application of the parallel scan operation discussed here is SAT con-
struction for high resolution HDR images. Each SAT constructed during tone mapping

Page 60 Chapter 5

has the same dimensions as the input HDR scene. Because each SAT element is an ac-
cumulation of all its predecessors in both x and y directions, and the SAT is constructed
from potentially large HDR floating point values, entries in the bottom-left of the SAT can
become very large. Hensley et al.[HSC05] showed that, given a wxh image, where each
pixel is represented with P; bits of precision, the number of bits of precision per pixel
required for a SAT to be accurately generated from the image is:

P, = logy(w) + loga(h) + P, (5.1

To meet the high resolution requirements set out in Chapter 3, Equation 5.1 indicates that
at least 38-bits of precision per pixel are required to construct a SAT from a 16-bit per
pixel 2048x2048 input image. Fortunately, since the SAT in this method is constructed
from a scaled luminance map, which, due to the the scaling operation (Equation 4.2), has
a reduced range compared to the original HDR input, 32 bits of floating point precision
per SAT entry will suffice.

When using a shader implementation of Sengupta’s method, given a 2048x2048 input
HDR image, the memory footprint of the SAT construction phase of the tone mapping
procedure (Step 4 in Figure 5-1) will be 4 * (4 % 2048 * 2048 — 3) bytes, which amounts
to 64 MB. Because SAT generation is only one part of the tone mapping procedure, and,
according to the goals layed out in Chapter 3, the tone mapper will be implemented as
GPU module suitable for integration into interactive applications, which may themselves
use large amounts of video memory, it is important to keep the memory footprint of SAT
generation as low as possible.

5.2.5 Leveraging GPU hardware with CUDA

General Purpose GPU (GPGPU) programming languages such as CUDA [GGN™108]
(Section 2.3.3) are well suited for general computations, such as scan generation, on the
GPU. One major advantage that GPGPU languages have over traditional shader languages
is that they provide access to GPU hardware capabilites unavailable to shaders. Of par-
ticular interest in the context of scan generation is the ability to read from and write to
the same global memory location during one single program (kernel) execution (Figure
5-8); access to high-speed, per-processor memory called shared memory (Figure 5-9);

and inter-processor cooperation enabled by thread synchronization and atomic operations
(Figure 5-10).

Harris et al. [HSOO7] introduced a modification of Sengputa’s method, which performs
the reduce and down-sweep computations in-place, i.e without allocating additional mem-
ory for storage of partial results. Furthermore, Harris achieves significant speedup by
dividing the input data into chunks, assigning the chunks to different GPU processors,
using the processors to efficiently compute partial results with the help of high speed,
on-chip shared memory, and then updating the input array with the partial results. This
process is repeated until the input array contains a complete scan. Using this method,
Harris reported scan speeds of up to 7 times those achieved by a shader implementation
of Sengupta’s method.

Harris’ reported scan performance, as well as a memory footprint 25% that of a shader

Approach Page 61

CUDA Shaders
out in out
kernel @ @ kernel @
in out in
in-place computation ping-ponging

Figure 5-8: When iteratively accumulating a result, where the output of iteration i is the
input of iteration 1+ 1, shaders must ping-pong between two seperate textures
due to their inability to read from and write to the same texture in a single
execution. CUDA programs do not have this restriction.

CUDA Shaders
texture |constant| global | shared reqisters texture reqisters
memory | memory | memory [memory 9 memory 9

CUDA memory view shader memory
view

Figure 5-9: CUDA programs have a substantially more advanced view of GPU memory
than shaders. In particular, CUDA programs have access to high speed, per-
processor, on-chip memory called shared memory. Shared memory plays a
crucial role in reaching performances unattainable by shaders.

CUDA Shaders

------------------------ Barrier

inter-thread communication,

synchronization, atomics, etc. no inter-thread communication

Figure 5-10: CUDA provides a more sophisticated parallel programming model than
shaders. While multiple streams of execution run completely independently
with shaders, CUDA provides primitives for inter-thread communicaton,
thread synchronization and atomic operations.

Page 62 Chapter 5

implementaton of Sengupta’s method, make scan computation with CUDA an attractive
starting point for an investigation into high speed local tone mapping using box filters.

5.3 Using CUDA with OpenGL for post processing

The previous section concluded with the observation that parallel scans can be computed
significantly faster using GPGPU languages than with shaders, due to less restricted
access to GPU hardware. This leads to the possibility that implementing Slomp and
Oliveira’s method (Section 4.2.3) in CUDA, using modern, work-efficient scan computa-
tion methods for SAT generation, may precipitate performance gains, particularly for high
resolution scenes. In order to comply with the goals outlined in Chapter 3, a CUDA-based
tone mapper must be implemented as a configurable, self-contained module that can be
integrated into any existing OpenGL application. Therefore, a CUDA tone mapping mod-
ule would need to be developed, which uses the GPU to post-process output from its host
OpenGL application. Because CUDA itself has no functionality for rendering results on
the screen, the post-processed result would need to be passed back to the host application
for final rendering.

At the time of writing, it is unclear how efficiently CUDA can share the GPU with an
OpenGL application for post-processing applications. A 2008 study by Lénroth and
Unger [LUOS] showed that any potential performance gains achievable by using effi-
cient CUDA SAT-based box filter implementations to create a “depth of field” effect as
a post-process, were lost due to the overhead of switching context between OpenGL and
CUDA twice for each frame. Although OpenGL-CUDA context switching overhead was
attributed to the fact that early versions of CUDA required a copy of frame data across
the system bus to the CPU for each context switch, an issue that has since been resolved,
there remain signs that prohibitive overhead exists when post processing with CUDA. For
example, the sample CUDA post processing program postProcessGL supplied with the
CUDA 3.2 SDK, which uses CUDA to apply a Gaussian blur to the output of a simple
OpenGL program, runs at significantly lower frame rates than equivalent programs using
pure OpenGL with GLSL shaders.

In order to determine whether the current CUDA release (version 3.2 at the time of writ-
ing) is capable of efficient OpenGL post-processing, a small study comparing a simple
CUDA post-processing program with a an equivalent shader program has been under-
taken. Section 5.3.1 describes the experiments performed, Section 5.3.2 provides the
results, and Section 5.3.3 discusses the results in the context of the overall goal, real time
tone mapping with CUDA.

5.3.1 Procedure

A simple OpenGL program was created, which renders a Utah teapot directly to float-
ing point texture. Standard GLSL shader programs were used to illuminate the teapot
using per-fragment Phong shading. Figure 5-11 (a) shows the contents of the output tex-
ture. Experiments were designed such that this texture is processed by post-processing
programs, implemented both in CUDA and GLSL, which extract the monochrome per-
pixel luminance from the original image, shown in Figure 5-11 (b). The results are then

Approach Page 63

passed back to OpenGL for final display. Figure 5-12 illustrates the setup used for the
experiments. By comparing the number of frames that can be rendered per second in this
manner, an evaluation of CUDA’s suitability for post-processing OpenGL applications
can be attained.

The platform used for testing is described in Section A.1.

(@) (b)

Figure 5-11: Contents of offscreen texture rendered by OpenGL (a) and the result of post
processing with CUDA or GLSL (b).

Off-screen texture CUDA \ Result

OpenGL |»| GLSL —rw / OpenGL —-W

GLSL

Figure 5-12: Experiment setup. A Utah teapot is produced with OpenGL and illuminated
and rendered to texture using GLSL shaders. The resulting texture is then
processed by either CUDA or GLSL programs, and the results are passed
back to OpenGL for output on the display. Performance is evaluated as
average time required to render each frame.

5.3.2 Results and discussion

Each experiment was executed for a total of 32 seconds, and average frames per second
(fps) for the final 30 seconds of execution were logged. The first 2 seconds of each
experiment were not logged so that various program initialisation operations would have
no effect on the average frame rate measurements. Figure 5-13 shows a comparison of the
framerates logged during 30 seconds of experiment execution with an output resolution
of 1024x1024. The average frame rates, as well as average time per frame, throughout 30
seconds of execution can be found in Figure 5-14.

It can be seen that GLSL shaders perform marginally better than CUDA for post-
processing. This can be attributed to the fact that the current release of CUDA 1is incapable
of writing directly to texture. Instead, a CUDA post-processing program must write its
result to a Pixel Buffer Object (PBO) - an OpenGL handle to pixel data residing on the
GPU - and copy, or unpack, this data to the target texture. Although this copy takes place
entirely on the GPU, avoiding the costly transfer of data across the system bus that made

Page 64 Chapter 5

CUDA vs OpenGL post processing

Experiment frame rates
800

T00 '\ f

600

500
=CUDA

-+GLSL
400

300

Frames per second

200
100

o
123 45 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time (s)

Figure 5-13: Frame rates measured over 30 seconds of post-processing a 1024x1024
OpenGL application. The blue dataset shows the frame rates when post-
processing application output using CUDA and the red dataset shows the
[framerates when performing an equivalent operation using shaders.

Average FPS | Average time per frame
(ms)
CUDA 679 1.47
GLSL 747 1.34

Figure 5-14: Average frame rates and frame render times for the simple post-processing
experiment.

post-processing with earlier versions of CUDA infeasible, this operation still introduces
a small overhead. As can be derived from Figure 5-14, however, this overhead, 0.13 ms
per frame for a 1024x1024 image on the test system, is near-negligble. As GPU memory
speed and clock frequencies continue to rise, the time to copy memory between two
locations residing in GPU memory will continue to fall.

5.3.3 Conclusion

The results of the small study presented here show that modern CUDA releases have
become sufficiently mature to be used for post-processing OpenGL applications without
incurring significant performance penalties.

Approach Page 65

5.4 A CUDA tone mapping module

Despite the promising parallel scan computation performance outlined in the Chapter 5,
as far as could be determined, no investigation into real-time tone mapping using CUDA
(or other GPGPU languages) has been undertaken. Therefore, a CUDA post-processing
module has been developed, which applies local tone mapping in real time to a stream of
HDR images produced by any OpenGL-based application.

Figure 5-15 shows how the CUDA module is used for tone mapping interactive HDR
applications. Rather than rendering its output to the standard screen framebuffer, the
target application (OpenGL Application in the top of the figure) uses special OpenGL
functionality called Render To Texture (RTT) to render its output to a 16-bit per pixel
floating point HDR texture. Attempting to render this texture directly using traditional
OpenGL rendering would result in a white screen; the HDR texels are represented by
16-bit floating point values in the range [0.0, 65535.0], and traditional OpenGL rendering
requires texels in the range of [0.0, 1.0], clamping all texels outside of this range to 0.0
(black) or 1.0 (white). Instead, the HDR texture is passed to the CUDA tone mapping
module, which performs Steps 1-5 outlined in Section 5.1.1 to produce a LDR texture
with all texels compressed into the displayable range of [0.0, 1.0]. To optimize the speed
and memory consumption of the crucial SAT-generation step (Step 4 in Section 5.1.1), the
CUDA tone mapping module uses Harris’ efficient in-place scan computation algorithm.
Once tone mapping is complete, the CUDA module writes the result into a standard, 8-
bit-per-channel LDR texture, which is read back by the OpenGL and displayed on the
monitor.

The conceptual, black box description used thus far may give the false impression that the
CUDA module is a single, highly complex program that takes an input HDR texture and
executes on the GPU until a tone mapped, LDR texture is produced. In reality, the mod-
ule is a system of parallel CUDA programs, known as kernels, together with CPU-based
sequential code for invoking and manipulating them. Figure 5-16 shows the internal mod-
ule design. Each yellow rectangle represents a CUDA kernel, which is executed on the
GPU. The elipses represent datasets, each containing at least as many elements as texels
in the input texture, which are produced by or passed to the kernel programs. All such
data resides on the GPU throughout module execution, i.e none of the data represented
by a blue elipse is transfered across the bus connecting the GPU and its host computer
system.

Prior to invoking the CUDA tone mapping module, the host OpenGL application renders
its HDR output to a rectangular 16-bit-per-channel floating point texture of dimensions
wxh. Once control is passed to the CUDA module, the first kernel in Figure 5-16 is
invoked and passed the input HDR texture. This Compute luminance kernel derives the
world luminance value, Ly, for each input pixel using Equation 2.1 defined in Chapter 2,
producing a luminance map where each entry p(z,y) is set to log(Lw (z,y)).

The next step is to determine the scene key of the input HDR scene (Section 4.1.1), defined
as the log-average of all scene luminances. To find the scene key, which is equivalent to
the the average value of the luminance map, the luminance map is passed to the Reduction
kernel. Given an input of size n, the Reduction kernel produces an output with n/2
elements, where each element is an accumulation of two elements in the input dataset.
Therefore, the Reduction kernel is invoked logs(w * h) times, repeatedly reducing its own

Page 66 Chapter 5

LDR scene sent to display
device

OpenGL Application

Render LDR
texture

Generate HDR scene

Render HDR scene to
texture LDR rendered by OpenGL

Pass HDR texture to CUDA one mapped scene
tone mapping module rendered to LDR texture

CUDA tone mapping module

Figure 5-15: Integration of the CUDA tone mapping module into an OpenGL application.

output until a single value representing the sum of all elements in the luminance map is
produced. By dividing this value by the total input dataset size, w * h, the scene key is
attained.

The scene key is then used by the Compute scaled luminance kernel to compute the scaled
luminance (Section 4.1.1) for each element in the luminance map, producing a scaled
luminance map. Constant-time box filtering operations are then enabled by constructing
a SAT from the scaled luminance map, an operation performed by the Generate SAT
submodule.

Finally, given the luminance map, scaled luminance map, scaled luminance SAT and
original input HDR texture, the Dodge-and-burn kernel uses high speed, SAT-based box
filters to identify the Local Region for each pixel in the luminance map, and locally tone
maps each pixel in the original input HDR texture accordingly. The output is written to a
displayable LDR texture, which is then rendered by the OpenGL application.

The individual kernels shown in Figure 5-16 are described in detail in Sections 5.4.1 to
5.4.5.

Approach

Page 67

[Kemel
Input HDR " Submodule
texture E—
<> Condition

OpenGL application &5 Dataset
Y
F Compute luminance Reduction buffer
Yy
N=0H N=N+1
Luminance map Reduction <
CUDA tone
mapping module

Global

Z log (lum |

v

H -
» Compu_te caled luminance
scaled luminance map

F v Y

*F Dodge-and-burn Scaled Islf{.nr' nance ﬂ Generate SAT i

y OpenGL application

Output LDR
texture

Figure 5-16: The design of the CUDA tone mapping module. Blue ovals represent

datasets, which may be textures or arrays in gobal GPU memory, and solid
vellow rectangles represent the CUDA kernels that process these textures.
The dashed yellow rectangle, denoted “Generate SAT”, represents a sub-
module, which is itself a module of sequential code and CUDA kernels. The
condition in the green diamond in the center of the diagram ensures that the
reduction kernel is executed logs(w* h) times, where w and h are the dimen-
sions of the input HDR texture. Kernels in the light, “global” zone apply the
same operation to all input elements, and can be used for both global and
local tone mapping operators. Kernels in the darker zone, on the other hand,
are required specifically for local tone mapping. The dashed line represents
the border between host OpenGL application and the tone mapping module.

Page 68 Chapter 5

5.4.1 Luminance extraction

Since all subsequent steps in the tone mapping procedure operate on luminance values,
the first kernel in the CUDA module computes the luminance of each input RGBA pixel in
parallel and stores the results in a luminance map, denoted by L,;, in gobal memory. The
luminance value Ly, for each pixel in p(z, y) in the input array is computed using Equa-
tion 2.1 defined in Chapter 2. Once Ly has been computed for each pixel, its logarithm
is written to the luminance map:

Ly(z,y) = log(Lw (x,y) +) (5.2)

where 9§ is a small offset to avoid undefined results when Ly (z,y) = 0. Although §
is often set to a very small value close to 0 in many implementations, such as those by
Linnemann et al. [LWR™09] and Reinhard et al. [RSST02], in this work a value of § = 1
has been chosen. Because log(1) = 0, setting § = 1 causes 0-valued input pixels to
produce O-valued output values, causing no interference to later global metric (such as
global average) computations on the luminance map.

Storing the logarithm of Lyy, rather than Ly itself, in the luminance map greatly simpli-
fies the subsequent task of identifying the scene key. Given luminance map containing
luminance logarithms, the scene key can be computed simply by computing the average
value of the luminance map. The original Ly, value can easily be obtained from the
luminance map using the exponential function: Ly, = el

5.4.2 Reduction

Having computed the luminance map, the next step in the tone mapping procedure is to
identify the scene key. As described in Section 4.1.1, the scene key L,, is defined as
the log-average luminance of the input image. Because the luminance map computed by
the luminance extraction kernel already contains the logarithm of scene luminance values
L, the definition of L,, (Equation 4.1, Section 4.1.1) can be simplified to:

— 1
Ly =exp(5; Y Lu(w,y)) (5.3)
z,y

where NV is the number of elements in the luminance map (in this case wxh) and L, is as
defined in Equation 5.2.

To compute the sum of all elements of a dataset, a parallel reduction operation is re-
quired (described in Section 5.2.4). For this purpose, a CUDA reduction kernel has been
used, which, given an input dataset with n elements in global memory, fills the first n/2
elements of the dataset with pairwise sums of its original values. After invoking the re-
duction kernel logs(w * h) times on a given dataset, the first element contains the sum of
all elements in the dataset prior to the first kernel invocation.

In order to avoid overwriting the luminance map, the Reduction kernel, when invoked for
the first time, writes its output into a buffer residing in global GPU memory (Reduction
buffer in Figure 5-16). Each subsequent invocation computes in-place in the reduction

Approach Page 69

buffer, until the first buffer element contains the sum of all elements in the luminance
map. This value is then copied to the host system and used to compute the scene key L,,
using Equation 5.3, which is passed as a parameter to the next kernel.

5.4.3 Computing scaled luminance

Given the scene key L,, and luminance map Ly, the scaled luminance computation kernel
computes the scaled luminance for each pixel in the luminance map, using the following
computation (adapted from Equation 4.2 in Section 4.1.1).

o
Ls(a.y) = -cap(Las(x.y)) (54)
where « is an exposure parameter (described in Section 4.1.1) and Lg is the resulting
scaled luminance map. Once computed, the scaled luminance map is stored in a wxh
array in global GPU memory.

5.4.4 SAT generation

To compute box filters of arbitrary size in constant time, a Summed Area Table must
be constructed. The SAT generation submodule takes the scaled luminance map and
computes its SAT.

The fundamental procedure used by the SAT generation submodule is a work-efficient
scan algorithm proposed by Harris et al. [HSOO7]. Harris’ scan algorithm is essentially
a modification of Sengupta’s algorithm (described in Section 5.2.4), which computes the
reduce and down-sweep phases interatively inside a single array, rather than requiring
additional arrays for storing partial results.

The Summed-Area Table for a 2D image is generated by computing a scan for each row
of the input image, then computing a scan for each column of the result. By invoking a
CUDA thread grid of equal dimensions to the wxh scaled luminance map and assigning
each entry a thread, scans for each row in the scaled luminance map can be produced in
parallel in a total of logs(w) steps. Similarly, column scans on the result can be computed
in parallel in logs(h) steps.

Although computing row-scans on the input followed by column-scans on the result pro-
duces the desired SAT correctly and work-efficiently, additional considerations must be
made during implementation with CUDA. Even if an algorithm is perfectly designed, its
CUDA implementation may perform far below expectations if the programmer does not
take care to use hardware resources correctly. In the case of SAT construction, the sec-
ond step of computing simultaneous column scans causes non-coalesced (Section 2.3.3)
accesses to global memory, which have a severe impact on kernel throughput. To avoid
this, Harris proposed to transpose the result of the first row-scan operation, then compute
a second row-scan on the transposed image. By adjusting all subsequent SAT indexing to
account for transposed coordinates, a second tranpose to bring the completed SAT rows
and columns back to their correct positions is not required. Figure 5-17 illustrates this
procedure for an example 3x3 array with elements set to 1.

Page 70 Chapter 5

row scans transpnse row scans

1111 1123 1111 1123

1111 |=(1]|2[3|=(2(2|2|=)|2|4
1111 1123 3133 3

Input SAT

Figure 5-17: An example of a SAT generated from a simple 3x3 input array. Scans are
computed for each row of the input simultaneously. Then, in order to opti-
mize memory access patterns, the resulting array is transposed before the
process of computing row scans is repeated. The result is a transposed SAT
of the input array.

5.4.5 Dodging-and-burning

The final, dodging-and-burning kernel, takes the original input HDR image passed as
input to the CUDA module, the luminance map L);, the scaled luminance map Lg and
the Summed-Area Table Lg 47, and uses them to compute the appropriate local luminance
compression for each pixel in the input image.

Algorithm 7 lists the algorithm used for local tone mapping, applied in parallel to each
pixel p(x, y) contained in the input image. This algorithm illustrates the general procedure
for tone mapping; the details may vary from implementation to implementation (there
were a number of different implementations of this kernel, as described in Chapter 6).

Algorithm 7 Algorithm for local tone mapping.

Input: TEXHDR, LM, Ls, LSAT’ €

Olltpllt: TEXLDR

D Seurr = 1

activity =0

1=20

while (activity < e AND ¢ < 7) do
Snext ~]--6Scu'rr
Veurr = BOX(Lsar, Seurr; (7, Y))
Vieat = BOX(LSATa Snext) (33', y))
activity = get Activity(Veurr, Vaest)

A A A R o

Scurr = Snext
1=1+1
: end while

— e
w N = O

: ler(xay) = LS(x>y)/(‘/curr + 1)
: TEX g (z,y) = compressRGB(TE Xnar, Ligr, Ly, (2,Y))

N

Starting from a scale of s.,., = 1, and increasing scale size with the relation s,¢,; ~
1.68cyrr, Algorithm 7 loops until activity exceeds a predefined threshold ¢, or total of 8
scales have been traversed, whichever comes first. Lines 6 and 7 use the SAT Lgar to

Approach Page 71

compute the average scaled luminance within square regions centered at (x,y), with edge
lengths of Sy and s,,¢.¢, saving the results in V.. and V..., respectively. This oper-
ation can be interpreted as constructing a new layer in the box-filter pyramid on the left
in Figure 5-18 in each iteration. Once V., and V,,.,; have been computed, a measure of
difference, or activity, between them is computed. Line 8 computes this difference using
the function get Activity, which evaluates the center-surround function given in Equation
4.5 (Section 4.1.2) and stores the result in the variable activity. Once activity exceeds
the threshold e or all 8 scales have been traversed, the most recently computed value of
Vewrrs 1.€ the largest identified quadratic region of approximate isoluminance surround-
ing the current pixel (Figure 5-18), is used as the basis of local luminance compression
(Equation 4.7 in Section 4.1.2). Finally, the LDR output luminance L pg is used by the
function compress RG' B to compress in the input HDR red, green and blue channels into
the displayable range, according to the Equation given below [RWP*06, p.229]:

; Local Regions
0 V e

Direction of traversal

Example pixels

Figure 5-18: Conceptual illustration of the dodging-and-burning procedure in Algorithm
7. For each pixel in the input image, a box filter pyramid is iteratively con-
structed (left), starting from the top (smallest scale) and iterating to the bot-
tom (largest scale). In each iteration, a metric of difference, or activity, be-
tween the newly constructed layer V., ..; and its immediate predecessor V.
is evaluated. When this value exceeds a given threshold, V.., is identified
as the largest region of approximate isoluminance, or Local Region (right),
surrounding the target pixel. Once identified, the Local Regions are used for
local luminance compression according to Equation 4.7.

Ripr (Rupr/Lw)”
Gror| = Lipr | (Gupr/Lw)? (5.5)
Brpr (Bupr/Lw)”

where Rypr, Ggpr and By pr are the red, green and blue components of a given pixel in
the input HDR texture, Ly is that pixel’s luminance, 7 is a per-channel gamma correction
parameter, and R, pgr, Gpr and By pg are the resulting red, green and blue components
of the resulting LDR pixel.

Page 72 Chapter 5

5.5 A shader tone mapping module

The main focus of this thesis is an investigation into tone mapping with CUDA. The
motivation behind investigating local tone mapping with CUDA originates from the hy-
pothesis that SAT generation - a crucial bottleneck in Slomp and Oliveira’s method - can
be accomplished more efficiently using CUDA than with shaders, due to CUDA’s exclu-
sive access to high speed shared memory. A paper published by Harris et al. [HSOO07]
showed very promising results when implementing Sengupta’s [SLO06] work-efficient
parallel scan algorithm in CUDA.

In order to determine whether the CUDA tone mapping module presented in Section 5.4
does in fact deliver greater performances than are achievable with shaders, it must be
compared to an equivalent, shader tone mapping implementation. Since, as far as could
be determined, no such implementation exists, a shader tone mapping module, which
uses Sengupta’s work-efficient parallel scan algorithm for SAT generation (described in
Section 5.2.4), was developed for this thesis.

To simplify the testing and comparison process, the shader tone mapping module was
designed to be integrated into interactive HDR applications in same way as the CUDA
tone mapping module shown in Figure 5-15. A host OpenGL application renders its HDR
scene to texture, which is passed to the tone mapping module. The module tone maps the
HDR texture, rendering the output to another texture, which is then read back by the host
application and displayed on the monitor.

Like the CUDA module, the shader tone mapping module consists of a collection of par-
allel shader programs, together with CPU-based sequential code for invoking and manip-
ulating them. Figure 5-19 shows the internal shader module structure. It is clear that the
shader module design in Figure 5-19 is very similar to that of the CUDA module, shown
in Figure 5-15. Indeed, each shader program or submodule performs the same operation
as the equivalently named kernel in the CUDA module. For a detailed description of what
each shader program does, refer to Section 5.4.

The main difference in structure between the shader and CUDA modules is that the shader
module uses no reduction program. Rather than implementing a shader-based reduction
technique to derive the scene key from the luminance map, a simple yet efficient method
was employed: mipmapping. Mipmapping is a simple, hardware supported technique,
typically used for anti-aliasing, by which a series of successive resamplings are generated
for a given texture, where each resampling is half the resolution of its predecessor. Each
texel in a given mipmap layer is the average of a number of its predecessor’s texels.
Therefore, the average texel value of a given texture can be computed by generating its
mipmap and sampling the top-most, 1x1-dimensioned layer.

Unlike the CUDA luminance extraction kernel, which produces an array of single, floating
point values in global GPU memory, the shader luminance computation program produces
a texture with multiple channels; the computed luminance value of the each input texel
is stored in the red output texture channel, while the green channel is used for its loga-
rithm. Therefore, the scene key can be computed simply by generating a mipmap of the
luminance map and reading the green channel of the top mipmap layer. This only gives
correct results for square textures; more sophisticated reduction algorithms are required
for rectangular textures. Nonetheless, for the purpose of performance comparison against

Approach Page 73

[Shader program

Input HDR M Submodule
texture () OpenGL operation
OpenGL application D Texture
‘ .
Mip-map
Compute luminance
]—Iogl')
y ‘r _,\." \Hkay [
_\ H Compute

Luminance map >

scaled luminance

\

Y

Shader tone caled luminance
mapping module map
Global

Local
Y Y

*r] Dodge-and-burn == Isl:{-'ll-' nance Generate SAT

y OpenGL application
texture

Figure 5-19: The design of the shader tone mapping module. Blue ovals represent tex-
tures, solid yellow rectangles represent shader programs that process these
textures, and the “Mipmap” element represents a hardware-based mipmap
operation. The dashed rectangle, denoted “Generate SAT” represents a sub-
module, which is itself a collection of sequential code and shaders. Shaders
in the light, “global” zone apply the same operation to all input texels, and
can be used for both global and local tone mapping operators. Shaders in
the darker zone, on the other hand, are required specifically for local tone
mapping. The dashed line represents the border between host OpenGL ap-
plication and the tone mapping module.

the CUDA module, scene key computation by mipmapping is sufficient.

Another notable difference between the shader and CUDA modules is the implementa-
tion of the SAT generation step. Both use flavours of Sengupta’s algorithm, presented
in Section 5.2.4, to generate row and column scans from their input textures. Because
shaders work solely in texture memory, the shader SAT generation step, unlike its CUDA
equivalent, does not need to transpose its results during computation. This means that the
shader SAT generation step performs less work than its CUDA counterpart. The work
that it does perform, however, is less efficient than that done during CUDA SAT genera-
tion. Furthermore, the shader SAT generation method is subject to a significantly larger
memory footprint, resulting from the additional textures that must be allocated to store
intermediate results (see Section 5.2.4).

Page 74 Chapter 5

Further details on the implementation of the individual steps in Figure 5-19 are given in
Chapter 6.

5.6 Summary

In this chapter, the approach taken for meeting the goals set forth in Chapter 3 has been
discussed.

Section 5.1 provided an overview of Slomp and Oliviera’s [SO08] approximation of Rein-
hard’s local tone mapping operator, which uses high speed SAT-based box filters, rather
than Gaussian convolution, for Local Region identification. Slomp and Oliveira’s method
was analysed in search of optimization opportunities, revealing the SAT generation pro-
cedure as a potential performance bottleneck.

After introducing the parallel scan operation, the fundamental operation used for SAT
generations, Section 5.2 showed that the SAT generation method used by Slomp and
Oliveira is not work-efficient. Accordingly, a more recent parallel scan method, pro-
posed by Sengupta et al. [SLO06], was introduced and it was shown that this method is
work-efficient. It was then revealed that further performance gains, as well as a reduced
memory footprint, can be achieved by taking advantage of certain GPU hardware features
made available to the programmer through CUDA.

Motivated by the promising results of high speed CUDA-based scan computation on large
datasets, as reported by Harris et al. [HSOQ7], and early reports of poor CUDA/OpenGL
interoperability [LUOS8], a small study was undertaken in Section 5.3 to investigate the
suitability of using CUDA for post-processing OpenGL applications. The experiments in
Section 5.3 showed that the current generation of CUDA - Release 3.2 - is sufficiently
mature for post-processing OpenGL applications at interactive frame rates.

To test the hypothesis that Slomp and Oliveira’s tone mapping method can be improved
using modern, work-efficient algorithms implemented in CUDA, a CUDA module was
developed for tone mapping interactive OpenGL applications. Section 5.4 presented the
design of this module. Following a discussion of its intended use with OpenGL appli-
cations, an overview of the internal module design was given. Each kernel used in the
module was then described in detail.

The tone mapping module was developed in CUDA, on the presumption that using CUDA
for tone mapping would result in performance gains unattainable by shaders. Since
the CUDA module uses a different algorithm for SAT generation to that of Slomp and
Oliveira, comparing the CUDA module directly to a shader implementation of Slomp and
Oliveira’s original method would be an unspecific comparison; it would be impossible
to determine whether performance differences result from the different SAT-generation
algorithms, or the different programming environments. Therefore, Section 5.5 presents
a shader tone mapping module, which uses the same SAT-generation algorithm as the that
of the CUDA module.

+ (5]

® N o Ww

Implementation Page 75

6 Implementation

This chapter presents the implementational details of the CUDA and shader tone mapping
modules introduced in Chapter 5.

Section 6.1 describes in detail how each kernel in the CUDA module was implemented.
Similarly, Section 6.2 covers the implementation of each shader program in the shader
module. Finally, Section 6.3 introduces a custom prototyping platform for developing
and testing high performance tone mapping operators.

6.1 Tone mapping with CUDA

Section 5.4 discussed the design of the CUDA module, introducing and discussing the
five CUDA kernels used for local tone mapping. The task performed by each process was
described on an abstract, algorithmic level. Even when implementing simple and efficient
algorithms in CUDA, however, care must be taken to make efficient use of hardware. In
particular, suboptimal memory access patterns can cause a CUDA kernel to deliver a frac-
tion of expected performance. As an example, the NVIDIA technical report Optimizing
Parallel Reduction in CUDA by Mark Harris [Har08] shows how loop unrolling and op-
timization of memory access patterns can increase the throughput of a parallel reduction
operation (discussed in Section 5.2.4) by a factor of 30. Consequently, much of the work
in this research is in optimization of implemetation-specific details within the five CUDA
kernels.

This section discusses some of the technical aspects of the implementations of the CUDA
kernels in Figure 5-16.

6.1.1 Luminance extraction

The luminance extraction kernel is one of the simplest kernels in the tone mapping mod-
ule, making it a suitable initial example for introducing the basic CUDA image processing
concepts used by all kernels discussed in this thesis. Listing 6.1 lists the complete code
for Kernel 1.

__global__ void computeLuminance(floatx lumMap, int lumMapPitch)
{
// map current thread to a texel in the input texture
int tx threadldx .x; // thread x position within block
int ty = threadldx.y; // thread y position within block
int bx = blockldx.x; // block x position within grid
int by = blockldx.y; // block y position within grid

int bw = blockDim.x; // block width
int bh = blockDim.y; // block height

20

21

22

23

24

25

Page 76 Chapter 6

int x
int y

bxxbw + tx; // map thread x to texture X
byxbh + ty; // map thread y to texture vy

// get current pixel value
float4 res = tex2D(inTex, x, y);

// compute luminance
float lum = RGB2LUM(res.x, res.y, res.z);

/!l compute linear output index
// note: we are using pitch—linear memory
int i = yxlumMapPitch+x;

/1l save logarithm of luminance in the luminance map
lumMap[i] = log(lum+1.0);

Listing 6.1: CUDA code for luminance computation kernel.

Kernel 1 is implemented as a global CUDA C function taking two arguments: lumMap, a
pointer to the target luminance map (L, in Section 5.4.1), and a parameter lumMapPitch
required for correctly indexing this array (explained further below).

Lines 4 to 11 map each thread in the CUDA thread matrix (see Section 2.3.3) to a texel in
the input texture.

Once the thread-to-texel correspondance has been determined, the correct texel is sampled
from the HDR input texture on Line 14. The symbol inTex is a globally accessable handle
to the input HDR texture residing in GPU texture memory. The CUDA API function
call tex2D(inTex, x, y) returns a 4 element vector of 32 bit single precision floats,
representing the red, green, blue and alpha channels of the texel at position (X,y) in the
input texture. After the correct input texel has been retrieved and stored in res, Line
17 uses the globally defined macro RGB2LUM(r,g,b) to compute the texel’s luminance
according to Equation 2.1.

The final step in Kernel 1 is to store the logarithm of the computed texel luminance in
the luminance map lumMap; this is done on Lines 21 to 24. The most interesting part
of this operation is Line 21, which computes the location in the luminance map where
the result of the current thread should be stored. The array index computation on Line
21 is necessary because the array lumMap, which is a 2D map of 32 bit floating point
luminance values, is allocated as a single dimensional array. In general, allocating single
dimensional arrays to represent 2D memory regions is common practice in CUDA.

In order to access element (z,y) of a 2D image stored in a single dimensional array, the
correct array index ¢ is computed as follows:

T =1mgw xy + T (6.1)

where imguw is the width of the image.

At first inspection, it appears that one would need to allocate lumMap with dimensions
wxh, where w and h are the dimensions of inTex, and use Equation 6.1 with imgw = w

Implementation Page 77

for coordinate to index mapping throughout the program. Although this would produce
correct results, significant performance penalties are likely to occur. As is often the case
with CUDA, additional considerations must be made.

As mentioned in Section 2.3.3, for maximum kernel throughput, accesses to global mem-
ory must be coalesced, i.e the address of each memory access must be aligned with some
transaction size parameter \. When allocating a new block of memory, the CUDA mem-
ory allocation function, cudaMalloc (), ensures that the starting address of the newly
allocated memory is correctly aligned. If, however, imgw in Equation 6.1 is not a mul-
tiple of A, then all 2D memory accesses to elements in rows where y mod A # 0 will be
uncoalesced.

The solution to this problem is to pad each row of the 2D memory map with a number
of additional elements, denoted padding, such that (w + padding) mod A = 0. CUDA
provides a special function, cudaMallocPitch(), which allocates padded memory called
pitch linear memory. The total width of each row, including padding, is called the memory
pitch. Figure 6-1 illustrates this concept.

Luminance map

pitch

Figure 6-1: The luminance map is stored using pitch linear memory. Additional padding
is added to each row such that pitch mod A = 0, ensuring that all address
accesses are aligned with \ and are thus coalesced.

The output array 1umMap has been allocated as pitch linear memory, where the kernel pa-
rameter lumMapPitch is the pitch. Line 21 maps the coordinates (x, y) to the appropriate
output index in lumMap, using lumMapPitch as image width. Therefore, all writes to the
output luminance map are coalesced.

6.1.2 Reduction

The whitepaper Optimizing Parallel Reduction in CUDA by Mark Harris [HarO8] de-
scribes in detail how a reduction method can best be performed using CUDA. The code
used for the reduction kernel in the CUDA tone mapping module is from this whitepaper,
which is supplied with the CUDA SDK. This section gives an overview of this method,

Page 78 Chapter 6

outlining the main differences between Harris® CUDA reduction and common shader-
based reduction methods. For more detail on the reduction kernel implementation, includ-
ing how shared memory bank-conflicts are avoided, and thread divergence is minimized,
see [Har0O8].

Although the reduction algorithm described in Section 5.2.4 is well suited for implemen-
tation with shaders, when implementing this method in CUDA, a number of fundamental
modifications are required. Unlike shader-based reduction methods, which require alloca-
tion of additional textures for storage of partial results, CUDA can reduce arrays in-place.
In-place reduction requires multiple passes; each pass breaks the input array into seg-
ments, copies the segments into blocks of shared memory, reduces each segment within
shared memory to a single sum, and writes the resulting sum value back into the original
input array. Figure 6-2 shows this procedure. After [loga(n)] such passes, where n is the
size of the input array, the first element of the input array contains the sum of its original
contents.

‘ Input array |
— — —) __memory
| BlockB3 | BlockB4 |
reduce @ reduce ﬁ f"IlI;an:I:)l:y
B3 o
- T T " Global

Figure 6-2: A single pass of in-place reduction using CUDA. The input array, stored in
global memory, is divided into segments, which are copied as “blocks” into
shared memory. In this example, the input array is small enough to be divided
into 4 blocks; generally many more would be required. These blocks are
then reduced efficiently within shared memory, resulting in a single sum per
block. Finally, the block sums are written back into the input array in global
memory. After repeating this process [logs(n)| times, the first element of the
input array contains the complete sum of the original input array.

Reducing blocks within shared memory can be accomplished considerably faster than
would be possible with shaders, which are forced to perform similar operations solely
using texture memory and registers. However, in order to benefit from the theoretical
performance gains promised by shared memory access, great care must be taken to orga-
nize memory access patterns such that shared memory bank conflicts, as well as thread
divergence (see Section 2.3.3), are avoided. In particular, the reduction algorithm used by
Sengupta et al. [SLOO06], discussed in Section 5.2.4 and illustrated in Figure 5-5, involves
memory access patterns that lead to a high level of thread divergence. This arises from
the fact that each element in a block is processed by a dedicated thread. Each reduction
step reduces the size of the input array by half. Therefore, for each reduction step ¢ + 1,

Implementation Page 79

half of the threads used in step 7 have no work to do, and consequently remain idle. If
each step reduces the input array by pairwise addition between direct neighbours, and
consecutive threads are used to process consecutive array elements, every second thread
in reduce step ¢ + 1 will be idle. Because all threads in each half-warp (or warp, depend-
ing on the GPU architecture) execute in lock-step, and each warp must be re-executed for
each thread divergent thread, this situation will incur significant performance penalties.
To minimize thread divergence, Harris [Har0O8] introduced an alternative, sequential ad-
dressing scheme. Harris’ method is shown in Figure 6-3 for an example array containing
8 elements. By adding each element to a neighbour at a distance of n/2 elements to its
right, thread divergence within each warp is kept to a minimum.

112 (3(4|5|6 |78

pass 1

__ HIaD

pass 2 1 “|L

pass 3

36-“m"mm-m""m"

Figure 6-3: Reduction in shared memory, using sequential addressing for minimal thread
divergence.

In addition to the fundamental modifications to traditional, shader-based reduction algo-
rithms, Harris also employed a number of low-level CUDA optimization techniques such
loop-unrolling to achieve a practical throughput near that of the theoretical maximum for
his hardware. For more information, see [Har08].

6.1.3 Scaled luminance computation

The scaled luminance computation kernel applies the same principles as the luminance
computation kernel (Section 6.1.1). Taking the luminance map from Section 6.1.1 and its
global log-average, computed using the reduction described in Section 6.1.2, the scaled
luminance computation kernel computes the scaled luminance (Equation 5.4) of each
pixel in the luminance map, and stores the results in a scaled luminance map. Like the
luminance map, the scaled luminance map is an array allocated as pitch-linear memory,
containing at least wxh elements, where w and h are the dimensions of the input HDR
texture. Listing 6.2 shows the most important code used by this kernel.

1| __global__ void scaleLuminance (floatx scaledLumMap,

2

3

4

5

floatx lumMap,
float lavg,
float key,
size_t pitch)

Page 80 Chapter 6

{

/!l compute thread <—> pixel corresponance
// see computeLuminance (...)

/1 save scaled luminance
scaledLumMap[i] = exp(lumMap[i])=*(key/lavg);

Listing 6.2: Scaled luminance computation kernel.

The first few lines of the kernel scaleLuminance in Listing 6.2 map each CUDA thread to
an element in the input luminance map, using Equation 6.1, with w set the input parameter
pitch. The 1D index in the luminance and scaled luminance maps is stored in the variable
i. Given i, Line 12 uses Equation 4.2 to compute the scaled luminance for each value in
the luminance map, storing the results in the output scaled luminance map.

6.1.4 SAT generation

Section 5.4.4 explained the approach used for constructing Summed-Area Tables using
CUDA. First, scans for each row in the input image are computed in parallel using Harris
et al.’s [HSOO07] work-efficient scan. Second, in order to respect CUDA memory coalesc-
ing requirements, the result is transposed. Finally, Harris’ scans are applied to each row
of the transposed results simultaneously.

Up to this point, Harris’ scan algorithm has been briefly described as an in-place, CUDA-
based modification of Sengupta et al.’s work-efficient algorithm (described in Section
5.2.4). The modifications necessary for updating an algorithm designed for shaders to
run efficiently in CUDA can be complex. Indeed, a closer look into Harris’ paper reveals
significant low-level optimization work required to reach the promised performance. For-
tunately, Harris, together with the other authors of [HSO07], have created a CUDA li-
brary, called CUDPP, to encapsulate the scan functionality described in a number of their
papers [SHZ"07] [SHGO08] [SHG09] [TWO08]. CUDPP was used in the CUDA tone map-
ping module for parallel scan computation.

The SAT generation step is implemented as submodule, which, like the overall CUDA
tone mapping module shown in Figure 5-16, is made of up a collection of CUDA ker-
nels as well as C++ code for manipulating them. The functionality for SAT generation,
including CUDA kernels for computing an image transpose and parallel scan operations,
is interfaced through a C++ class. Figure 6-4 uses UML to illustrate the important parts
of this interface. The interface for all SAT operations is specified by an abstract class
named SAT. The class SATHarris derives SAT, implementing the compute () method in
CUDA. Note that the satHarris class is contained in a namespace 1ibCUDA, so that im-
plementations based on other technologies, such as shaders, can easily be added to the
system. Indeed, a class implementing Hensley et al.’s [HSCT05] non-work efficient SAT
generation method used by Slomp and Oliveira [SO08] will be required for adequately
evaluating the results in Chapter 7.

Given an input scaled luminance map of size wxh, passed to the SATHarris object via
its setInput (. ..) method, the init method allocates space for two additional memory

Implementation Page 81

SAT

+setInput(in:GLTexture*)
+getOutput(): GLTexture®
+compute()

zl's

libCUDA::SATHarris

+compute()

Figure 6-4: The SAT construction class UML.

maps, S; and Ss, of dimensions (w + p;) x (k) and (h + p2) x (w), respectively, where
p1 and p, are padding parameters necessary to meet memory coalescing requirements for
pitch-linear memory (Section 6.1.1). The first map, S is necessary for storing the row-
scans produced from the input scaled luminance map, without overwriting the original
input. Although CUDPP computes scans in-place, in the sense that an input array is
divided into segments, which are loaded into shared memory where in-place partial result
computation is performed, CUDPP writes the final scan results to a second, output array
in global memory. Therefore, a second map, Sy, with transposed dimensions to S, is
required for ping-ponging the partial results generated during the three set scan-transpose-
scan SAT generation process.

The setInput() and init() methods are designed to be called once during program
initialization. Once the program has been set up and has commenced simulation, the
compute () method called from the main loop. The essential parts of this function are
shown in Listing 6.3

// set the in/out buffer indices
_in = 0;
_out = 1;

/l transposed output dimensions

_ow = _h;
_oh = _w;
// first row scan: _input —> _sat[_in]

cudppMultiScan (_scanPlanl , _sat[_in], _input, _w, _h);

/] transpose _sat[_in] —> _sat[_out]
SAT_transpose_fast(_sat[_out], _sat[_in], _outPitch, _w, _h);
std ::swap<int >(_out, _in); // swap buffer indices

// second row scan: _sat[_in] —> _sat[_out]
cudppMultiScan (_scanPlan2 , _sat[_out], _sat[_in], _ow, _oh);

Listing 6.3: SAT generation using CUDPP.

Lines 2 to 7 are used to track the input and output datasets and dimensions throughout
the computation. Row scans are computed on Lines 10 and 17 using the CUDPP function
cudppMultiScan(. . .), which implement Harris’ work-efficient algorithm described in

1
2
3
4
5

Page 82 Chapter 6

[HSOO07]. The parameters _scanPlanl and _scanPlan2, of type CUDPPHandle, point
to so-called CUDPP Plan structures, which provide important details on how the scan is
to be performed (such as data type and scan operator). The remaining parameters are the
input and output dataset, as well as the dimensions of the output dataset.

The function SAT_transpose_fast(...), called on Line 13, interfaces a CUDA kernel
for computing a high speed matrix transpose using shared memory. The implementation
of this kernel is specified in the NVIDIA whitepaper Optimizing Matrix Transpose in
CUDA by Greg Ruetsch and Paulius Micikevicius [RM10], which is supplied with the
CUDA 3.2 SDK toolkit.

6.1.5 Dodging-and-burning

The final, dodging-and-burning kernel is the most complex kernel developed for the
CUDA tone mapping module. Despite the apparent simplicity of the generic dodging-
and-burning algorithm presented in Section 5.4.5, implementing this algorithm efficiently
in CUDA presents a number of challenges.

The dodging-and-burning kernel inputs are: the original LDR texture, the luminance map
produced by the Compute luminance kernel, the scaled luminance map computed by the
Compute scaled luminance kernel and the scaled luminance SAT computed by the Gen-
erate SAT kernel. Since a large volume of memory must be processed by the dodging-
and-burning kernel, to avoid a bandwidth bottleneck, care must be taken when designing
memory access patterns. Furthermore, because the luminance compression factor varies
from pixel to pixel in local tone mapping, a number of branches are necessary in the
kernel, which are liable to cause thread divergence. It should also be noted that a signif-
icant amount of arithmetic must be performed to repeatedly evaluate the center-surround
function given by Equation 4.5 in Section 4.1.2. Each thread block has access to limited
resources; as kernel complexity increases, the number of registers available to each GPU
processor decreases, reducing kernel occupancy [NVI11, p. 86]. Eventually, when insuf-
ficient registers are available, internal kernel variables must be allocated in local memory,
which has the same latency as global memory (local memory is in fact a region in global
memory).

Motivated by the complexity of the doding-and-burning computation, a number of imple-
menations of the dodging-and-burning kernel have been considered. This section begins
by presenting a “naive” implementation, which most closely represents the algorithm
presented in Section 5.4.5. After examining the sub-optimal performance of this kernel, a
number of optimizations are presented in the remaining subsections.

6.1.5.1 A naive implementation

Listing 6.4 shows a first, naive dodging-and-burning kernel implementation.

__global__ void dodgeAndBurn_Naive (

uchar4x 1dr_RGB_out, // output LDR image
floatx lumMap, // luminance map
float+ sLumMap, /1 scaled luminance map

size_t mapPitch, // pitch (width+padding) of input

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Implementation Page 83
float lavg, /! luminance log average
floatx sat, /! scaled luminance SAT
size_t satPitch , /1 SAT pitch
float alpha, // exposure parameter
float phi, /! sharpnes parameter
float epsilon, /1 activity threshold
float gamma, // gamma adjustment
int imgw // output image width

// compute thread to pixel correspondance
/1 see computeLuminance ()

// current thread coordinate (x,y)

int outlndex = yximgw + Xx;

int maplndex = yxmapPitch + x;

// retrieve luminance and scaled luminance
float 1s = sLumMap]|i |;

/1 box filter scales, not including first scale of 0
float scales[7] = {3.0,5.0,7.0,11.0,17.0,25.0,39.0};

int s = 0; // 1initial scale O
float scaleCenter = O;

float scaleSurround = scales[0];
float V_center = ls;

float V_surround = getAverage(sat, satPitch, y, x,
scaleSurround);

// compute center—surround function
float w = CENTER_SURROUND (...); // details hidden in macro

/!l begin traversing box filter pyramid
while (abs(w) < epsilon && s < 7){
scaleCenter = scales[s];
scaleSurround = scales[s+1];
V _center = surround;
V_surround = getAverage(sat, satPitch, y, x, scaleSurround);

w = CENTER SURROUND(...); // details hidden in macro
S++;

}

// now do local tone mapping
float Idr = (1ls/(1+V_center))x255;

/! use 1ldr to compress input RGB (details hidden in macro)
float4 res = tex2D(inTex, x, y);

float lum = exp(lumMap[i]);

Idr_RGB_out[outlndex] = COMPRESS_RGB(res, lum, ldr, gamma);

Page 84 Chapter 6

Listing 6.4: A naive dodging-and-burning CUDA kernel.

Lines 2 to 13 in Listing 6.4 are the kernel input arguments, including all input datasets,
the parameters « and ¢ as defined in Equation 4.5, € as defined in Equation 4.6 and v as
given in Equation 5.5.

As usual, the first few lines of the kernel are dedicated to mapping each CUDA thread to
a 2D coordinate in the input image. This code is identical to Lines 4 to 11 in Listing 6.1;
it has been emitted here for the sake of brevity. The 2D coordinate of the current thread
is then mapped to indices in the input and output image arrays by Lines 19 and 20, re-
spectively. Although all input and output images are of the same resolution, two seperate
mappings are required. This is because both input maps - the luminance and scaled lu-
minance maps - have been allocated as pitch-linear memory (Section 6.1.1), while output
is written directly to a Pixel Buffer Object (PBO) (see Section 5.3.2), which, unlike the
input maps, contains no horizontal padding.

Once the correct input and output data indices for the current thread have been deter-
mined, Line 23 reads the scaled luminance for the current pixel from the luminance map
sLumMap and stores it in the local variable /s. Because the thread-to-index mapping has
been computed such that consecutive threads within each warp read horizontally consecu-
tive input elements, and sLumMap is allocated as pitch-linear memory, we can rest assured
that this read will be coalesced for all threads.

The scaled luminance for the current pixel, /s, is used as the bottom scale of the 8-scale
box filter pyramid required for automatic dodging-and-burning. The remaining 7 are
defined on Line 26. Each element : in the scale array scales represents the edge length
of layer ¢ in the box filter pyramid. The values used here are the same as used in the
investigation by Linnemann et al. [LWR09], where box filter based tone mapping with
these scales was shown to give desirable results.

Lines 28 to 33 initialise and compute the scaled luminance values for the first two scales
of the box filter pyramid, and Line 36 evaluates the activity between them by evaluating
the center-surround function defined in Equation 4.5, storing the result in the variable
w. To avoid clutter, the center-surround arithmetic has been hidden inside a macro. Of
particular interest is the function getAverage on Line 32. This function takes the scaled
luminance SAT, a 2D position (x,y) and an edge length [, and returns the average scaled
luminance within a square region centered at (x,y) with edge length s. Note that the
transpose of the current thread’s coordinates is passed to getAverage. This is necessary
because, as described in Section 6.1.4, the input SAT is stored in transposed format.

The procedure of constructing additional pyramid layers and using them to search for
significant changes in average scaled luminance is iteratively repeated on Lines 39 to 47
using a while loop. Prior to commencing each loop, the most recently computed center-
surround result, w, is compared to the input threshold, epsilon. Once the threshold has
been exceeded, or all 8 scales of the box filter pyramid have been evaluated, the pyramid
construction and evaluation procedure is aborted. At this point, V_center contains the
average scaled luminance of the largest quadratic region of approximate isoluminance
surrounding the current pixel. Therefore, V_center is used on Line 50, where the output
LDR luminance is computed by applying Equation 4.7.

Implementation Page 85

Finally, Lines 53 to 55 use the newly computed LDR luminance value to compress the
red, green and blue channels of the HDR input pixel using Equation 5.5. To accomplish
this, Line 53 samples the input HDR texture at the coordinates (x, y) to which the current
thread has been assigned, storing the resulting red, green, blue and alpha channel values
in the float4 vector res. The input HDR luminance, required for RGB compression,
is retrieved from the luminance map on Line 54. Since the luminance map contains the
logarithm of the input HDR luminances, the original luminance value can be attained by
applying the exponential function. Line 55 uses the macro COMPRESS_RGB to compress
the input HDR pixel using Equation 5.5 and saves the result in 1dr_RGB_out. Writing to
1ldr_RGB_out, which points to a PBO allocated by the host OpenGL application, is the
final action taken by the CUDA tone mapping module.

6.1.5.2 Naive kernel performance

Figure 6-5 lists the execution times of the naive kernel implementation shown in Listing
6.4, for a number of input resolutions. All execution times were measured on the system
detailed in Appendix A.

Resolution | Kernel execution time
(ms)
512x512 5.4
1024x1024 28.7
2742x2048 139.4

Figure 6-5: Average kernel execution times for the naive dodging-and-burning kernel.

It can be seen that, if an application’s sole task were to execute this kernel on a 1024x1024
input image, the maximum achievable frame rate would be 1/28.7 ~ 35 fps. For larger
images, the minimum frame rate of 30 fps for interactive applications is not reachable.
This 1s unacceptable, considering that Slomp and Oliveira [SO08] reported frame rates of
up to 102 fps for a 1024x1024 scene using non-work-efficient SATSs.

A common practice when optimizing a CUDA kernel is to determine whether it is memory
bound, i.e its main bottleneck is caused by accessing memory, or instruction bound, i.e
most of the kernel execution time is spent performing arithmetic [Mic10]. A balanced
kernel contains memory access and arithmetic in equal measure, where the arithmetic is
performed while global memory is being fetched, hiding memory latency.

Whether a kernel is memory or instruction bound can be determined by measuring its ex-
ecution times when all arithmetic-based instructions, or memory-based instructions have
been removed. Figure 6-6 shows the execution times of these modified kernels. It can
clearly be seen that the naive dodging-and-burning kernel is memory bound.

The input HDR image, as well as the luminance and scaled luminance maps, are each
sampled once per thread. The thread-to-coordinate mapping computed in the beginning
of the kernel ensures that these reads are all coalesced, so little can be done to increase
their efficiency.

Each thread performs one write to the output PBO. This can also not incur a significant
performance penalty, considering the execution times reported in Section 5.3 for simple

Page 86 Chapter 6

Modified Kemel Execution Times

35
30

25

B Memory only
B Math only

20

15

10

Execution Time (ms)

5

0

Figure 6-6: Execution times for modified dodging-and-burning kernels operating on a
1024x1024 input image. The blue bar on the left shows the execution time of
the naive kernel, modified such that all complex arithmetic instructions have
been removed. Similarly, the red bar on the right shows the execution time
of kernel modified such that only complex arithmetic is executed. Comparing
the two shows that the naive dodging-and-burning kernel implementation in
Listing 6.4 is heavily memory bound.

kernels that write to an output PBO. This leaves the remaining memory accesses, i.e
accesses to the scaled luminance SAT, as the only possible memory bottleneck.

Indeed, a closer look at the SAT access patterns reveals that they are far from optimal for
global memory. All reads from the input SAT are done by the getAverage () (Lines 32
and 43 in Listing 6.4) method. The average of any region within a given image can be
accomplished by reading the region’s 4 corner points from the image’s SAT. Examining
the code in Listing 6.4 reveals that getAverage() may be invoked up to 8 times per
thread. Hence, each thread may invoke up to 28 SAT reads. If each SAT element is a
32-bit floating point value, and the application resolution is 1024x1024, up to 112 MB of
global memory must be read per frame for SAT lookups. Therefore, in order maintain a
minimum interactive frame rate of 30 fps, global GPU memory must be streamed at up to
3.36 GB/s just to support SAT reads!

6.1.5.3 Using texture memory

Figure (a) visualizes the SAT access patterns for the first few box filter computations for
two threads belonging to the same warp, labelled A and B. It can be seen that, despite
the level of scattering surrounding each single thread, there remains a high degree of
coalescence for threads within a warp. Additionally, it is apparent that there is a high
degree of spatial locality in the reads, i.e if a certain element is read, it is likely that
another element nearby in the 2D space will also be read. A similar situation is depicted

Implementation Page 87

in Figure (b), this time for diagonally neighbouring threads. In this situation, a number of
elements are read by both threads. Using the naive kernel in Listing 6.4, these elements
are read seperately by each thread. In general, when processing a frame, there is a very
high amount of redudant SAT accesses; it would make sense to, once an element has been
transferred from global memory, keep it for some time in high-speed, on-chip memory to
service subsequent requests.

A3 A3
A3 |B3 A3 | B3 -
- A2| |B3
A2(B2| |A2|B2
B2 B2
A
A1 | B
A2 o~
A2 (B2| |A2|B2 -
A3| |B2 o
A3 |B3 A3 | B3
B3 B3
(a) (b)

Figure 6-7: SAT access patterns for the first few dodging-and-burning iterations (Lines
39 to 47 in Listing 6.4) of two neighouring threads, denoted as A and B.
On the left (a), threads A and B are horizontal neighbours, and in (b) they
are diagonal neighbours. The grid of white squares represents the SAT; blue
elements are read by thread A, orange elements are read by B and turgious
elements are read by both. Each coloured element is annotated with the name
of the thread that read it, juxtaposed with the iteration in which it was read.
For example, if an element is read by thread A in its 3rd iteration, it is labeled

A3.

Fortunately, texture memory, which has been available to programmers since CUDA Re-
lease 2.2, is spatially cached, which is precisely what is required to reduce global memory
traffic in the dodging-and-burning kernel. Spatial caching means that, while texture mem-
ory resides off chip in the global memory space, texture reads are cached in high speed,
on-chip memory. This cache is optimized for 2D spatial locality, so threads within a warp
accessing memory that is spatially close together will benefit greatly.

Global memory can be read as texture memory by binding a texture pointer to a defined
region in global memory. Once the texture pointer has been bound, the global memory can
be accessed by sampling the texture using CUDA methods such as tex2D(. . .). In addi-
tion to spatial caching, when sampling memory in this manner, common texture filtering
and clamping operations can automatically be performed. In particular, for correct SAT
evaluation, clamp-to-edge functionality is required. This was previously implemented
manually in the getAverage function in Listing 6.4, and was the cause of performance
degradation via resulting from warp divergence.

Binding a texture handle to the global memory containing the scale-luminance SAT, and
updating getAverage in Listing 6.4 to access SAT elements through texture sampling,
rather than reading them directly, leads to significant performance improvements. Figure

Page 88 Chapter 6

6-8 shows the average kernel execution times for a number of input resolutions, when
using texture memory for SAT access.

Resolution | Kernel execution time
(ms)
512x512 1.6
1024x1024 6.7
2742x2048 32.2

Figure 6-8: Average kernel execution times for a dodging-and-burning kernel that uses
texture memory for SAT access.

The kernel execution times listed in Figure 6-8 for the texture memory dodging-and-
burning kernel show a significant improvement over the naive kernel execution times pre-
sented in Figure 6-5. This owes to the high degree of spatial locality in the dodging-and-
burning algorithm. By caching texture lookups, global memory traffic was significantly
reduced. Figure 6-9 shows the number of cache hits and misses for a number of different
HDR scenes. For the scenes measured, a hit ratio of at least 92% was achieved, leading
to significantly reduced global memory traffic.

Scene Resolution | Cache misses | Cache hits | Hit ratio

SNOW 1024x1024 462 344 5807 480 92.6%
vine sunset | 720x480 146 416 2229032 93.8%

Iwate 3720x1396 2 555 640 35796 192 | 93.3%

Figure 6-9: Cache hit ratio. Measurements for a single GPU Texture Processing Unit
(TPC) were made using the NVIDIA Visual Profiler [Vis10], then extrapolated
for the entire kernel. For more information on the scenes used, see Appendix
A

6.1.5.4 Loop unrolling

Examining the code in Listing 6.4 reveals the potential for further optimization. In partic-
ular, while the loop on Lines 39 to 47 is the most straightforward implementation of the
dodging-and-burning kernel algorithm given in Section 5.4.5, it is not the most optimal.

A common optimization technique used for GPU programs, as well as traditional CPU
programs, is a technique known as loop unrolling. Loop unrolling involves manually
repeating all, or a portion of, the code in the body of a loop. This provides advantages
such as elimination of unnecessary branches, which allows better optimization through
Instruction Level Parallelism (ILP) [RF93]. This is particularly effective for simple for-
loops that iterate for a constant number of iterations (loop unrolling for simple situations
such as this is often performed by the compiler).

In the case of dodging-and-burning, however, unrolling the loop in Listing 6.4 for the sake
of reducing condition evaluation would have little effect; the number of loops performed
is directly influenced by the result of each loop. Nonetheless, there is a very good reason
to apply this optimization. Lines 40 and 41 retrieve the next two scales for the box filter
pyramid from the array scales, which was declared on Line 26. The elements read from

Implementation Page 89

scales depend on the variable s, which is determined by the current loop index. Because
these addresses are not known at compile time, CUDA allocates the array scales in local
memory [NVI11, p. 92], which degrades performance. Indeed, compiling the naive ker-
nel using the compiler flag --ptxas-options=-v, which instructs the compiler to print
kernel memory allocation details during compilation, produces the following results:

ptxas info: Used 17 registers, 28+0 bytes lmem, 48+16 bytes smem,
48 bytes cmem[1]

The output 28+0 bytes lmem indicates that 28 bytes of local memory are being used
the kernel. The terms smem and cmem represent shared memory and constant memory,
respectively.

By unrolling the loop on Lines 39 to 47, all access offsets within scales can be specified
at compile time. Listing 6.5 shows this optimization.

// same as naive kernel

/! loop in naive kernel unrolled as series of conditions
if (fabs(w) < epsilon){

V _center = V_surround;
V_surround = getAverageTex(y, x, scales[2]);
CENTER_SURROUND(scales [1], ...);

}

// one for each box filter ...

// final scale
if (fabs(w) < epsilon){

V_center = V_surround;
V_surround = getAverageTex(y, x, scales[7]);
CENTER_SURROUND(scales [6], ...);

}

// same a naive kernel

Listing 6.5: Optimization by loop unrolling

It can be seen in Listing 6.5 that the array scales is no longer indirectly indexed; all
access indices are now known at compile time. Compiling the kernel with the optimiza-
tions given in Listing 6.5 with the compiler option --ptxas-options=-v produces the
following output:

ptxas info: Used 19 registers, 44+16 bytes smem, 60 bytes cmem[1]

The absence of the term 1mem confirms that no local memory is used by this kernel. Figure
6-10 shows the execution times for a kernel with the box filter loop unrolled, using texture
memory for SAT access.

Page 90 Chapter 6

Resolution | Kernel execution time
(ms)
512x512 1.2
1024x1024 4.7
2742x2048 22.5

Figure 6-10: Average kernel execution times for a dodging-and-burning kernel that uses
texture memory for SAT access and loop unrolling.

6.1.5.5 Using shared memory

Solving problems efficiently with shared memory

One of the major advantages of using CUDA, rather than shaders, for solving GPGPU
problems is its access to shared memory, which can be accessed with a latency of approx-
imately 2 orders of a magnitude less than that of global memory. A common approach
to solving memory-bound problems is to load segments of the input data from global
memory into shared memory, quickly solve partial problems within shared memory, and
combine the partial solutions in global memory. In some cases, this process is repeated
for a number of passes to produce the final result. The reduction method discussed in
Section 6.1.2 is an example of such a process.

In the reduction kernel, the task of mapping elements from global memory to shared
memory was simple: each thread in the CUDA processing grid was responsible for load-
ing one element from global memory into shared memory. The threads within each block
would then cooperate to reduce the segments stored in shared memory. The dodging-and-
burning kernel, however, is not so simple.

As previously discussed, the main performance bottleneck is caused by accesses to the
input SAT during the automatic dodging-and-burning procedure (Lines 26 to 47 in Listing
6.4). Because the dodging-and-burning procedure evaluates a box filter pyramid at each
pixel, there is a high degree of locality in the memory accesses patterns of each thread.
Therefore, if each block in the CUDA processing grid loads a sufficiently large segment
of the input image into its shared memory upon invocation, all dodging-and-burning SAT
accesses can be done within shared memory. Unlike the reduction kernel in Section 6.1.2,
however, loading one element per thread into shared memory is insufficient to compute
correct partial solutions in each block.

Apron requirements

Consider the situation depicted in Figure 6-11. The pale orange grid represents the shared
memory allocated in one CUDA thread block of dimension bwxbh. The shared memory
has been allocated such that each element corresponds to one element in the input im-
age residing in global memory, and each element has been loaded from global memory
by a dedicated thread. Each thread in the thread block is then responsible for comput-
ing the Local Region for one element in shared memory using the dodging-and-burning
procedure described in Section 5.4.5.

The dodging-and-burning procedure involves evaluating a series of box filters of increas-
ing scales surrounding each input pixel. The size of the maximum scale evaluated is
denoted S,,.,. Figure 6-11 (a) shows the situation in which an element close to the center
of the shared memory array (marked red) is being processed. The blue rectangle rep-

Implementation Page 91

resents the largest possible scale in the box filter pyramid, S,,.., centered at the target
pixel. Because SAT-based box filters are computed by evaluating the corner points of the
target region, valid data must be available in shared memory within a range of S, /2
elements in all directions of the target pixel. Therefore, the dodging-and-burning for the
pixel highlighted in Figure 6-11 (a) will be correct, because valid data can be found in
shared memory for the largest possible box filter scale used. This is not true, however,
for pixels closer to the edge of the shared memory array, such as the target pixel shown
in Figure 6-11 (b). In this case, the correct computation of several layers of the box filter
pyramid is dependent on data outside of the shared memory block.

bw bw

bh H Smx bh

(a) (b)

Figure 6-11: Dodging-and-burning in shared memory. In the situation depicted here,
each thread in a CUDA thread block has loaded one input image element
Jfrom global memory to shared memory (the pale orange grid). In order
to identify the Local Region for any given target pixel (marked in red), valid
data must exist in shared memory within the range indicated by the blue rect-
angle, which represents the largest possible scale in the box filter pyramid.
While pixels near the center of the shared memory block can be processed
correctly (a), pixels along the edges lack access to necessary data for correct

box filtering (b).

In order to ensure correct results for elements at the edge of each block, each thread block
must fill its shared memory with more elements than there are threads in the block. The
additional elements loaded into shared memory for each block are denoted as that block’s
apron. Figure 6-12 shows how an apron is used to ensure correct results for threads at the
edge of each block. The yellow elements represent entries in shared memory to which
a thread is dedicated, and for which a Local Region will be identified. As in Figure 6-
11, this region is of dimensions bwxbh, where bw and bh are the width and height of the
CUDA thread block. The orange region surrounding these elements is in the block apron
[Pod07]. For correct results, an apron with a minimum width of S,,,. /2 is required.

Avoiding thread divergence
It is highly inconvenient for a nxn thread block to load a chunk of mxm elements from

Page 92 Chapter 6

Simas/ 2

Simax / 2

Figure 6-12: By loading an apron of additional data into shared memory (dark elements)
dodging-and-burning of block output elements (light elements) can be ac-
complished successfully. For correct results, the apron must be a minimum
of Smaz/2 elements wide, where S, is the width of the largest box filter
evaluated.

global memory into its shared memory, when m is not a multiple of n. This is because
each thread in the nxn thread grid must load a number of elements: the element that it
will process, as well as a number of elements in the surrounding apron. CUDA threads
use the Single Instruction Multiple Data (SIMD) computation model; for optimal results,
each thread should perform exactly the same operation at the same time, with the only
difference between threads being the data that they process. In the context of loading
memory from global memory to shared memory using CUDA threads, this is achieved
when the shared memory array dimensions are multiples of thread block dimensions.

Figure 6-13 shows the situation where the apron is the same width as the block itself,
i.e n elements wide. The elements loaded by a single example thread are highlighted.
By configuring each thread to read a 3x3 grid of elements centered at its location within
the thread block, where each element is spaced at a distance of n from its horizontal
and vertical neighbours, the entire shared memory array can be loaded with no thread
divergence. For aprons with larger, multiple widths of n, the 3x3 thread read-grid can be
expanded without issue. If, however, the apron width were not a multiple of the block
width, thread divergence would occur. After loading most of the required elements using
the 3x3 grid configuration shown in Figure 6-13, the majority of active threads would
need to block while a small number of threads load the remaining elements of the outer,
previously unreached apron fringe.

Closely examining the kernel code in Listing 6.4 reveals that the largest box filter actually
computed during the dodging-and-burning procedure has an edge length of 25. There-

Implementation Page 93

3n

3n

Figure 6-13: To avoid thread divergance, the apron width must be a multiple of the block
width, n. In this case, shared memory is filled by assigning each thread to
load a regular grid with element spacing n from global memory. An example
3x3 grid for a single thread is shown above.

fore, the minumum apron size required for each block is [25/2] = 12. It would seem,
therefore, that the optimal kernel execution configuration would be with a block size of
12x12 threads, which allocate a 36x36 array of shared memory each. This, however, is
not the case in practice. An additional property of CUDA kernel execution must be taken
into account: that of multiprocessor occupancy.

Maximizing occupancy

Occupancy is defined as the ratio of the number of active warps per multiprocessor to
the maximum possible number of warps per multiprocessor. Each multiprocessor on the
GPU has access to a limited amount of registers and shared memory. Therefore, as the per-
thread demand on these resources increases, the number of threads that can be scheduled
per multiprocessor decreases.

There are a number of advantages to maximizing the number of threads per multipro-
cessor. As well as increasing the degree of parallelism, maximizing occupancy can help
cover global memory access latency; when a thread blocks on a global memory request, it
will be more likely that the blocked thread can be replaced by new thread from the ready
queue. As a rule of thumb, it is desirable to attain an occupancy as close to 100% as
possible.

The expected occupancy for a kernel can be computed using the NVIDIA Occupancy Cal-
culator. The NVIDIA Occupancy Calculator is a spreadsheet that, given the per-thread

Page 94 Chapter 6

register and shared memory usage, computes the expected multiprocessor occupancy for a
given GPU. For a given kernel, per-thread resource requirements are identified by passing
the argument --ptxas-options=-v to the CUDA compiler, producing output demon-
strated in Section 6.1.5.4 during kernel compilation.

Using the NVIDIA Occupancy Calculator, it was found that executing the dodging-and-
burning kernel with a block size of 12x12 threads, where each block uses 36x36 elements
of shared memory, resulted in an occupancy of 21% on the development system. Although
increasing the block size led to an increased occupancy, it must also be considered that
larger blocks result in increased global memory traffic due to the greater amount of data
required for the aprons of each block. After some experimentation, an optimum was
found for a block size 16x16 elements, where each block uses 42x42 elements of shared
memory. This resulted in an occupancy of 33% on the test system.

It should be noted that the GPU used for this research, the NVIDIA GeForce 8800 GTX
(see Appendix A.1), was one of the earliest GPUs with a unified architecture that supports
CUDA. As such, this card is currently dated compared to the current state of the art
in GPU hardware. For example, the same dodging-and-burning kernel that runs on our
system with an occupancy of 33% would run on a modern GPU, such as any of the current
NVIDIA Quadro cards, with an occupancy of 83%.

Global memory traffic

For maximal occupancy and minimal thread divergnace, a block size of 16x16 has been
chosen, where each block allocates a total of 48x48 elements in shared memory. This
means that for each 48x48 set of elements read from global memory, a total of 16x16
final results will be computed. Therefore, each block must read approximately 9 times
more memory from the input texture than it ultimately outputs.

Because the texture cache is high speed on-chip memory, shared memory will only bring
significant benefits if the total number of cache misses for a given frame can be reduced
through its use. A simple experiment was conceived, which constructed a SAT from a
1024x1024 instance of the “snow” HDR scene (see Appendix A) and loaded each SAT
element from texture memory to shared memory. Analysing the experimental kernel
showed that this, best case texture memory access pattern resulted in a total of 32768
texture cache misses for the entire 1024x1024 input image. This number is so low partly
due to the 2D spatial locality feature of the texture cache and partly because memory ac-
cesses were designed such that cache misses, which result in global memory fetches, are
coalesced. Coalesced reads hide many cache miss events by servicing several horizontally
neighbouring read requests at once. Loosely assuming that reading the aprons for each
block will result in a similar texture cache hit/miss ratio as the 16x16 data within each
apron, a rough figure of 294912 ~ 300000 can be estimated as the expected number of
texture cache misses when using shared memory for dodging-and-burning. Comparing
this value to the texture cache misses reported in Figure 6-9, it can be concluded that
performance gains may not be as drastic as previously expected. Nonetheless, to test the
actual performance attainable by using shared memory for doding-and-burning, a kernel
that uses shared memory has been implemented.

A shared memory based dodging-and-burning kernel
Listing 6.6 shows the important parts of an implementation of the dodging-and-burning
kernel using shared memory.

[

w

Implementation Page 95

)
{

global__ void dodgeAndBurn_SharedMemory (
// same arguments as naive kernel

/!l shared memory cache for this block
// initialised with 48+1 rows to reduce bank conflicts.
__shared__ float cache[48][48+1];

/1l get block position in grid
int bx = blockDim.x*blockIdx .x;
int by = blockDim.yxblockldx.y;

// identify in and output coordinates
int satx = by threadldx .x;
int saty = bx threadldx .y;
int outx = bx threadIdx .x;
int outy = by threadldx .y;

+ + + +

/!l to reduce indexing clutter
int tx = threadldx.x;

int ty = threadldx.y;
int bw = blockDim.x;
int bh = blockDim.y;

/1 fill cache

CACHE(ty+bw, tx+bw) = SATTEX (satx , saty);
CACHE(ty+bw, tx) = SATTEX(satx-—-bw, saty);
CACHE(ty+bw, tx+2xbh) = SATTEX(satx+bw, saty);

CACHE(ty , tx) = SATTEX(satx—bw, saty—-bw);
CACHE(ty , tx+bh) = SATTEX(satx , saty—bw);
CACHE(ty , tx+2xbh) = SATTEX(satx+bw, saty—-bw);

CACHE(ty+2%bw, tx) = SATTEX(satx—-bw, saty+bw);
CACHE(ty +2xbw, tx+bh) = SATTEX(satx , saty+bw);
CACHE(ty +2xbw, tx+2xbh) = SATTEX(satx+bw, saty+bw);

// barrier: all threads must reach here before we continue
// ensures cache is correctly loaded
__syncthreads ();

/!l proceed as in other kernels, this time accessing CACHE
// rather than SATTEX for box filter computation

Listing 6.6: Shared memory based dodging-and-burning kernel.

The first important line in Listing 6.6 is Line 7, which specifies the shared memory array
used by the current block. As previously discussed, each block requires 48x48 shared
memory elements. Because 48 is a multiple of 16, which is the shared memory bank

Page 96 Chapter 6

width (Section 2.3.3), accessing N columns simulatenously in the same warp will result
in an N-way bank conflict. This can easily be resolved by padding each row with a single
element.

Lines 10 and 11 identify the position of the current block within the CUDA processing
grid. The current thread is then mapped, in Lines 14 to 17, to an input SAT element at
position (satx, saty) and to a pixel in the output PBO located at (outx, outy).

The appropriate SAT elements required for dodging and burning within the current block
are then loaded into shared memory on Lines 26 to 36. Indexing the shared memory array
cache is simplified by the macro CACHE (), whose definition is given in Listing 6.7.

#define CACHE(x,y) (cachel[y][x])

Listing 6.7: A macro for simplifying access to shared memory.

Finally, the call to the CUDA function __syncthreads() on Line 40 creates a barrier
at this point in the program; no thread in the block can proceed beyond this point until
all threads in the block have called __syncthreads. This ensures that the block’s shared
memory is correctly filled before proceeding with dodging-and-burning.

The remainder of the kernel is similar to the texture memory kernel with unrolled loops,
except that SAT elements are read from shared memory, rather than texture memory.

Unlike in previous kernel implementations, the input and output coordinates in Listing 6.6
are different. This is because the kernel is invoked such that the dimensions of the CUDA
processing grid correspond to those of the input and output images, and each thread in the
processing grid can easily be mapped to a pixel in the input and output textures. The input
SAT is transposed, and thus the manner by which each thread is mapped to an element
in the input SAT must differ from the way it is mapped to its input and output textures.
Reading transposed SAT elements in the naive (Listing 6.4) and texture memory (Listing
6.5) kernels was straightforward: the x and y coordinates of global or texture memory
accesses requests were simply transposed. When using shared memory, each thread must
have to access, within its shared memory, to the SAT entry corresponding to the input
HDR pixel it is processing. In order to achieve this, the SAT is transposed as it is read
into each block’s shared memory. Figure 6-14 illustrates this process.

Within each identified block in the SAT, elements are read on a row-by-row basis. This
maximizes memory access efficiency; in the event of a texture cache miss, the ensuing
global memory reads will always be coalesced. Each row read from a block in the SAT
is written as a column in shared memory (horizontal red lines in Figure 6-14). Because
shared memory does not have the same coalescing requirements, writing columns, rather
than rows, will incur no performance penalty.

Shared memory performance

The average execution times measured for dodging-and-burning a test scene at a number
of resolutions are listed in Figure 6-15. As can be seen in the Figure, the shared mem-
ory kernel implementation delivers the best performance of all optimizations presented
here.

Implementation Page 97

B1 shared memory (bx,by) = (by', bx)

B1 B2 /
B1 !
— W il

B2 |

W - h
/
/.
(bx, by') -
~ Il " CUDA processing grid
SAT "
h B2 shared memory

Figure 6-14: The CUDA processing grid (right) is invoked with the same layout as the
input HDR texture, where each thread in the grid corresponds to one input
texel. The processing grid is divided into blocks. Each block loads a block of
memory from the scaled luminance SAT (left) into its shared memory (cen-
ter). Each row loaded from the SAT (red, horizontal lines) is stored as a
column in shared memory. For each block, sufficiently many rows of suffi-
cient width are loaded to fill the apron. The portion of each loaded SAT row
belonging to the apron is marked by a dashed red line. This procedure, to-
gether with an appropriate block coordinate mapping ((bz, by) = (by', bz’))
results in an entirely transposed copy of the input SAT (plus aprons) residing
in the collective shared memory of the processing grid.

Resolution | Kernel execution time
(ms)
512x512 0.9
1024x1024 3.9
2742x2048 19.7

Figure 6-15: Average kernel execution times for dodging-and-burning with shared mem-
ory.

6.1.5.6 Summary

The dodging-and-burning kernel was the most complex kernel written for the CUDA
tone mapping module. Although the algorithm performed by this kernel (given in Sec-
tion 5.4.5) is relatively simple, additional considerations were necessary for its efficient
implementation in CUDA. A number of implementations were presented, using global,
texture, and shared memory for SAT access. Each optimization introduced an additonal
amount of complexity to the dodging-and-burning kernel, in exchange for improved per-
formance. Kernels using texture and shared memory, with unrolled loops, both gave good
results. Figure 6-16 compares the execution times of each of the dodging-and-burning
kernel implementations presented.

[I N T R

Page 98 Chapter 6

Average Kernel Execution Times
Dodging-and-burning kernels

140
120
100 W Naive
B Texture memory
80 Texture memory
(loop unrolling)
60 m Shared memory
40
’ L
0 - — — .

512x512 1024x1024 2732x2048

Figure 6-16: A comparison of the average execution times of the dodging-and-burning
kernels discussed in Section 6.1.5.

6.2 Tone mapping with shaders

The shader tone mapping module, introduced in Chapter 5, was implemented as a col-
lection of OpenGL GLSL shader programs, together with C++ code for organizing and
invoking them. This section describes the shader programs used for tone mapping, which
were introduced in Section 5.5.

6.2.1 A bypass vertex shader

Most of the tone mapping work in the module, with the exception of SAT generation
described in Section 5.4.4, is done performed solely by fragment shaders. Therefore,
unless otherwise specified, the shader programs presented in the succeeding subsections
are fragment programs. These programs receive their interpolated position and texture
coordinates from a simple, bypass vertex shader, given in Listing 6.8.

void main ()

{

gl_Position = ftransform ();
gl_TexCoord[0] = gl_MultiTexCoordO;

}

Listing 6.8: GLSL bypass vertex shader used to pass interpolated position and texture
coordinate data to the fragment shaders presented throughout the remainder
of this section.

The vertex shader shown in Listing 6.8 consists of two important lines. Line 3 computes
the position of each input vertex in screen coordinates using the built-in GLSL function
ftransform(), which simply transforms the input vertex’s position from world coordi-
nates to screen coordinates. The result is written to the 4-vector gl_Position, whichis a

Implementation Page 99

parameter that is passed to the fragment shader. Similarly, vertex texture coordinates are
retrieved from the predefined GLSL vector gl _MultiTexCoordO on Line 4, and passed
to the fragment shader via gl _TexCoord [0].

6.2.2 Luminance extraction

The luminance extraction fragment shader is one of the simplest in the tone mapping
module. Its complete source is listed in Listing 6.9.

/! hdr input texture
uniform sampler2D hdrTex;

void main(void)
{
// get color from the texture
vecd currTexel = texture2D (hdrTex, gl_TexCoord[0].st);
float Ium = dot(vec3(0.2125,0.7154,0.0721), currTexel.rgb);

// save luminance and log—luminance
// in output channels
gl_FragColor.r = log(lum + 1.0f);
gl_FragColor.y = lum;

Listing 6.9: GLSL fragment shader for computing luminance.

Line 2 declares a handle to the only shader input, the input HDR texture hdrTex, which is
passed to the shader from the C++ code from which it was invoked. The red, green, blue
and alpha channels of the current texel are then sampled on Line 7 using the GLSL texture
sampling function texture2D, storing the results in the 4 element vector currTexel. The
first 3 components of this vector are then used on Line 8, which computes the luminance
of the current input texel by appying equation 2.1.

Once the current pixel luminance has been computed, Lines 12 to 13 save the results in
the output fragment color vector, gl _FragColor.

Unlike the luminance extraction CUDA kernel presented in Section 6.1.1, which writes
its results to a single-channel array of float in global GPU memory, the fragment shader
in Listing 6.9 writes its results to 4-channel HDR output texture. Therefore, the logarithm
of the computed luminance, which is required for scene key computation, is saved into
the red channel of the output texture, while the original luminance is saved into the green
output channel. This avoids, at the expense of a larger memory footprint, the necessity of
evaluating an exponential function each time luminance is required in subsequent shaders,
as was the case in the CUDA module. Note that the value 1.0 on Line 12, which corre-
sponds to ¢ in Equation 4.1, is added to ensure that the result of the log-function is defined
when 1um is 0.

Page 100 Chapter 6

6.2.3 Scaled luminance computation

The important fragment shader code for computing scaled luminance is shown in Listing
6.10. For brevity, the main () function and input variable declarations are left out.

float 1 = texture2D (lumTex, gl_TexCoord[0].st).g;
float IMean = tex2Dlod (lumTex, float4 (0.5, 0.5, 0.0, 100)).r;

float 1s = (alpha / exp(IMean)) x 1;
gl_FragColor.rg = vec2(ls, 1);

Listing 6.10: GLSL fragment shader for computing scaled luminance.

The first two lines in Listing 6.10 sample the input texture, lumTex, which contains the
results of the luminance extraction fragment shader discussed in Section 6.2.2. The lu-
minance of the current texel is sampled on Line 1 using the same sampling procedure as
described in Section 6.2.2 and stores the result in the local variable 1. Line 2, on the other
hand, is more interesting.

As noted in Section 5.5, the shader tone mapping module contains no reduction operation.
Instead, a mipmap is generated from the output of the luminance extraction shader prior
to invoking the scaled luminance shader. This process is illustrated in Listing 6.11, which
shows how the module C++ code calls the OpenGL procedure glGenerateMipmapEXT
to generate a mipmap between shader calls.

runLuminanceShader (inHDRTex, lumTex);

/!l generate a mipmap from lumTex via OpenGL
glBindTexture (GL_TEXTURE_2D, lumTex)
glGenerateMipmapEXT (GL_TEXTURE_2D).
glBindTexture (GL_TEXTURE_2D, 0)

runScaledLuminanceShader (lumTex, scaleLumTex)

Listing 6.11: Generating a mipmap between shader calls.

Knowing that the input texture 1lumTex has previously been mipmapped, Line 2 in List-
ing 6.10 uses the GLSL function tex2Dlod to sample the center of the top element of
lumTex’s mipmap, storing the red channel in the variable 1Mean. Because the red chan-
nel of each texel in lumTex contains the logarithm of its luminance and the top, 1x1 level
of a mipmap is a single texel containing the average all texels in the bottom, wxh level,
1Mean will contain:

% Z log(0 + Ly(x,y))

I7y

where L, (x,y) is the luminance of texel (z,y) in the input HDR texture, and N is its
total number of texels (see Equation 2.1).

The scene key can be retrieved from 1Mean by applying the exponential function. Line
4 does this, using the scene key to compute the scaled lumininance for the current texel

Implementation Page 101

by computing Equation 4.2 and saving the result to 1s. The parameter alpha, which
corresponds to « in Equation 4.2, is given as a shader input parameter.

Finally, Line 5 makes use of the multiple output channels by saving the computed scaled
luminance to the red output channel, and copying the input luminance to the output green
channel.

6.2.4 SAT generation

The SAT generation submodule constructs SATs using Sengupta et al.’s [SLO06] work-
efficient parallel scan algorithm, presented in detail in Section 5.2.4. The submodule is
implemented using the OpenGL GLSL shader language and C++. Like its equivalent sub-
module in the CUDA tone mapping module, all SAT generation functionality, including
all necessary shader programs and associated C++ code for managing them, is interfaced
through a C++ class. The most important parts of this class, SATSengupta, are depicted
using UML in Figure 6-17. Note the use of the namespace 1ibGL, indicating that its im-
plementation uses the OpenGL GLSL shading language. This allows for easy integration
of additional implementations using other technologies, such as CUDA or the NVIDIA
CG shading language.

SAT

+setInput(in:GLTexture®)
+getOutput(): GLTexture
+compute()

ll‘_\

libGL::SATSengupta

#shaderHorReduce: GLSLShader®
#shaderHorDown: GLSLShader®
#shaderVerReduce: GLSLShader®
#shaderVerDown: GLSLShader®
#texlevelsH PartialSum: GLTexture®:
#texlevelsH Result: GLTexture*#
#texlevelsV PartialSum: GLTexture®:
#texlevelsV Result: GLTexture*#
#inTex: GLTexture®*

#outTex: GLTexture®*

+compute()

Figure 6-17: The shader SAT generation submodule interface.

A number of protected attributes are visible in Figure 6-17. Indeed, to implement
Sengupta’s parallel scan algorithm, two GLSL shader programs are required: one
for the reduction phase and one for the down-sweep phase. As discussed in Section
5.2.4, each phase requires an additional set of textures to store intermediate results.
Therefore, to compute scans for each row in an input texture, two shader programs
(_shaderHorReduce and _shaderHorDown) and two arrays of intermediate textures
(_texLevelsH_PartialSum and _texLevelsH_Result) are required. In order to gen-
erate a SAT, column scans must be computed from the results of the row scans, re-
quiring two additional shader objects (_shaderVerReduce and _shaderVerDown), as

Page 102 Chapter 6

well as two additional arrays of intermediate textures (_texLevelsV_PartialSum and
_texLevelsV_Result).

The manner with which the class SATSengupta uses its shader programs and intermediate
texture objects to generate a SAT from an input texture is illustrated in Figure 6-18, for a
simple input 4x4 input texture with all texels set to 1.

Row scans Column scans

texLevelsH_PartialSum[2]

] -y Yy
shaderHorReduce shaderHorDown shaderVerReduce shaderVerDown
2|2 2[4 8 [2]4]6]8]
22 “l2|4]6|8 416 [12[16]
“l2]2 texLevelsV_PartialSum[1]
2|2

texLevelsH_PartialSum[1]

1
shaderHorReduce shaderHorDown - shaderVerReduce shaderVerDown

[Y
11111
11111
11111
11111
inTex

Figure 6-18: Generating a SAT from an example 4x4 input texture.

The diagram in Figure 6-18 is vertically partitioned into two parts: the left half computes
scans for each row of the input texture and the right half computes column scans on the
result. Within each partition, computation used in the reduce phase of the algorithm is
shown with a light grey background, while down-sweep computations are marked with a
dark grey background. Each shader pass is represented by a yellow rectangle, labelled to
indicate which shader program in SATSengupta is being executed. Similarly, the contents
of SATSengupta’s intermediate textures is shown between each shader invocation.

In Figure 6-18, a total of 8 passes are required to correctly compute the SAT for 4x4 input
texture. In general, for a wxh input texture, where w and h are the texture’s width and
height, respectively, each phase in the left partition requires logs(w) passes to complete,
and each phase in the right partition requires log,(w) passes. Therefore, in general, a total
of 2 (loga(w) + logs(h)) passes are required to generate a correct SAT from a wxh input
texture.

It is clear from Figures 6-17 and 6-18 that four seperate shaders are used for SAT gener-

Implementation Page 103

ation. This section discusses the two shaders used for computing row scans (on the left
in Figure 6-18); the other two are simply small modifications of these, which work with
columns rather than rows.

6.2.4.1 Reduction

The reduction phase used for row scan computation uses both vertex and fragment
shaders. The vertex shader computes the texture coordinates required for pairwise texel
addition and the fragment shader samples its input texture at these coordinates, interpo-
lated for each fragment position, and applies pairwise texel addition. During this process,
it is important to account for the fact that, for each pass, the output texture is half the
width of the input texture.

—+0.5*mw
texel f/
H L] L] " O W W W []
:] o~
Rl Bl ' —=10
T Input texture |
elTexCoord [0 x=00 | | | = elTexCoord [0]. x=0.5
fragment | | | |
i i i Fragmentshader
texel b
i
Output texture

Figure 6-19: A single pass of the reduction algorithm. The output texture is half the width
of the input texture. In this situation, the fragment shader is invoked with
the same dimensions as the output texture. Since the texture coordinates for
each fragment (gl_TexCoord[0]) are interpolated from the screen aligned
quad used to invoke the shaders, which has the same dimensions as the input
texture, the x texture coordinates in the fragment shader will only extend
to 0.5. The position and width of each texel in the input texture is given
in normalized coordinates. Correspondences between fragments and input
texels are marked with dashed lines.

Each pass 7 invokes its reduction shaders by rendering a screen aligned wxh quad, where
w and h are the dimensions of the input partial result _texLevelsH_PartialSum[i-1].
Rather than rendering to screen, the output of the fragment shader is written to the next

Page 104 Chapter 6

partial result texture, _texLevelsH_PartialSum[i]. This situation is depicted in Figure
6-19, where the input texture corresponds to _texLevelsH_PartialSum[i-1] and the
output texture _texLevelsH_PartialSum[i].

Because the output texture in Figure 6-19 is half the width of the input texture, only
fragments with texture coordinates x < (.5 are processed by the fragment shader. There-
fore, if each fragment samples the input texture at it’s interpolated texture coordinate,
glTexCoord [0] . xy, which represents its position within the screen aligned quad normal-
ized against the quad’s vertex texture coordinates, only the first half of the input texture
will be sampled.

The problem shown in Figure 6-19 can be accounted for in the vertex shader. Listing 6.12
shows how this is done.

vec2 uv = gl_MultiTexCoord0O.xy;
float tw = 1.0/imgw; // texel width

gl_TexCoord [0].xy
gl_TexCoord[0].wz

vec2(2+xuv.x—0.5%xtw, uv.y);
vec2(2+xuv.x+0.5xtw, uv.y);

Listing 6.12: Reduction phase vertex shader code for computing row scans.

Line 1 in Listing 6.12 copies the current vertex coordinates into a local vector, uv, to
make the remaining code more readable. The width of each input texel is then computed
on Line 2. Because GLSL shaders by default work with normalized coordinates, the texel
width is attained by dividing 1 - the width of a texel in absolute coordinates - by the width
of the input texture, imgw, which is passed to the vertex shader as an input parameter.

The solution to the problem in Figure 6-19 is found on Lines 4 and 5. By doubling the
texture X coordinates at the canvas vertices in the vertex shader, as done Line 4, the in-
terpolated texture coordinate read by each fragment in the fragment shader will extend
to 1.0. However, this also has the effect of doubling the texture coordinates at each frag-
ment. This situation is shown in Figure 6-20. It can be seen in Figure 6-20 that sampling
each texel in the input texture at gl _TexCoord [0] . xy for each fragment in the fragment
shader reads only half of the total input texels. Therefore, Line 5 saves, into the z and w
components of 4 element output vector gl _TexCoord [0], the coordinates of a theoretical
vertex at a distance of one texel to the right of the current vertex. When interpolated in
the fragment shader, the gl _TexCoord [0] . zw vector addresses each texel that is missed
by gl_TexCoord[0] .xy.

Once the correct texture coordinates coordinates have been computed in the vetex shader,
the fragment shader is left with the straightforward task of sampling its input texture at
the texture coordinates assigned to each fragment, and performing pairwise additions on
these samples. This operation is shown in Listing 6.13.

vecd uv = gl_TexCoord[0];
float curr texture2D (tSrc, uv.xy).r;
float next texture2D (tSrc, uv.wz).r;

gl_FragColor.r = curr+next;

Implementation Page 105

texel
H‘ L] L] L] L] L] L] E LR L] L]
Input texture o
T 5
glTexCoord [0]. x=0.0 —— - —r" . glTexCoord [0].x=1.0
/ N N [efTexCoord [0]. xy
fragment | | | | Fagment || o Coord[0].ws
i i shader g ST
texel b
s
Output texture

Figure 6-20: By adjusting texture coordinates in the vertex shader, each fragment can
sample the correct input texels. Each even texel is addressed with the vector
gl_TexCoord[0].xy, and each odd one with gl_TexCoord[0].wz.

L

Listing 6.13: Reduction phase fragment shader code for computing row scans. The sym-
bol tSrc is a handle to the input texture.

Note that all results in Listing 6.13 are read from and written to the red channel of the
in- and ouput textures. This is because only one channel is required to generate and
represent a scaled luminance SAT. In fact, to reduce unnecessary memory traffic in-
curred from sampling four channel textures for each texel read in SAT generation, all
textures in the SATSengupta class have been defined as single-channel, 32-bit floating
point GL_LUMINANCE textures. Using this texture format for SAT generation resulted in
significant performance gains over implementations using traditional, RGBA format tex-
tures, such as that of Linnemann et al. [LWR'09] (see Chapter 7).

6.2.4.2 Down-sweep

The down-sweep phase iterates through the partial sum _texLevelsH_PartialSum
textures from smallest to largest, generating partial results, stored in the texture array
_texLevelsH_Result, during each iteration. The width relationship between the input
and output textures for each shader pass is exactly of the opposite of that of the reduc-
tion phase: during each pass, the down-sweep fragment shader writes to a texture twice
the width of its input. When working with normalized texture coordinates, this leads

Page 106 Chapter 6

to significantly simplified fragment-to-texel mapping compared to that of the reduce
phase.

When a shader’s input texture is narrower than its output, texture coordinates in the frag-
ment shader are not clipped. Therefore, each fragment can correctly address its corre-
sponding texel in the input texture. Furthermore, because normalized coordinates are
relative to the texture dimensions, the mapping of texels from input to output by means
of coordinate (or index) doubling required by the down-sweep algorithm, shown in Algo-
rithm 6 in Section 5.2.4, is attained implicitly through the use of normalized coordinates.
Figure 6-21 shows how the x-coordinates map from a narrow texture to a wider one when
using normalized coordinates.

0.0 1.0

o0 ““_r,.r"'::::::""":-“.-"" I:I.' "lel --1"'.___:‘“"‘1._:__::L-'"--_,_‘__ 10

out

Figure 6-21: Mapping of elements between textures of different sizes when using normal-
ized coordinates. The input texture (top) is half the width of the output (bot-
tom), both textures have a height of 1. Each texel position in the input texture
maps to the border between to output texels. Furthermore, the width of a
single texel in the input corresponds to the width of two texels in the output.
This mapping is ideal for the down-sweep alogrithm.

Because texture coordinates require no adjustment, the down-sweep uses the simple by-
pass vertex shader described in Section 6.2.1 for passing texture coordinate and position
data to the fragment shader. The fragment shader then computes a down-sweep pass by
applying the down-sweep algorithm.

The implementation of the down-sweep algorithm is a trivial translation of Algorithm 6
in Section 5.2.4 into GLSL shader code. For brevity, this code is emitted here. To see the
complete down-sweep fragment shader, refer to Appendix B.

6.2.5 Dodging-and-burning

Unlike with CUDA, when working with shaders, it is often the case that the most straight-
forward implementation of an efficient algorithm is itself highly efficient, requiring no
further optimization. Fortunately, this applies to the implementation the dodging-and-
burning kernel. Therefore, a direct GLSL implementation of the general dodging-and-
burning algorithm, given in Section 5.4.5, gives the desired results. The only code op-
timization used in the shader implementation that slightly deviates from the algorithm
specified in Section 5.4.5 is that of loop unrolling, which is described in Section 6.1.5.4.
Therefore, the code used for the dodging-and-burning shader is not presented here. To
see the full dodging-and-burning shader code, see Appendix B.

Implementation Page 107

6.3 TMStudio: An OpenGL test platform

To support the research in this thesis, a test platform was built. The test platform, called
TMStudio, is a cross-platform, GUI-based OpenGL application written in C++ and Qt,
which is designed to allow easy development, debugging and evaluation of tone mapping
operators. All tone mapping modules developed in this thesis were created and tested
using TMStudio.

Section 6.3.1 gives an overview of the functionality of TMStudio. The internal design and
implementational details of TMStudio are described in Section 6.3.2.1. Finally, Section
6.3.3 concludes by outlining possible future work.

6.3.1 Using TMStudio

TMStudio provides the basic functionality required to test the speed and visual output
of any tone mapping operator. To test a new operator, a developer must first add their
implementation to the class structure described in Section 6.3.2.1 and recompile TMStu-
dio. Once running, the first step is to load any HDR image in OpenEXR format from file.
The selected OpenEXR file is loaded and displayed on a screen aligned quad within an
OpenGL render widget of the same dimensions as the loaded image. The developer can
then select their implementation from the list of all of available tone mapping operators
in the dockable “tone mapping operator” widget. Using the same widget, the developer
can directly modify tone mapping parameters and view the effects on the HDR scene in
real time.

To evaluate tone mapping performance, the frame rate of the scene rendering, which in-
cludes the time required for tone mapping, is shown on the bottom left of the TMStudio
main window frame. For performance measurements that are less affected by instanta-
neous speed fluxuations, the average frame rate recorded during the first 30 seconds of
execution is shown, when ready, in the “information” widget.

For further, offline evaluation of the visual output of any operator, the LDR scene dis-
played in the render widget can be saved to file in a number of standard image formats,
such as PNG, JPEG or BMP.

Figure 6-22 shows an example of TMStudio in action.

6.3.1.1 Widgets

Interaction with the currently selected tone mapping operator is achieved via a collec-
tion of dockable widgets in the TMStudio environment. This subsections gives a brief
description of each widget currently implemented.

Tone Mapping Operator

This widget is used to select the current tone mapping operator and interact with it. For
the currently selected operator, the relevant parameters can be updated via sliders and
input boxes. The effects on the scene are updated in real time.

The Tone Mapping Operator widget can be seen on the top left in Figure 6-22. In the

Page 108 Chapter 6

/home febonner/hdr/data/images/exr/vinesunset.exr

File View

Tone Mapping Operator £
Method: | Slomp Oliveira [local, CUDA] -
exposure —) 0.86 _
s | 0.60
render to texture
Local Parameters
epsilon: 0.025
phi: 8.00
Information ® Debug Parameters [® CUDA Parameters =
Dimensions (720%x480) param1:
Average TM time per frame (ms) 3.40319ms
Average FPS over 30s 326.033 TS Kernel |shared mem
param3:
fps: 280

Figure 6-22: TMStudio in action. The user has chosen the “vinesunset” HDR scene for
tone mapping (see Appendix A) and is selecting an appropriate tone map-
ping operator from the list of available operators in the “tone mapping op-
erator” widget on the left. The current frame rate is shown on the bottom
left of the window, and the average frame rate for the first 30 seconds of tone
mapping with the current operator is shown in the “information” widget.

figure, a CUDA implementation of Slomp and Oliveira’s method has been selected. The
only parameter that doesn’t correspond directly to one of the four parameters required by
Slomp and Oliveira’s operator is render to texture. When this flag is set, the output of
the tone mapping operator is rendered to an offscreen texture, before it is displayed in the
render widget. This is used to for accurate frame rate measurements of scenes larger than
the screen resolution; otherwise, when using shader implementations, invisible fragments
will be clipped before reaching the fragment shader, leading to incorrect performance
measurements.

Information

The Information panel displays information on the current simulation. At present, the
resolution of the input HDR scene, the time (in ms) required to tone map each frame and
the average frame rate over the first 30 seconds of execution are shown.

Debug Parameters

Often, when debugging an operator, it is useful to pass it some temporary, debugging
parameters not intended to be used in the final version. Updating the GUI to support
additional temporary parameters, which will be removed again later, can be a tedious
process. Therefore, the Debug Parameters widget allows the user to send up to three
debug parameters directly to the currently executing operator.

CUDA Parameters
A number of implementations of the CUDA tone mapping module described in Section

Implementation Page 109

6.1 were proposed. Each of these implementations can be tested by selecting the appro-
priate kernel in the CUDA Parameters widget.

6.3.2 Implementational details

6.3.2.1 A class structure for OpenGL tone mapping

Figure 6-23 shows a simplified version of the class structure used by TMStudio for testing
tone mapping operators. The module has been designed to support more tone mapping
approaches than the methods examined in this thesis, implemented using any number of
technologies. This is particularly useful for debugging; a software implementation of
any given method can easily be added for verifying its visual quality (both qualitativley
and quantatively), before optimizing performance using GPU techniques. Furthermore,
the performance of different implementations of any particular method can be directly
compared - a procedure frequently undertaken during this research. Because the code for
implementing a specific method is generally well encapsulated with one or two classes, it
is easy to extract an operator, once tested and optimized, from TMStudio and adapt it to
any desired target application.

SAT TMO
+5@t]nput[in:GLTexture*) +TMO (hdrTexture:GLTexture)
+getOutput(): GLTexture¥ +toneMapAndDraw()
+compute() %

| cat Reinhard
+toneMapAndDraw()
SATHensley SATSengupta ﬁ?t
+compute() +compute()
SATHarris Slomp ReinhardGLSL
+compute() +toneMapAndDraw()||+toneMapAndDraw()
SlompCG SlompGLSL
+toneMapAndDraw() +toneMapAndDraw()
SlompCUDA SlompSoftware
+toneMapAndDraw() +toneMapAndDraw()

Figure 6-23: A class structure for developing and testing tone mapping operators.

It can be seen in Figure 6-23 that all tone mapping methods are children of the abstract
class TMO, short for “Tone Mapping Operator”. Any new tone mapping operator added to
the module must derive this class. Because the details of each implementation of a given
method can vary greatly, each method added to the class structure should be abstract.
Concrete implementations of a method inherit from its definition class and implement the
virtual function toneMapAndDraw, which tone maps the input HDR texture and draws

Page 110 Chapter 6

the results to the OpenGL canvas. By calling this function in each iteration of the main
application loop, the real time performance of the operator can be evaluated.

At present, the only the tone mapping methods of Slomp and Oliveira and Reinhard have
been implemented. Because the former method is an optimization of the latter, the ab-
stract class Slomp, representing Slomp and Oliveira’s method, is derived from the class
Reinhard, rather than TMO. Similarly, if one were to implement the methods of Good-
night et al. [GWW 03] or Krawczyk et al. [KMS05] discussed in Chapter 4, they would
be derived from the class Reinhard. On the other hand, if Ashikhmin et al.’s operator
[Ash02], Pattanaik et al.’s operator [PY02], or any other operator unrelated to Reinhard’s
were to be added, they would be derived directly from TMO.

The key to Slomp and Oliveira’s performance is parallel SAT generation. It was hypothe-
sized (in Chapter 5) that using a more efficient algorithm for SAT generation would lead
to significant performance gains in the overall tone mapping procedure. To verify this
hypothesis, the SAT generation algorithms of Hensley et al. [HSCT05], Sengupta et al.
[SLOO06] and Harris et al. [HSO07] have been implemented (on the left in Figure 6-23).
Each algorithm derives the abstract SAT interface class SAT and implements the virtual,
implementation-specific function compute().

6.3.2.2 Technologies used

To implement TMStudio, a number of technologies were used. These are:

e CMake.

e OpenGL.

e The Nokia Qt framework.

e The Cg shader language.

e The GLSL shader language.

e The CUDA C programming language.

e The OpenEXR API.
All of the technologies and libraries listed above support cross-platform development.
Therefore, TMStudio has been deployed and tested on the following platforms:

e Windows XP, 32-bit.

e Windows XP, 64-bit.

e Windows 7, 32-bit.

e Ubuntu Linux 11.04, 32-bit.

e Ubuntu Linux 10.10, 64-bit.

The TMStudio source code is supplied with CD accompanying this thesis.

Implementation Page 111

6.3.3 Outlook

TMStudio was developed as a cross-platform prototyping tool for developing and evaluat-
ing new tone mapping operators. Since performance was a primary focus of the research
in this thesis, the tone mapping occurs in an interactive environment where the user can
tweak parameters and view the results in real-time. This is a distinguishing factor from
similar existing software, such as the widely used PFSTools [RGR"06] HDR toolset for
Linux, in which a number of tone mapping operators have been implemented on the CPU.
Therefore, with some further work on error handling and the user interface, in addition
to serving as a prototyping platform for developers, TMStudio has potential as a user-
friendly, interactive tone mapping tool, suitable for use with HDR photography.

In terms of prototyping, a number of addtional features would be useful. A list of addi-
tional features, that would be implemented given the time, is given below.

An interactive OpenGL environment

At present, the OpenGL scene rendered in the render widget is very simple: a screen-
aligned quad is rendered with an attached HDR texture. To better test tone mapping op-
erators designed for interactive environment, an interactive environment should be used.
The user should able to navigate through a simple, virtual environment containing HDR
light sources. This would allow the developer to test their operator on dynamic HDR
input, and develop features such as temporal adaption [DDOO0] for temporal exposure
adjustment.

Additional performance metrics

The current implementation of TMStudio evaluates performance entirely using measures
of rendering frame rate. For more comprehensive evaluation, additional metrics are nec-
essary. For instance, it would be useful to add a method getMemUsage () to the tone
mapping class interface TMO in Figure 6-23, which returns the amount of GPU memory
allocated by each method. Furthermore, implementing visual metrics, such as the Vi-
sual Difference Predictor [MMS04], would be useful for comparison of operator visual
output.

A wider range of supported file formats

Presently, only HDR images in OpenEXR format can be loaded using TMStudio. To view
other HDR images, such as those in the common .Ahdr format, one must first externally
convert them to OpenEXR format prior to loading them in TMStudio. In future, support
for the most common HDR file formats should be added.

6.4 Summary

Section 6.1 described how each kernel in the CUDA tone mapping module was imple-
mented. The two most complex were those for SAT generation and dodging-and-burning.
SAT generation was implemented as a submodule, encapsulated in a C++ class, using the
CUDPP CUDA C library for scan computation. Four dodging-and-burning implementa-
tions were proposed; starting from a naive implementation of the dodging-and-burning
algorithm given in Chapter 5, each kernel implementation was a progressive optimization
of its predecessor. Ultimately, two implementations gave promising results: one using
texture caching reducing global memory traffic caused by SAT access, and a second that

Page 112 Chapter 6

attempts to reduce memory traffic by loading blocks of the SAT into shared memory.

Section 6.2 detailed the implementation of the shader tone mapping module. The most
challenging part of this module was the SAT generation submodule. Like the CUDA im-
plementation, shader SAT generation is encapsulated in a C++ class. To compute row- and
column-scans, an existing, work-efficient parallel scan algorithm has been implemented.
Since shaders are unable to perform in-place computations, a collection of additional tex-
tures must be allocated to store partial results, leading to a larger memory footprint than
that CUDA implementation. In general, it was found that implementation of the tone map-
ping steps outlined in Chapter 5 was significantly simpler in shaders than in CUDA.

Finally, in Section 6.3, a custom prototyping platform designed for implementing and
testing high performance tone mapping operators was introduced. An overview of how
to use this platform, called TMStudio, was given, followed by a discussion of its internal
class design, which is intended to support easy integration of additional tone mapping
techniques in future.

The performance of the implementations presented here will be examined in the following
chapter.

Results Page 113

7 Results

This chapter presents the visual output and performance of the tone mapping techniques
described in Chapters 5 and 6.

Section 7.1 presentes the visual results of local tone mapping on HDR night driving scenes
generated by VND. After comparing the headlight beam pattern detail preserved by global
and local operators, each of the four parameters that control local tone mapping are dis-
cussed and their influence on output demonstrated.

A detailed look at the CUDA module developed in Chapter 6 is given in Section 7.2. In
addition to measuring the overall performance of the module, individual kernel execution
times are reported, giving in an indication of the distribution of work across kernels.
Finally, individual kernel occupancy is listed for all current GPU architectures.

After Section 7.3 compares CUDA and shader implementations of a simple, global tone
mapping module, Section 7.4 provides a comprehensive comparison and evaluation of the
tone mapping modules developed in this thesis.

Finally, Section 7.5 shows the effects of reducing the number of scales used in the local
tone mapping to increase performance.

7.1 Tone mapping HDR night driving scenes

The long term goal of the research presented in this thesis is to develop a high speed, local
tone mapping module that can be integrated into the Virtual Reality headlight prototyp-
ing platform VND. Although the focus of this thesis is the development of this module,
and, due to time restrictions, its integration into VND has been left as future work, ini-
tial impressions on the effect on tone mapping night driving scenes have been attained
by extracting HDR scenes from a modified, HDR version of VND. Once HDR scenes
were extracted from VND, they were opened with TMStudio for an initial, informal as-
sessment of the effects of tone mapping parameters on HDR scenes illuminated by virtual
headlights.

7.1.1 Global vs local tone mapping

Since global tone mapping operators are significantly faster and simpler to implement
than their local counterparts, they have been the method of choice for most interactive
HDR applications. Consider, for example, the tone mapping system recently developed
for a night driving simulator similar to VND called Rivoli [PB10]. Considering that high
performance is a crucial requirement on the tone mapping module (Requirement 2 de-
fined in Chapter 3), it is tempting to use a global operator for tone mapping VNDF. When

Page 114 Chapter 7

comparing the effects of global and local operators on night driving scenes in TMStu-
dio, however, it is clear that important headlight distribution detail is lost in global tone
mapping. Figure 7-1 shows the difference between tone mapping using global and local
instances of Slomp and Oliveira’s method in VND.

The scenes in Figure 7-1 and 7-2 are each illuminated by different headlight prototypes
and tone mapped using global and local operators. Clearly, significant beam pattern detail
lost by the global operator is preserved by its local counterpart. Since the primary focus
of VND is to examine, in detail, the manner in which the beam pattern of a headlight
prototype illuminates its surroundings, it is necessary to use local tone mapping in VND
(satisfying Requirement 1).

Figure 7-1: The effects of global (left) vs local (right) tone mapping on HDR night driving
scenes.

Results Page 115

Figure 7-2: The effects of global (left) vs local (right) tone mapping on HDR night driving
scenes.

7.1.2 Tone mapping parameters

In addition to its efficiency and high visual quality, one of the main motivations for select-
ing Slomp and Oliveira’s method as the basis for this investigation was its self-sufficiency:
its quality is affected by only a small number of input parameters, and the default param-
eter values (given in [SO08] and [RSST02] and reiterated in Chapter 4) suffice for most
scenes. Therefore, this operator is ideal for implementation as a self-contained post-
processing module, meeting Requirement 3.

Four parameters affect tone mapping results: the parameter o used in scaled luminance
computation (Equation 4.2), which is analogous to camera exposure in traditional pho-
tography; a gamma parameter, v, for adjusting the color saturation of the final LDR scene
(Equation 5.5); a sharpness parameter, ¢, involved in evaluating the center-surround func-
tion between two adjacent levels of the box filter pyramid (defined in Equation 4.5); and
the threshold ¢, above which the aforementioned center-surround function must evaluate
for identification of a Local Region (Section 4.1.2).

The effects of varying the exposure parameter o are shown in Figure 7-3. As described
in Chapter 4, dark scenes require a higher value of « than lower ones. A default value
of @ = 0.18 is recommended in [RSS*02]. As can be seen in Figure 7-3, night driving
scenes are comparatively dark, thus requiring higher values of « than the recommended
default value. Experience experimenting with TMStudio has shown that a value between
0.72 and 1.0 gives best results. When integrating the tone mapping module into VND,
an automatic « adjustment technique proposed by Reinhard et al. [RWPT06] should
be considered. Furthermore, since VND is a dynamic environment, and scene contrast
can change drastically between frames as the headlight itself moves in and out of the
view frustum, a method for smoothly adjusting « to its changing environment should
be considered. This processes, which mimics the phenomenon of temporal adaption in

Page 116 Chapter 7

the human visual system, has been implemented in interactive systems by [DDO00] and
[GWWT03].

Figure 7-4 shows a VND scene tone mapped with varying values of 7. The + param-
eter is simply one of color saturation; setting it to O results in an entirely monochrome
scene, while a value of 1 reproduces the HDR input colors completely. Experimentation
with TMStudio showed that setting v = 1 gave appealing results for the entirely artificial
scenery of VND, while values ranging between 0.6 and 0.8 gave more desirable output
for many HDR photographs. In general, varying the parameter + has no effect on perfor-
mance and only a minor effect on scene appearance. Its value can be set to accommodate
the personal taste of each user.

The parameters ¢ and e both affect the local features of the operator. More specifically,
since ¢ has a direct effect on the center-surround function defined in Equation 4.5 and € is
the threshold against which the result of this function is compared, both parameters affect
the size of the Local Region identified for each image pixel.

The final step of the local tone mapping procedure is to compress the luminance of each
pixel against the average luminance within its Local Region. Therefore, the smaller the
Local Region, the fewer local surroundings are taken into account during tone mapping.
In the limit case, when the Local Region converges to the target pixel itself, the surround-
ings of each pixel have no effect on the final result, and a global operator is reached. On
the other hand, as the size of the Local Region increases, ever more of each pixel’s sur-
roundings are used for its compression. If the Local Region encompasses high contrast
edges, where bright regions directly border with darker ones, such as the silhouette of a
mountainside against a setting sun or a reflective lane marker on a dark road, these edges
will be exaggerated. This exaggeration occurs because either side of a high contrast edge
is comparatively bright or dark compared to the average of its Local Region, mapping it
to a particularly dark or bright region of the luminance compression transfer function (see
Figure 4-3).

The default values of ¢ and € are specified in [SO08] to be 8 and 0.025, respectively.
The top frame of Figure 7-5 shows a scene in VND tone mapped with these default local
parameters, cropped to focus on the headlight distribution. A close inspection of the first
two lane markers in the center of the road reveal a slight overenhancement of their edges.
This effect is small, however, and causes no qualitative degradation to the scene. Reducing
e to 0 causes all evaluations of the center-surround function to identify one Local Region:
that of the target pixel itself. Therefore, the result is a global operator, which is shown
in the center pane in Figure 7-5. Finally, setting € to 0.05, which is the default threshold
value for Reinhard’s local operator, leads to an overestimation of Local Region size. A
close look at the first two lane markers in the bottom pane in Figure 7-5 reveales “halo
artifacts” in their immediate surroundings.

Varying the sharpness parameter ¢ has a similar, though less profound, effect on high
contrast edges. In the top pane of Figure 7-6, ¢ has been reduced to 6 from its default
value of 8, while leaving € at its default of 0.025. This has the effect of softening the
hard lane marker outlines, at the expense of a slight loss of detail in the headlight beam
pattern. Increasing ¢ to 10, as shown in the bottom pane of Figure 7-6, once again leads to
an overestimation of Local Regions, causing highly noticeable halo artifacts surrounding
high contrast edges.

Results Page 117

a=0.09 a=0.18 a=0.36

a=0.72 a=1.0 a=1.44

Figure 7-3: The effects of varying the exposure parameter o

v = 0.30 v = 0.60 v = 1.00

Figure 7-4: The effects of varying the colour saturation parameter -y

Page 118 Chapter 7

e = 0.025, ¢ = 8

€=0.056=8

Figure 7-5: Varying the threshold e, with ¢ fixed to 8.

Results Page 119

e = 0.025, ¢ = 10

Figure 7-6: Varying the sharpness parameter ¢, with € fixed to 0.025.

7.1.3 Summary

This section presented an informal examination of the visual results of tone mapping
HDR night driving scenes with the tone mapping modules developed in Chapters 5 and
6. After comparing the visual results of these modules with the output of a standard
global operator, and thereby confirming the choice of using a local operator (to meet
Requirement 1), the effects of each of the four tone mapping parameters, with which the
modules are controlled, were discussed.

A formal evaluation of the visual quality of tone mapping in night driving scenes, as well
as a study into the impact of various tone mapping parameters on visual output, lies out-
side the scope of this thesis. Generally, all tone mapping modules developed in Chapters
5 and 6 are implementations of Slomp and Oliveira’s tone mapping method (see Section
5.1), and consequently produce equivalent visual results to this method. For an in-depth
evaluation of the visual output of Slomp and Oliveira’s method, see [SO08], [LWR"09].
The remainder of this chapter focuses on the performance of the tone mapping implemen-
tations developed in this thesis.

Page 120 Chapter 7

7.2 The CUDA tone mapping module

Section 5.4 introduced the notion of a local tone mapping module implemented in CUDA.
The details involved in implementing this module were then described in detail in Section
6.1. This section examines the performance of the CUDA tone mapping module as a
whole, as well the individual kernels from which it is comprised.

7.2.1 Performance

Sections 6.1.5.1 to 6.1.5.5 presented a number of approaches for implementing and op-
timizing the most complex kernel in the CUDA tone mapping module: the fifth and fi-
nal kernel (in order of execution) in the module, which uses the partial results produced
by all other module kernels to compute the final tone mapping by means of dodging-
and-burning. Each subsection concluded by listing the execution times of some specific
optimization of this kernel for a number of input images.

Four dodging-and-burning kernel implementations were discussed in Chapter 6: a naive
kernel, which is the most direct translation of the dodging-and-burning algorithm given
in Section 5.4.5 into CUDA; a modification of the naive kernel using texture memory
for SAT access; a modification of the texture kernel using unrolled loops; and an imple-
mentation that reduces global memory traffic by using shared memory for SAT access.
The overall performance achieved by CUDA tone mapping modules using each of these
kernels to tone map a set of input HDR scenes, ranging in resolution from 1024x1024 to
2048x2048, is shown in Figure 7-7.

CUDA Module Performance

Comparison of Dodging-and-Burning Optimization Methods

100 #Naive

-+Texture memory
Texture memory
(unrolled)

60 = Shared memory

Frames Per Second
(=]
[=]

N \
o
0 L L
1024x 1024 2048x1024 1536x1536 2048x1536 2048x2048
Resolution

Figure 7-7: The performance of a number of implementations of the CUDA tone mapping
module. Performance measurements were made for input frame resolutions
ranging from 1024x1024 to 2048x2048 pixels.

The two most interesting implementations are those using the unrolled texture memory
and shared memory dodging-and-burning kernels. The performance measurements in

Results Page 121

Figure 7-7 show that both of these implementations maintain interactive frame rates,
even at a resolution of 2048x2048, which exceeds the maximum PC system resolution
called for by Requirement 2. Although the shared memory implementation consistently,
though marginally, outperforms its unrolled texture memory counterpart, the unrolled tex-
ture memory implementation remains an attractive option. As was discovered in Chapter
6, implementing a dodging-and-burning kernel that uses texture memory for SAT access
is substantially simpler than implementing one that loads segments of the input SAT into
shared memory. Furthermore, the shared memory implementation is more intimatley de-
pendent on the hardware properties of each GPU on which it is run; the amount of shared
memory that can be used by each thread block depends on the amount of shared memory
that each specific GPU has to offer. This also affects the number of threads that can be
executed per block, as well as multiprocessor occupancy (see Section 6.1.5.5).

Nonetheless, because it provides the best performance, throughout the remainder of this
thesis the term "‘CUDA tone mapping module"’ refers to a module using the shared mem-
ory dodging-and-burning kernel implementation, unless otherwise specified.

7.2.2 Kernel properties

The design of the CUDA tone mapping module was shown in Figure 5-16 in Section 5.4.
A total of four kernels and one submodule are used for tone mapping: a luminance compu-
tation kernel, a reduction kernel, a scaled-luminace computation kernel, a SAT generation
submodule (which uses a number of internal kernels) and a dodging-and-burning kernel.
To tone map each frame, the CUDA module invokes each of these kernels or submodules
in sequence, where each kernel/submodule computes partial results from the output of its
predecessors.

7.2.2.1 Execution times

Figure 7-8 shows the average computation time of each kernel during 30 seconds of tone
mapping a 2048x1536 HDR scene, using the fastest, shared-memory implementation.

Kemel Execution Times

Kernel/Submodule | GPU Time

(ms)
misc. memory ops. 0.53
computeLuminance 0.73 W misc. mem ops
reduce 0.10 m computeLuminance

. ' reduce

scaleLuminance 0.50 ® scaleLuminance
SAT generation 2.17 . jgg gonetaton M)
dodgeAndBurn (SM) 9.81
Total 13.85

Figure 7-8: Execution times of each kernel/submodule in the CUDA tone mapping mod-
ule.

The table on the left in Figure 7-8 lists the exact measured kernel/submodule execution
times in milliseconds, and the pie chart on the right shows the proportion of total ex-

Page 122 Chapter 7

ecution time spent in each kernel. SAT generation is accomplished using a number of
kernels - their aggregate time is given here. The entry “misc. memory ops.” refers to mis-
celleneous memory operations, such as partial result dataset copies, performed between
kernel invocations.

When considering the total of the computation times given in 7-8, one may mistakenly
expect a final frame rate of 1000/13.85 ~ 72 fps. In fact, Figure 7-7 shows that the actual
frame rate achieved is just under 50 fps. This can be attributed to processing performed
by the host application (in this case TMStudio), overhead of invoking the tone mapping
module, and the fact that the times given in Figure 7-8 are GPU execution times; the
additional time spent invoking each kernel and waiting for its result to return to the CPU
are not accounted for here.

7.2.2.2 Occupancy

The concept of occupancy was introduced in Section 6.1.5.5. As stated in Section 6.1.5.5,
occupancy is the ratio of active warps per multiprocessor to the maximum possible warps
per multiprocessor. Generally, the closer a kernel’s occupancy is to 1, the better its ex-
pected performance. Because the number of threads schedulable per multiprocessor de-
pends on how much shared memory and how many registers are available to each mul-
tiprocessor, a kernel’s occupancy is hardware dependent. CUDA-capable GPU devices
are attributed with a property, called compute capability, that defines the basic hardware
capability they provide to CUDA applications. A kernel’s occupancy depends on the com-
pute capability of the GPU on which it is run. The NVIDIA GeForce 8800GTX, used by
the development system described Appendix A, has a compute capability of 1.0, whereas
the NVIDIA Quadro FX 5800 GPUs used in the HD Visualization Center have compute
capability 1.3.

Using the NVIDIA CUDA Occupancy Calculator (introduced in Section 6.1.5.5), the
occupancy of a CUDA kernel can be determined for a target GPU of any given compute
capability. Figure 7-9 lists the occupancies of the most important kernel developed for the
CUDA tone mapping module for each of the compute capabilites currently supported by
CUDA.

Kernel Occupancies
Kernel/Submodule Compute Capability
1.0 1.1 1.2 1.3 2.0

computeLuminance 100% | 100% | 100% | 100% | 100%
reduce 100% | 100% | 100% | 100% | 100%
scaleLuminance 100% | 100% | 100% | 100% | 100%
dodgeAndBurn (TM unrolled) | 33% | 33% | 75% | 75% | 100%
dodgeAndBurn (SM) 33% | 33% | 25% | 25% | 83%

Figure 7-9: Tone mapping module kernel occupancies for the currently supported com-
pute capabilities. TM stands for texture memory, SM for shared memory.

Since SAT generation is accomplished using the CUDPP CUDA library, and the transpose
is performed by an efficient kernel provided in the CUDA 3.2 SDK, the SAT generation
kernels have been omitted from Figure 7-9. The two most interesting kernels shown in

Results Page 123

the figure are “dodgeAndBurn (TM unrolled)” and “dodgeAndBurn (SM)”, where TM
stands for texture memory and SM for shared memory. It can be seen that, for compute
capabilities greater that 1.0 (and particularly for 1.2 and 1.3), the texture memory kernel
has a higher occupancy that its shared memory counterpart. This is in part due to the
higher register load of the shared memory kernel (mainly due to the additional computa-
tion required for the transposed mapping from texture memory to shared memory shown
in Figure 6-14) and in part due to its significantly higher shared memory demand.

7.3 Global tone mapping

This section details the performance of Reinhard’s simple and efficient global tone map-
ping operator, when implemented both in CUDA and with shaders.

Figures 5-16 and 5-19 in Chapter 5 show the respective internal designs of the CUDA and
shader tone mapping modules. In both of these figures, there are a series of parallel GPU
programs (kernels in the CUDA module and shaders in the shader module) that operate on
a collection of datasets residing in GPU memory. Programs that operate globally, i.e apply
the same computation to each input element, are gathered into a region in each figure
marked with a light grey backdrop, while operations required for local tone mapping
are grouped in the dark grey areas. In both cases, by replacing all operations in the
dark grey, local regions with a single, simple kernel or shader that computes Reinhard’s
global operator (Equation 4.3 in Chapter 4), a complete global tone mapping operator is
implemented.

Figure 7-10 compares the performance of CUDA and OpenGL GLSL shader implemen-
tations of Reinhard’s global tone mapping operator, for a set of input images with reso-
lutions ranging from 512x512 to 2048x2048. Performance was measured using the TM-
Studio (Section 6.3) running on the development system detailed in Appendix A.

Global Tone Mapping Performance
1000

900

800

700

600

500 =GLSL
+CUDA

400

300

Frames Per Second

200 * f\‘ﬂ__\—e
100

0
512x512 1024x1024 2048x1024 1536x 1536 2048x 1336 2048x2048

Resolution

Figure 7-10: Global tone mapping: shaders vs CUDA.

It is apparent from Figure 7-10 that the GLSL implementation consistently outperforms

Page 124 Chapter 7

an equivalent CUDA implementation. This has a number of reasons.

Firstly, as mentioned in Section 5.5, the scene key computation in the GLSL implemen-
tation is accomplished by means of hardware assisted mipmapping, which means that no
reduction shader is required. It has been previously noted that this only gives correct re-
sults for square input textures; the resolutions in Figure 7-10 that are non-square were tone
mapping with an incorrect scene key. Although this gives the visual impression of false
exposure, there is no effect on performance. Therefore, whether a scene is tone mapped
with the correct scene key is irrelevant in the context of the performance evaluation shown
in Figure 7-10 .

Secondly, both modules operate at frame rates well beyond those required to maintain
interactivity of the host application. For example, when used by 1536x1536 HDR appli-
cation, the GLSL global tone mapping module requires approximately 3 ms per frame
for tone mapping. When the tone mapping modules perform their task so quickly, the
overhead involved in calling them from the host application is no longer negligible. Since
CUDA, unlike GLSL shaders, is unable to write its results directly to texture, its results
are written to a Pixel Buffer Object (PBO), which is then “unpacked” into a texture (see
Section 5.3 for more details). This additional unpacking step involves a complete copy of
each frame within GPU memory, which accounts for the slight performance discrepancy
apparent in Figure 7-10. Nonetheless, both modules effortlessley meet the performance
requirements for standard PC systems specified by Requirement 2. Unfortunately, Rein-
hard’s global operator loses significant detail during luminance compression (Section 7.1
demonstrates the effects on VND beam pattern simulation), and thus, both modules fail
to meet Requirement 1.

Despite the loss of high contrast detail, the simplicity and performance of the global tone
mapping modules make them ideal for rapidly visualizing and debugging HDR scenes.

7.4 Comparison of CUDA and shader implementations

This section evaluates, from a performance perspective, the CUDA and shader tone map-
ping modules by comparing them to each other and to a shader implementation of Slomp
and Oliveira’s original method. After first measuring and comparing the efficiency of
SAT generation using each method, the overall tone mapping performance, as measured
in TMStudio, is reported. Motivated by these results, an additional, hybrid CUDA/GLSL
module is then introduced, which takes advantage of the best features of both langauages.
Finally, the tone mapping system is tested on the Heinz Nixdorf Institute HD Visualization
Center (see Section A.2).

7.4.1 A shader implementation of Slomp and Oliveira’s original method

To determine if the CUDA and shader tone mapping modules conceived and implemented
in Chapters 5 and 6 have successfully improved on the performance achievable by Slomp
and Oliveira’s original operator, it is necessary to run an instance of their operator on the
same platform as the two newly developed modules, testing all methods with the same
input. In order to conduct such experiments, an implementation of Slomp and Oliveira’s
original method is required.

Results Page 125

Fortunately, a complete CG shader implementation of Slomp and Oliveira’s original
method was developed by Matthias Linnemann as a part of his investigation into tone
mapping with Augmented Reality [LWR"09], and made available to support the research
in this thesis.

Linnemann’s implementation, which was originally designed to work with the OpenGL
scenegraph API OpenSceneGraph [BO0O4], was integrated into TMStudio. During in-
tegration, a number of modifications were made. Most of these were minor changes
required to execute Linnemann’s module using pure OpenGL, rather than OpenScene-
Graph. One modification, however, was in fact an optimization and had a significant
impact on performance.

The tone mapping method developed by Linnemann uses full-precision, 32-bit-per-
channel HDR textures to store partial results, such as the luminance map and scaled
luminance SAT. All of these textures are allocated with three color channels and one
alpha channel, a texture format represented in OpenGL by the enumerant RGBA32F. Many
of the shaders operating on the partial result textures use all of these channels to save their
results. All operations on the scaled luminance SAT texture, including its generation and
use for box filter computation, use only the red color channel in their computations. As
a result, for each of the many SAT texture lookups performed during tone mapping, 12
bytes of precious texture cache memory are wasted, resulting in an excess of unnecessary
global memory activity. By simply changing the scaled luminance SAT texture format
from RGBA32F to the single channel GL_INTENSITY32F format, global memory traffic
was reduced and performance increased. Section 7.4.3 reports exact performance gains
achieved using this optimization.

7.4.2 SAT generation

The central motivation for using CUDA to implement the post-processing tone mapping
module proposed in Chapter 3 was an expected speedup in SAT generation, because the
parallel scan operation, which is the main operation used for SAT generation, can be
computed faster using CUDA than with traditional shading languages (see Section 5.2).

A SAT is generated from an input image by computing scans on each row (row scans), the
computing scans on each column of the result (column scans). When computing SAT's in
CUDA, extra care must be taken to use optimal memory access patterns. Because reading
global memory in rows is more efficient than in columns, rather than computing column
scans, after the first row scan the image is transposed and a second row scan is applied
(see Section 5.4.4). Therefore, the operations used for generating SATs in CUDA fall into
two categories: those involved in scan computation, and those used for transposition.

The CUDA runtime environment provides primitives, called events, which facilitate ac-
curate measurement of CUDA kernel execution times. Events were used extensively in
the SATHarris class presented in Section 6.1.4 to measure the time spent for scan and
transpose computation during each SAT generation.

Figure 7-11 shows the times measured for generating SATs of various sizes, where the
input datasets range in resolution from 1024x1024 to 5120x5120. The size of each dataset
between these two extremes for which a measurement was made is explicitly labelled on
the x-axis. The dashed blue line represents the time spent on scan computation and the

Page 126 Chapter 7

dashed red line displays the time spent on transpose computation. The total time required
for each scan, which is the sum of scan and tranpose computation, is represented by the
solid green line. All computations and measurements were performed on the development
system described in Appendix A.

CUDA SAT Generation

35
= SCar

—=transpose
30 —total

23
20

15

Time (ms)

10

0

1024x1024 2048x1024 2048x1536 3072%2048 4096x3072 5120x4096
1336x1024 1336x1336 2048x2048 0723072 4096x4096 12063120

Number of Elements

Figure 7-11: CUDA SAT generation performance. The dashed red line represents time
spent on transpose computations, the dashed blue line represents scan com-
putation and the solid green line represents total SAT generation time.

It should be noted that, because the execution times shown in Figure 7-11 were measured
using CUDA events, the execution times reported are GPU times. GPU times show only
the time spent computing on the GPU; the overhead involved in invoking each kernel and
waiting for results to return (on the CPU side) are not accounted for here. Nonetheless,
the execution times shown in 7-11 are encouraging. Theoretically, if SAT generation were
the only operation involved in tone mapping, interactive frame rates would be possible for
input resolutions of up to 5120x5120 on the development system.

Transpose computation in CUDA SAT generation is additional work required to satisfy
CUDA memory access requirements; there is no equivalent operation involved in shader
SAT generation procedures. Therefore, only the blue dashed line in Figure 7-11 represents
necessary computation. If CUDA were capable of writing directly to texture memory, in
the same manner as shaders do, the transpose step would no longer be necessary. In this
case, the total SAT generation times would likely match the blue dashed line, rather than
the solid green one. It remains to be seen if this capability will be introduced in future
CUDA releases.

To determine whether the performance benefits caused by high-speed, shared memory
based scan computation outweigh the cost of transpose computation, it is necessary to
compare the CUDA SAT generation procedure with an equivalent shader implementation.
Furthermore, considering that it was assumed that the CUDA implementation developed
in this thesis would outperform the method used in Slomp and Oliveira’s tone mapping

Results Page 127

implementation, it would be highly desirable to confirm this by directly comparing the
two methods.

Fortunately, a CG implementation of the original SAT generation used by Slomp and
Oliveira, provided by Linnemann et al. [LWR109], as well as a GLSL implementa-
tion of SAT generation based on the parallel scan algorithm proposed by Sengupta et
al. [SLOO06], which was implemented as a part of the shader tone mapping module pre-
sented in Section 5.5, both exist in TMStudio. Accurately measuring their performance,
however, is not an entirely straightforward task.

Unlike CUDA, shader programming languages provide no primitives for measuring
shader execution times. Furthermore, as far as could be determined, no reliable external
tools exist for this purpose. Therefore, in the absence of satisfactory means for measuring
GPU execution times, shader computations can be measured from the CPU side, resulting
in a measure of CPU time. Care must be taken when evaluating CPU time; since shader
invocations are asynchronous, simply measuring the CPU time before and after a call to
the shader SAT generation procedure is insufficient.

A utility program was developed for measuring shader SAT generation times. The utility
program, called glSatPerformance and developed as a part of TMStudio, measures
shader execution time as follows. First, a standard OpenGL scene is set up and displayed
in a window on the desktop. In this case, the OpenGL scene is a rotating Utah Teapot
(shown in Figure 7-12). After the first NV seconds of execution are complete, the average
frame rate during this execution is computed. The application then continues to update its
scene for an additional N seconds, this time generating a SAT once per frame rendered.
Once again, after /N seconds, the average frame rate of this new render loop is computed.
By comparing the average frame rates over the two /N second intervals, the average SAT
generation time can be determined. Figure 7-12 (a) shows this procedure as a flowchart,
and Figure 7-12 (b) shows a screenshot of the scene during this process.

Using glSatPerformance, the CPU times of the SAT generation methods implemented
in TMStudio, including the CUDA SAT generation submodule, were measured for a set
of input resolutions ranging from 1024x1024 to 3072x3072. The results are shown in
Figure 7-13.

The three SAT generation algorithms shown in Figure 7-13 are named after the author
of the parallel scan algorithms that they incorporate. The original scan method used by
Slomp and Oliveira is that of recursive doubling, proposed by Hensley et al. [HSC*05]
(Section 5.2.3), the method used by the GLSL SAT generation module developed in this
thesis is that of Sengupta et al. [SLOO06] (Section 5.2.4) and the method used by the
CUDA implementation is that of Harris et al. [HSOOQ7] (Section 5.2.5).

It can be seen in Figure 7-13 that the CUDA implementation, despite its additional trans-
pose computation, performs the best of the methods. The GLSL Sengupta implementation
closely follows the performance of its CUDA counterpart, until input size extends beyond
a resolution of 3072x2048, where the GPU is unable to provide the memory required for
storing intermediate result textures. Considering the results shown in Figure 7-11, it is
clear that the CUDA implementation can process inputs of substantially higher resolu-
tions without encountering similar memory issues.

As expected, the implementations based on Harris’ and Sengputa’s work-efficient meth-

Page 128 Chapter 7

Render scene

|

Render scene

Generate SAT

l
No

i Yes
Avg fps |

Compute SAT
generation time

A J
I*

(@) (b)

Figure 7-12: The utility program developed for measuring CPU time of shader SAT gen-
eration procedures. On the left (a) is a flowchart that shows the execution

flow of the utility program and on the right (b) is the OpenGL scene rendered
by the program.

SAT Generation Method Comparison

0 wHarris (CUDA)
“+Hensley (CG)
25 *Sengupta (GLSL)

Time (ms)

0
1024x1024 1024x1336 1024x2048 1536x1336 1336x2048 2048x2048 3072%2048 3072x3072

Number of Elements

Figure 7-13: SAT generation times measured for three different approaches, each named
after the author of the scan algorithm that they used. The language used to
implement each method is specified in brackets after its name.

Results Page 129

ods both significantly outperform the implementation using Hensley’s method. This per-
formance discrepancy increases with the input resolution. As discussed in Section 5.2.3,
because Hensley’s scan processes unnecessary elements, its computation is more rapidly
serialized than that of the other two methods.

7.4.3 Local tone mapping performance

Using TMStudio, four tone mapping implementations were compared: the CUDA tone
mapping module introduced in Section 5.4, the GLSL tone mapping module introduced
in Section 5.5, an implementation of Slomp and Oliveira’s original method supplied by
Linnemann [LWR'09], which uses 32-bit-per-channel RGBA format textures for SAT
representation, and a modification of Linnemann’s implementation, which uses single-
channel 32 bit textures for SAT representation (see Section 7.4.1). The performance of
these methods, measured on the development system detailed in Appendix A, is shown in
Figure 7-14.

#CG Linnemann (RGBA)
-+CG Linnemann (LUM)
+CUDA module

-+ GLSL module

Local Tone Mapping Performance

200
180
160
140
120
100
80
60
40\
20 — —

_.

0
1024x1024 2048x1024 1536x1536 2048x1536 2048x2048

Frames Per Second

Resolution

Figure 7-14: Comparison of local tone mapping implementations. Methods denoted "‘CG
Linnemann (...)"" are implementations of Slomp and Oliveira’s original
method using OpenGL texture formats specified within brackets. The CUDA
and GLSL modules are the implementations developed in this thesis.

Figure 7-14 shows that the texture format modification made to Linnemann’s implemen-
tation lead to a profound impact on performance. Unlike the original implementation, the
modified version is now capable of maintaining interactive frame rates up to the maximum
resolution for PC systems specified in Requirement 2.

The CUDA module consistently performs better than all implementations of Slomp and
Oliveira’s method, but is unable to match its equivalent shader implementation, which sig-
nificantly outperforms all other implementations. Although the CUDA module is subject

Page 130 Chapter 7

to an overhead involved in mapping between OpenGL and CUDA, it was shown in Section
5.3 that this overhead is too small to have a significant impact on performance. Addition-
ally, Section 7.4.2 shows that SAT generation is accomplished faster in the CUDA module
than in its GLSL equivalent. Therefore, it is likely that, despite the optimization efforts
in Section 6.1.5, the tone mapping kernel used in the CUDA module is slower than its
corresponding shader program in the shader module.

It appears that, despite CUDA’s ability to generate SATs more efficiently, the small
OpenGL/CUDA mapping overhead; the use of hardware mipmapping, rather than reduc-
tion; and a more efficient final, tone mapping shader program make the GLSL shader
module a more efficient local tone mapping option.

7.4.4 A hybrid method

The results presented in Section 7.4.2 showed that optimal SAT generation performance
is achieved using CUDA. At the same time, Section 7.4.3 discovered that, despite more
efficient SAT generation, the entire tone mapping process, when implemented in CUDA,
could not match the performance of an equivalent GLSL implementation. The most likely
cause for this was identified as the final tone mapping kernel, which was shown in Section
7.2 to be responsible for 71% of the CUDA module processing time.

Motivated by the results of the previous sections, an additional, hybrid GLSL/CUDA tone
mapping module was developed. The hybrid module uses the most efficient components
of the CUDA and GLSL modules; the majority of the tone mapping process, including
the final, box filter pyramid evaluation step, is accomplished using the GLSL shaders,
while CUDA is used for SAT generation. Therefore, the hybrid module has an equivalent
structure to shader tone mapping module shown Figure 5-19, where the only difference
is that the “Generate SAT” submodule is the CUDA implementation used in the CUDA
tone mapping module (Figure 5-16).

Figure 7-15 shows the performance of the hybrid method compared to that of the GLSL
and CUDA modules. Indeed, for most input resolutions, the hybrid method gives the best
results. As the input resolution increases, the frame rates of the hybrid and GLSL modules
converge. This is caused by the additional copying necessary to accomodate the CUDA
SAT generation submodule within the GLSL tone mapping pipeline: the GLSL pipeline
operates solely on textures, while the CUDA SAT generation submodule neither reads
nor writes from textures. Thus, when passing data to or retrieving the result from the SAT
generation, a full copy of the entire frame from texture memory to global memory or from
PBO to texture memory is necessary. Although these copy operations take place within
high speed GPU memory, as resolutions increase, they begin to have a measurable effect
on performance.

For resolutions up to and beyond the target of 1920x1200 for PC systems, as specified
by Requirement 2, the hybrid module delivers excellent results. Compared to its closest
competitor, the shader tone mapping module, the hybrid module provides both higher
frame rates and, as a result of in-place scan computation enabled by CUDA, a significantly
lower memory footprint. Furthermore, for all resolutions tested, the hybrid operator is
capbable of matching or exceeding the desired frame rate specified by Requirement 2.
For an input resolution of 1024x1024, the hybrid operator runs at more than double the

Results Page 131

+CUDA module
Hybrid
+GLSL module

Hybrid Operator Performance

240
220

200

Frames Per Second

80
60

40
1024x1024 2048x1024 1536x1536 2048x1336 2048x2048

Resolution

Figure 7-15: Hybrid method performance, compared to that of the CUDA and GLSL mod-
ules.

102 fps originally measured by Slomp and Oliviera at the same resolution and on the same
GPU as our development system (see Section 4.2.3).

7.4.5 High Definition resolutions in the HD Visualization Center

Requirement 2.1i specifies that the tone mapping module should run at interactive frame
rates on the HD Visualization Center (detailed in Appendix A), which supports a maxi-
mum resolution of 3840x2160. To determine if this requirement has been met, TMStudio
was run on the HD Visualization Center to evaluate the performance of the tone mapping
methods presented in this thesis. The results are shown in Figure 7-16, measured on a set
of HDR scene ranging in resolution from 2048x1024 to 4096x20438.

Surprisingly, Figure 7-16 shows that all methods using CUDA perform at unacceptable
frame rates, even for relatively low resolutions. This directly contradicts expectations: as
described in Appendix A, the HD Visualization Center is driven by cluster of networked
PCs, each equipped with a pair of NVIDIA Quadro FX 5800 GPUs. These GPUs are
specifically designed to support CUDA. Considering that the Quadro FX 5800 offers 240
CUDA cores (vs the 128 offered by the GeForce 8800 GTX used in the development sys-
tem detail in Appendix A) each with a clock rate of 650 MHz (vs the GeForce 8800 GTX’s
575MHz per core), a frame buffer of 4GB (vs 756 MB) with memory clock frequency of
1632 MHz (vs 900 MHz) and a compute capability of 1.3 (vs 1.0), significantly better
CUDA performance can be expected for equivalent resolutions on the HD Visualization
Center than on the development system.

The graphics drivers installed on the HD Visualization Center are controlled by a large
set of parameters. If the parameters are not configured optimally for the application being

Page 132 Chapter 7

Tone Mapping Performance =CG Linnemann
-+ GLSL module
HD Visualization Center CUDA module
-+Hybrid

160 y

140

120
o
5 100
]
@
(73]
E 30
o
w
g 60
®
L

40

20

- i
0
2048x1024 1936x 1936 2048x 1536 2048x20458 307 2% 2048 4096x 2048
Resolution

Figure 7-16: Tone mapping performance on the HD Visualization Center.

run, significant degradation of performance can occur. This appears to be the case when
running TMStudio with CUDA tone mapping. Since the tone mapping procedure is en-
tireley memory bound (see Section 6.1.5), it is probable that a misconfiguration of GPU
driver parameters is causing debilitating copying of frame data from the GPU across the
bus to the host system.

Unfortunately, due time constraints, after a number of fruitless attempts at finding the
correct driver parameter configuration, correctly deploying CUDA frame processing ap-
plications on the HD Visualization Center has been left as future work.

Nonetheless, Figure 7-16 shows that, unlike Slomp and Oliveira’s original method (CG
Linnemann), the GLSL tone mapping module meets the minimum performance require-
ments specified by Requirement 2. Perhaps, in future, after some GPU driver parameter
tweaking, this accomplishment will be shared by the CUDA-based modules.

7.5 Balancing speed and quality

The performance measurements provided in this chapter were gathered using TMStu-
dio. According to these measurements, all modules developed are capable of meeting
the minimim frame rates of 30fps for PC systems called for by Requirement 2, and both
the shader and hybrid modules can meet the desired frame rate of 60 fps. Because the
OpenGL scene rendered by TMStudio is a very simple one, these performance results are

Results Page 133

nearly entirely a measure of the time spent tone mapping.

Unlike TMStudio, VND makes heavy use of the GPU to generate its scene, before any
tone mapping is required. Thus, although the tone mapping modules developed in this
thesis meet all interactive requirements set forth in Chapter 3, when integrated in VND, it
can not be certain that the new, HDR implementation of VND will continue to do so. Due
to time constraints, integrating one of the local tone mapping modules into VND remains
outside the scope of this thesis and has been left as future work.

As discussed in Chapter 3, Requirement 1, which imposes restrictions on output visual
quality, and Requirement 2, which specifies minimum performance expectations, are con-
tradictory; the better the output visual quality, the more computation required. At present,
all tone mapping modules have been implemented to preserve the maximum amount of
detail possible using Slomp and Oliveira’s operator, upon which they are based.

In the case that, once local tone mapping has been integrated, VND is unable to maintain
interactive frame rates, additional performance can be attained by limiting the number of
box filter scales evaluated during tone mapping, at the expense of output visual quality.

An additional parameter was added to the hybrid tone mapper to control the number of box
filter scales to evaluate. Figure 7-17 shows the performance measured on the development
system when tone mapping input images of different resolutions using limited scales. The
first, 1024x1024 input commonly reported in earlier sections has been omitted in Figure
7-17, since tone mapping this input with all scales results in very high frame rates. Figures
7-18 and 7-19 show the resulting visual output when limiting the scales on a 1024x1024
night driving scene. All scenes in Figures 7-18 and 7-19 were tone mapped using the
default local parameters of € = 0.025 and ¢ = 8 with a global parameter configuration of
a=1.0ande=1.0.

Limited Scales Performance

160
150
Té 140 &2 scale
o 130 -+-3 scales
E.?"; 120 4 scales
5110 -5 scales
Sf 100 +-6 scales
0 7 scales
fih} a0 3 scales
% 80
w70
60
2048x1024 1536x 1536 2048x1536 2048x2048

Resolution

Figure 7-17: The effect of limiting scales used on local tone mapping performance.

Page 134 Chapter 7

2 scales 3 scales

4 scales 5 scales

6 scales 7 scales

Figure 7-18: Results of limiting the number of scales used in local tone mapping. The
total number of scales evaluated is specifed under each image.

Results Page 135

8 scales

Figure 7-19: The same scene as shown in 7-19, tone mapped using a complete, full-scale
local procedure.

7.6 Conclusion

This chapter presented the results of the tone mapping methods developed in Chapter 5
and 6.

Although this thesis mainly evaluates results in terms of performance, Section 7.1 be-
gan with a qualitative study of the effects of tone mapping implementations on the visual
output of VND. The importance of choosing a local operator was argued by comparing
locally tone mapped VND scenes with equivalent scenes tone mapped using a global op-
erator, which revealed a noticable difference in beam pattern detail. This was followed
by a discussion of each the four parameters that affect visual output, accompanied by
a demonstration of their their effect on night driving scenes. For a formal, quantitative
evaluation of the visual output of the tone mapping methods used, which are all imple-
mentations of Slomp and Oliveira’s method, the reader is referred to existing literature
[SO08] [LWR'09].

Section 7.2 examined the CUDA tone mapping module developed in Chapter 6. The
performance of the module when using implemented with each of the four proposed tone
mapping kernels in Section 6.1.5 was measured for a number input sizes. As expected, im-
plementations using the shared memory based tone mapping kernel (Section 6.1.5.5) and
the unrolled texture memory based kernel (Section 6.1.5.4) gave the best performance. In
addition to overall module performance, the properties of each kernel within the module
was discussed, including a presentation of individual execution times and kernel occu-
pancy. In particular, it was discovered that the final, tone mapping kernel, is responsible
for 71% of the total module processing time.

To gain an initial insight into the difference between post-processing with CUDA com-
pared with that of shaders, Section 7.3 reported frame rates measured when globally tone

Page 136 Chapter 7

mapping OpenGL applications of various resolutions. Although the shader implementa-
tion consistently outperformed its CUDA counterpart, both implementations performed
at such high frame rates that the performance discrepancy was attributed to the slight
overhead involved in the OpenGL/CUDA context switch.

Section 7.4 presented a comprehensive comparison of the CUDA tone mapping mod-
ule developed in Chapter 6, the shader tone mapping module, also developed in Chap-
ter 6, and an implementation of Slomp and Oliveira’s method, provided by Linnemann
[LWR'09] and adapted to work with TMStudio. An initial comparison of SAT-generation
performance showed that CUDA SAT generation, despite requiring slightly more work
than the other methods, provides the best performance, both in terms of speed and memory
usage. A subsequent comparison of each tone mapping module, however, showed that the
GLSL shader implementation consistently and significantly outperforms both its CUDA
counterpart and Linnemann’s module. The lacking performance of the CUDA was at-
tributed its final, dodging-and-burning kernel. Therefore, a hybrid method was developed
that used the best of both modules: a GLSL tone mapping pipeline, using CUDA for SAT
generation. This hybrid method gave excellent results, outperforming the shader module
both in terms of speed and memory usage. Finally, the tone mapping experiments were
repeated on the HD Visualization Center (Appendix A), showing that the GLSL module
meets all requirements set out in Chapter 3, while all implementations using CUDA were
impaired by what was presumed to be a suboptimal GPU driver configuration.

Finally, to assist in a possible future need to find a balance between visual quality and
tone mapping performance, Section 7.5 presented the effects of limiting the number of
scales used during tone mapping, both in terms of performance and visual output.

Conclusion and Outlook Page 137

8 Conclusion and Outlook

This chapter reviews the important accomplishments presented in this thesis (Section 8.1),
and outlines ideas for future work (Section 8.2).

8.1 Thesis summary

The goal of this thesis was to develop a tone mapping procedure suitable for use with
Virtual Night Drive, a high resolution, Virtual Reality tool for prototyping automotive
headlights. To qualify for use with VND, it is necessary that this operator preserves detail
in high contrast regions, performs at interactive frame rates (defined as a minimum of
30 fps in Chapter 3) at high resolutions, and be implemented such that it can easily be
integrated into the existing version of VND as a post-processing module.

To develop a suitable operator, a state of the art local tone mapping method was opti-
mized using work-efficient parallel scan algorithms. Two GPU implementations of this
optimized method were developed: one using CUDA and one using GLSL shaders.

CUDA was chosen for the first implementation because it exposes GPU hardware not
available to traditional shader languages; work-efficient parallel scan algorithms operate
faster and with less memory overhead when implemented in CUDA than in shader lan-
guages. Since all previous work on implementation of high speed local tone mapping
operators has been accomplished using shaders, using CUDA represents a novel investi-
gation of the suitability of CUDA for local tone mapping. The second, GLSL implemen-
tation was required to validate the CUDA results: since the tone mapping algorithm used
is a novel modification of the current state of the art, a GLSL implementation of the same
algorithm is necessary to determine whether performance gains can be attributed to the
modified algorithm or its implementation in CUDA.

Both implementations perform better than the current state of the art, indicating that the
use of work-efficient parallel scan algorithms was a successful optimization. In terms
tone mapping speed, GLSL implementation consistently and significantly outperforms its
CUDA counterpart. In terms of GPU memory usage, the converse is true. Motivated by
these results, as well as an analysis revealing a misalignment of bottlenecks in the respec-
tive implementations, a hybrid method using GLSL for image processing and CUDA for
general purpose computation was conceived (Section 7.4.4). The hybrid method achieved
an optimum of both performance and memory usage.

Despite the promise of the hybrid method, however, at the time of writing, only the GLSL
tone mapping implementation can claim to meet all requirements for use with VND. This
is because, despite running well on the development system, experiments in the HD Vi-
sualization Center (Section A.2), one of VND’s primary target platforms, showed that all
methods involving CUDA computation, including the hybrid method, operate unaccept-

Page 138 Chapter 8

ably slowly. It is suspected that the cause of this is an incorrect configuration of GPU
driver parameters.

Notwithstanding the HD Visualization Center results, the CUDA tone mapping imple-
mentation has shown that, unlike earlier generations [LUO8], modern CUDA releases
are capable of complex post-processing of OpenGL applications at speeds comparable to
those achievable with shaders.

8.2 Future work

Integration into VND

The tone mapping modules developed in this thesis were implemented and evaluated
within a custom, HDR prototyping platform. After resolving the driver issues in the HD
Visualization Center, the most suitable of the tone mapping implementations can be deci-
sivley identified. The next step is to integrate the selected module into VND, and extend
VND to use HDR beam pattern data for scene illumination.

Once integrated into VND, to account for temporal brightness discontinuities that arise is
dynamic HDR environments [GWW 03] [KMSO05], the tone mapping module will need
to be extended to support temporal adaption [DDO00]. Furthermore, to increase the realism
of the driving simulation, perceptual effects that commonly occur in the human visual
system when driving at night, such as glare [WWB107] and scotopic vision [KMS05]
should be simulated during the tone mapping process.

HDR video with CUDA

CUDA is commonly used to accelerate the computationally expensive task of video en-
coding and decoding [Warl0]. Using the CUDA tone mapping module developed in this
thesis, existing CUDA video processing tools can be extented to support high resolution,
HDR video.

Automatic tone mapping parameter computation

In all implementations in this thesis, the parameters that control tone mapping are initial-
ized to the default values specified in the Literature and are modified only by manual user
intervention via the protoyping platform. As was seen in Section 7.1, the default parame-
ters are not necessarily ideal for night driving scenes. Future research could be untertaken
to identify the most suitable parameters for night driving. In particular, it would be useful
to identify HDR scene metrics that can be used for automatic parameter adjustment.

9 Bibliography Page 139

9 Bibliography

[Ada80]

[Ada81]

[Ada83]

[Angl1]

[Ash02]

[BEROS]

[B1e90]

[BOO4]

[BovO8]

[Che08]
[Cro84]

[CWNT08]

[DCWT02]

ADAMS, A., The Camera, The Ansel Adams Photography series, Little,
Brown and Company, 1980

ADAMS, A., The Negative, The Ansel Adams Photography series, Little,
Brown and Company, 1981

ADAMS, A., The Print, The Ansel Adams Photography series, Little, Brown
and Company, 1983

ANGEL, E., Interactive Computer Graphics: A Top-Down Approach with
Shader-Based OpenGL, Addison Wesley, 2011

ASHIKHMIN, M., A Tone Mapping Algorithm for High Contrast Images,
Proceedings of Thirteenth Eurographics Workshop on Rendering (2002),
2002, P. 145-155

BERSSENBRUGGE, J., Ein Verfahren zur Darstellung der kom-
plexen Lichtverteilungen moderner Scheinwerfersysteme im Rahmen einer
virtuellen Nachtfahrt, Dissertation, Fakultit fiir Maschinenbau, Universitit
Paderborn, 2005

BLELLOCH, G.E., Prefix Sums and Their Applications., Technical Report,
School of Computer Science, Carnegie Mellon University, 1990, technical
Report CMU-CS-90-190

BURNS, D.; OSFIELD, R., Open Scene Graph A: Introduction, B: Ex-
amples and Applications, Proceedings of the IEEE Virtual Reality 2004,
IEEE Computer Society, Washington, DC, USA, 2004, P. 265—, unter:
http://dl.acm.org/citation.cfm?id=1009389.1010422

BoviK, A., The Essential Guide to Image Processing, Academic Press,
2008

CHEN, H., Lighting and Material of HALO 3, 2008, bungie Publication

Crow, F.C., Summed-area tables for texture mapping, SIGGRAPH Com-
put. Graph., 18, 1984:P. 207-212, unter: http://doi.acm.org/10.1145/
964965 .808600

CADIK, M.; WIMMER, M.; NEUMANN, L.; ARTUSI, A., Evaluation of

HDR tone mapping methods using essential perceptual attributes, Comput-
ers & Graphics, 32(3), 2008:P. 330-349

DEVLIN, K.; CHALMERS, A.; WILKIE, A.; PURGATHOFER, W., Tone
Reproduction and Physically Based Spectral Rendering, Eurographics, 2002

http://dl.acm.org/citation.cfm?id=1009389.1010422
http://doi.acm.org/10.1145/964965.808600
http://doi.acm.org/10.1145/964965.808600

Page 140

Chapter 9

[DDO00]

[DR77]

[FerO1]

[FJO2]

[FLWO2]

[GC]

[GGN™08]

[GVI7]

[GWHO5]

[GWWT03]

[HarO8]

[HDR]

[HSC*05]

[HSOO07]

[ITU90]

[KBHO7]

DURAND, F.; DORSEY, J., Interactive Tone Mapping, Eurographics Work-
shop on Rendering, 2000, P. 219-230

DUBOIS, P.; RODRIGUE, G., High Speed Computer and Algorithm Or-
ganization, Academic Press, 1977, P. 299-305

FERWERDA, J., Elements of early vision for computer graphics, Computer
Graphics and Applications, IEEE, 21(5), 2001:P. 22-33

FAIRCHILD, M.D.; JOHNSON, G.M., Meet iCAM: An Image Color Ap-
pearance Model, IS&T/SID 10th Color Imaging Conference, 2002, P. 33-38

FATTAL, R.; LISCHINSKI, D.; WERMAN, M., Gradient domain high dy-
namic range compression, Proceedings of ACM SIGGRAPH 2002, ACM
SIGGRAPH, 2002

GREEN, S.; CEBENOYAN, C., High Dynamic Range Rendering on the
GeForce 6800, nVIDIA Presentation

GARLAND, M.; GRAND, S.; NICKOLLS, J.; ANDERSSON, J.; HARD-
WICK, J.; MORTON, S.; PHILLIPS, E.; ZHANG, Y.; VOLKOV, V., Parallel
Computing Experiences with CUDA, IEEE Micro, 2008:P. 13-27

GOMES, J.; VELHO, L., Image Processing for Computer Graphics, Springer
Berlin, 1997

GOODNIGHT, N.; WANG, R.; HUMPHREYS, G., Projects in VR, IEEE
Computer Graphics and Applications, 2005:P. 12—-15

GOODNIGHT, N.; WANG, R.; WOOLLEY, C.; HUMPHREYS, G., Interac-
tive Time-Dependent Tone Mapping Using Programmable Graphics Hard-
ware, P. CHRISTENSEN; D. COHEN-OR (Editor.), Eurographics Sympo-
sium on Rendering 2003, The Eurographics Association, 2003, P. 2637

HARRIS, M., Optimizing Parallel Reduction in CUDA, NVIDIA Developer
Technology, 2008, unter: http://developer.download.nvidia.com/
compute/cuda/1_1/Website/projects/reduction/doc/reduction.
pdf

HDRSoOFT, HDR images for Photography FAQ, unter: http://www.
hdrsoft.com/resources/dri.html

HENSLEY, J.; SCHEUERMANN, T.; COOMBE, G.; SINGH, M.; LASTRA,
A., Fast Summed-Area Tabel Generation and its Applications, Proceedings
of Eurographics 2005, Dublin, Ireland, 2005, P. 547-555

HARRIS, M.; SENGUPTA, S.; OWENS, J.D., GPU Gems 3, Chapter 39,
Addison-Wesley Professional, 2007

ITU-R Recommendation BT.709, Basic Parameter Values for the HDTV
Standard for the Studio and for International Programme Exchange., 1990,
iTU (International Telecommunication Union), Geneva

KAINZ, F.; BOGART, R.; HESS, D., GPU Gems 3, Chapter 26, Addison-
Wesley Professional, 2007

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://www.hdrsoft.com/resources/dri.html
http://www.hdrsoft.com/resources/dri.html

9 Bibliography Page 141

[KMSO05]

[LCT'05]

[LS98]

[LUOS8]

[LWR'09]

[McTO06]

[Mic10]
[MMSO04]

[NieO35]

[NVI11]
[PB10]

[PFF99]

[Pod07]

[PY02]

KrRAWCZYK, G.; MYSZKOWSKI, K.; SEIDEL, H.P., Perceptual Effects in
Real-time Tone Mapping, Proceedings of the 21st Spring Conference on
Computer Graphics, 2005, P. 195-202

LEDDA, P.; CHALMERS, A.; TROSCIANKO, T.; SEETZEN, H., Evaluation
of Tone Mapping Operators using a High Dynamic Range Display, ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH 2005), Vol-
ume 24, 2005, P. 640-648

LARSON, G.W.; SHAKESPEARE, R., Rendering with radiance: the art and
science of lighting visualization, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1998

LONROTH, P.; UNGER, M., Advanced Real-time Post-Processing using
GPGPU techniques, Master’s thesis, Department of Science and Technol-
ogy Linkoping University, SE-601 74 Norrk6ping, Sweden, 2008

LINNEMANN, M.; WASSMANN, H.; RADKOWSKI, R.; SZWILLUS, G.;
DoMIK, G., Entwicklung eines Tone Mapping- Verfahrens fiir die Licht-
simulation in Echtzeit-Augmented Reality- Anwendungen, Master’s thesis,
University of Paderborn, 2009

MCTAGGART, G., HDR in Valves Source Engine, 2006, presentation at
SIGGRAPH 06

MICIKEVICIUS, P., Analysis-Driven Optimization, GTC, 2010

MANTIUK, R.; MYSZKOWSKI, K.; SEIDEL, H.P., Visible Difference Pred-
icator for High Dynamic Range Images, Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, 2004, P. 2763-2769

NIELSEN, F., Visual Computing: Geometry, Graphics, and Vision, Charles
River Media / Thomson Delmar Learning, 2005, unter: http://www.
sonycsl.co. jp/person/nielsen/visualcomputing

NVIDIA Corporation, NVIDIA CUDA C Programming Guide, 2011

PETIT, J.; BREMOND, R., A high dynamic range rendering pipeline for in-
teractive applications, The Visual Computer: International Journal of Com-
puter Graphics, Volume 26, 2010:P. 533-542

PATTANAIK, S.N.; FERWERDA, J.A.; FAIRCHILD, M.D.; GREENBERG,
D., A Multiscale Model of Adaptiona nd Spatial Vision for Realistic Image
Display, ACM SIGGRAPH, 1999

PODLOZHNYUK, V., Image Convolution with CUDA, NVIDIA Whitepa-
per, 2007, unter: http://developer.download.nvidia.com/
compute/cuda/sdk/website/projects/convolutionSeparable/
doc/convolutionSeparable.pdf

PATTANAIK, S.N.; YEE, H., Adaptive Gain Control for High Dynamic
Range Imaging, Proceedings of Spring Conference in Computer Graphics
(SCCG2002), 2002, P. 24-27

http://www.sonycsl.co.jp/person/nielsen/visualcomputing
http://www.sonycsl.co.jp/person/nielsen/visualcomputing
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/convolutionSeparable/doc/convolutionSeparable.pdf
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/convolutionSeparable/doc/convolutionSeparable.pdf
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/convolutionSeparable/doc/convolutionSeparable.pdf

Page 142

Chapter 9

[RF93]

[RGR*06]

[RM10]

[RSS*02]

[RWP06]

[SHGOS]

[SHGO09]

[SHZ107]

[SLO06]

[SO08]

[Ton05]

[TT99]

[TWO8]

[Vis10]

[Wan95]

RAU, B.R.; FISCHER, J.A., Instruction Level Paralellism, A Special Issue
of The Journal of Supercomputing, Springer, 1993

RAFAL MANTIUK, A.; GRZEGORZ KRAWCZYK, A.; RADOSLAW MAN-
TIUK, B.; HANS-PETER SEIDEL, A., High Dynamic Range Imag-
ing Pipeline: Perception-Motivated Representation of Visual Content,
Forschung und wissenschaftliches Rechnen, 2006:P. 11-27

RUETSCH, G.; MICIKEVICIUS, P., Optimizing Matrix Transpose in CUDA,
NVIDIA Developer Technology, 2010

REINHARD, E.; STARK, M.; SHERLEY, P.; FERWERDA, J., Photographic
Tone Reproduction for Digital Images, Proceedings of ACM Siggraph, Vol-
ume 21, 2002, P. 267-276

REINHARD, E.; WARD, G.; PATTANAIK, S.; DEBEVEC, P., High Dynamic
Range Imaging - Acquisition, Display and Image-Based Lighting, Morgan
Kaufmann, 2006

SENGUPTA, S.; HARRIS, M.; GARLAND, M., M.: Efficient parallel scan
algorithms for GPUs. NVIDIA, Technical Report, 2008

SATISH, N.; HARRIS, M.; GARLAND, M., Designing efficient sorting algo-

rithms for manycore GPUs, Parallel and Distributed Processing Symposium,
International, 0, 2009:P. 1-10

SENGUPTA, S.; HARRIS, M.; ZHANG, Y.; OWENS, J.D., Scan Primitives
for GPU Computing, Graphics Hardware 2007, ACM, 2007, P. 97-106

SENGUPTA, S.; LEFOHN, A.E.; OWENS, J.D., A Work-Efficient Step-
Efficient Prefix Sum Algorithm., Proceedings of Workshop on Edge Com-
puting Using New Commodity Architectures, 2006, P. 26-27

SLOMP, M.; OLIVEIRA, M.M., Real-time photographic local tone repro-

duction using Summed-Area Tables, Computer Graphics International 200,
2008, P. 82-91

TONNIES, K.D., Grundlagen der Bildverarbeitung, Pearson Studium, 2005

TUMBLIN, J.; TURK, G., LCIS: a boundary hierarchy for detail-preserving
contrast reduction, Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’99, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1999, P. 83-90, unter: http:
//dx.doi.org/10.1145/311535.311544

TZENG, S.; WEI, L.Y., Parallel white noise generation on a GPU via
cryptographic hash, Proceedings of the 2008 symposium on Interactive 3D
graphics and games, 13D 08, ACM, New York, NY, USA, 2008, P. 79-87,
unter: http://doi.acm.org/10.1145/1342250.1342263

Compute Visual Profiler User Guide, NVIDIA Whitepaper, 2010, supplied
with CUDA 3.2 SDK

WANDELL, B.A., Foundations of Vision, Sinauer Associates Inc, 1995

http://dx.doi.org/10.1145/311535.311544
http://dx.doi.org/10.1145/311535.311544
http://doi.acm.org/10.1145/1342250.1342263

9 Bibliography Page 143

[Warl0] WARREN, S., VDPAU: PureVideo on Unix, 2010, unter: http://www.
gputechconf . com/page/gtc-on-demand.html#session2011, presen-
tation at NVIDIA GTC2010

[WWB*+07] WORDENWEBER, B.; WALLASCHEK, J.; BOYCE, P.; HOFF-
MANN, D., Automotive Lighting and Human Vision, Springer-Verlag
Berlin Heidelberg, 2007

[YNCT06] YUAN, X.; NGUYEN, M.X.; CHEN, B.; PORTER, D.H., HDR VolVis:
High Dynamic Range Volume Visualization, IEEE Transactions on Visual-
ization and Computer Graphics, 12, 2006:P. 433—445

[ZWOT] ZHANG, X.; WANDELL, B., A spatial extension of CIELAB for digital
color image reproduction, SID Journal, 5, 1997, P. 61-63

http://www.gputechconf.com/page/gtc-on-demand.html#session2011
http://www.gputechconf.com/page/gtc-on-demand.html#session2011

Page 144 Chapter

Tools and Equipment Page 1

A Tools and Equipment

This appendix details the tools and equipment used to support the development of this
thesis.

Section A.1 specifies, in detail, the setup of the PC system used for software development
and the majority of results gathering.

In addition to standard PC platforms, the tone mapping software developed in this thesis
has been designed to run on a custom Virtual Reality system at the Heinz Nixdorf Insti-
tute, known as the High Definition (HD) Visualization Center. This system is detailed in
Section A.2.

Finally, throughout this thesis, a number of HDR scenes were used to test and demon-
strate tone mapping. All scenes that were not extracted from VND were created by a
various researchers active in HDR rendering, who made their scenes available for public
use. Section displays (a tone mapped version) of each HDR scene used, and specifies its
source.

A.1 The development system

The system used for development and the majority of results gathering throughout this
thesis is referred to as the development system.

The development system is a desktop PC running the Ubuntu 11.04 Operating System,
with an Intel Xenon 2.33 GHz Quadcore CPU with 2GB main memory and an NVIDIA
GeForce 8800 GTX GPU.

Since the modules developed in this thesis are specifically designed to run on the GPU,
Figure 1-1 lists the important details of NVIDIA GeForce 8800 GTX GPU hardware.

Property Value
Memory 768 MB
Memory clock speed 900 MHz
Memory bandwidth 86.4 GB/s
CUDA cores 128
CUDA core clock speed | 575 MHz
Compute capability 1.0

Figure 1-1: NVIDIA GeForce 8800 GTX hardware properties.

Page 2 Chapter A

A.2 The HD Visualization Center

The HD Visualization Center is an immersive, VR simulation system at the Heinz Nixdorf
Institute. It consists of front, side and floor projection surfaces, a surround sound system
and head tracking harware. The projection set up is shown in Figure 1-2.

1= JVC DLA-SH4K (3840 x 2160) 2 = Christie HD2Kc (1920 x 1080) "
4,70m x 2,64m (BxH) (16:9) 2,35m x 1,32m (BxH) (16:9)

Figure 1-2: HD Visualization projection setup.

The scene rendered on each of the projection surfaces in Figure 1-2 is generated by a
system of projectors, which are driven by a cluster of networked PCs. Each PC in the
cluster drives an individual NVIDA QuadroPlex system, which contains two NVIDIA
GeForce Quadro FX 5800 GPUs connected via Scalable Link Interface (SLI).

In the context of this thesis, the most interesting aspect of the HD Visualization Center is

the GPU hardware used. Therefore, Figure 1-3 lists the relevant hardware properties of
the NVIDIA Quadro FX 5800 GPU.

Property Value
Memory 4 GB
Memory clock speed 1632 MHz
Memory bandwidth 102 GB/s
CUDA cores 240
CUDA core clock speed | 650 MHz
Compute capability 1.0

Figure 1-3: NVIDIA Quadro 5800 FX hardware properties.

A powerful tool for Virtual Prototyping, the HD Visualization Center is one of the main
platforms for which VND is designed. Figure 1-4 shows VND running in this immersive
environment.

Tools and Equipment Page 3

Figure 1-4: VND running in the HD Visualization Center

A.3 HDR images

Throughout this thesis, a number of HDR scenes supplied by third parties were used.
This section shows each scene used, designating it a name and specifying its source. It is
intended that this section be used an “image bibliography”. The remaining figures in this
thesis each detail a HDR scene used in this thesis.

Page 4 Chapter A

“MPI Atrium”
Creator: Rafal Mantiuk
Location: www.mpi-inf.mpg.de/resources/hdr/gallery.html
Dynamic range: | 1:2 877

Tools and Equipment

Page 5

“Snow”’

Creator:
Location:

Dynamic range:

Rafal Mantiuk
www.mpi-inf.mpg.de/resources/hdr/gallery.html
1:601

“Iwate”

Creator:
Location:

Dynamic range:

Frédéric Drago
www.mpi-inf.mpg.de/resources/hdr/gallery.html
1:725

Page 6 Chapter A

“Vine Sunset”

Creator: Paul E. Debevec
Location: http://ict.debevec.org/~debevec/Research/HDR/
Dynamic range: | 1:5 868

Tools and Equipment Page 7

“Memorial Church”
Creator: Paul E. Debevec
Location: http://ict.debevec.org/~debevec/Research/HDR/
Dynamic range: | 1: 342 590

Page 8 Chapter A

“Napa Valley”
Creator: Spheron AG
Location: http://www.mpi-inf.mpg.de/resources/tmo/NewExperiment/TmoOverview.html
Dynamic range: | 1: 67 780

Source Code

B Source Code

This appendix lists the CUDA (Section B.1) and GLSL (Section B.2) code used by the

tone mapping modules developed in the thesis.

B.1 CUDA

This section lists the CUDA and C++ code used to implement the five module kernels or

submodules shown in Figure 5-16 in Chapter 5.

B.1.1 Luminance computation

A luminance map is generated from a full precision, 32-bit-per-channel RGBA HDR input

texture by calling the computeLuminance kernel shown in Listing B.1.

{

global__ void computeLuminance(floatx lumMap,
int lumMapPitch)

// map current thread to a texel in the input texture
int tx = threadldx.x; // thread x position within block
int ty = threadldx.y; // thread y position within block
int bx = blockldx.x; // block x position within grid
int by = blockldx.y; // block y position within grid
int bw = blockDim.x; // block width

int bh = blockDim.y; // block height

int x = bxxbw + tx; // map thread x to texture X

int y = byxbh + ty; // map thread y to texture y

// get current pixel value
float4 res = tex2D(inTex, x, y);

/! compute luminance
float lum = RGB2LUM(res.x, res.y, res.z);

/!l compute linear output index
/!l note: we are using pitch—linear memory
int i = yxlumMapPitch+x;

/! save logarithm of luminance in the luminance map
lumMap[i] = log(lum+1.0);

Listing B.1: CUDA code for luminance computation kernel.

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Page 10 Chapter B

Line 18 in Listing B.1 uses the macro RGB2LUM(. . .), which is defined in Listing B.2.

#define RGB2LUM(r,g,b) (r = 0.2125 + g x 0.7154 + b * 0.0721)

Listing B.2: Macro for computing luminance from RGB input.

B.1.2 Reduction

The kernel used for array reduction is given in Listing B.3.

template <unsigned int blockWidth>
__global__ void reduce(float xidata,
float =xodata,
int num_remaining,
int imgw) {

/! shared memory cache
/! for computation of partial result
__shared__ float cache[threadsPerBlock];

// element in global array to load
int tid = threadldx.x + blockIdx.x xblockWidth*2;

/! index within shared memory cache that this
// thread will work on
int cachelndex = threadldx.x;

/! compute first sum during load
float firstSum = O0;
firstSum = (tid < num_remaining) ? idata[tid] : O;
firstSum += (tid+blockWidth < num_remaining)?
idata [tid+blockWidth]:
03

/1l load the first pairwise sum into cache
cache[cachelndex] = firstSum;
__syncthreads ();

/! reduce manually (no loops)
if (blockWidth >= 512) {
if (cachelndex < 256)
cache[cachelndex] += cache[cachelndex + 256];
__syncthreads ();
}
if (blockWidth >= 256) {
if (cachelndex < 128)
cache[cachelndex] += cache[cachelndex + 128];
__syncthreads ();

}
if (blockWidth >= 128) {

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Source Code Page 11

if (cachelndex < 64)
cache[cachelndex] += cache[cachelndex + 64];
__syncthreads ();

}

// once i <= 32 we are in the same warp.
/!l No need to call __syncthreads anymore
if (cachelndex < 32)

{

volatile float xv = cache;

v[cachelndex] += v[cachelndex + 32];
v[cachelndex] += v[cachelndex + 16];
v[cachelndex] += v[cachelndex + 8];
v[cachelndex] += v[cachelndex + 4];
v[cachelndex] += v[cachelndex + 2];
v[cachelndex] += v[cachelndex + 1];

}

/!l write the result to global memory
if (cachelndex == 0)
odata[blockIdx .x] = cache[0];

Listing B.3: Reduction kernel.

As discussed in Section 5.4.2, the reduction kernel does not completely reduce an input
array to a single sum. Instead, each invocation of the reduction kernel divides the input
array into segments, reduces these segments within shared memory, and writes the results
back into global memory. To completely reduce an array of n elements, the reduction
kernel must be repeatedly called [logs(n)] times.

The CPU-side C code for repeatedly invoking the reduction code to reduce a luminance
map is given in Listing B.4 and uses the result to compute the scene key (defined in
Section 4.1.1).

int i = 0;
float remaining = lumMapPitchxheight;
while (remaining > 1){

/!l invoke the reduction kernel with sufficient threads
/!l to process the remaining partial sums
int nBlocks = ceil ((remaining/(float)threadsPerBlock)*0.5);
reduce<threadsPerBlock ><<< nBlocks, threadsPerBlock >>>
(
(i==0)?lumMap: reductionBuffer ,
reductionBuffer ,
(int)remaining ,
width
)

/! update number of remaining partial results
remaining = nBlocks;

20

21

22

23

24

25

26

Page 12 Chapter B

// copy front element of GPU reductionBuffer to CPU
cudaMemcpy(&sum, (const voidx)reductionBuffer,
sizeof (float), cudaMemcpyDeviceToHost);

// compute scene key from result
float avg = exp(sum/(widthxheight));

Listing B.4: Using the reduction kernel to compute the scene key.

B.1.3 Scaled luminance computation

The kernel for computing scaled luminance, given a luminance map and scene key, is
shown in Listing B.5.

__global__ void scaleLuminance (float* sLumMap,
floatx lumMap,
float key,
float alpha,
int pitch)
{
// map current thread to an element in— and output arrays
int tx = threadldx.x; /1 thread x pos within thread block
int ty = threadldx.y; /!l thread y pos within thread block
int bw = blockDim.x; /1 block width
int bh = blockDim.y; /1 block height
int x = blockldx.xxbw + tx; // thread x position in dataset
int y = blockldx.yxbh + ty; // thread y position in dataset
// compute index to modify in global arrays
int i = yxpitch+x;
// compute scaled
sLumMap[i] = exp(lumMap[i])*(alpha/key);
}

Listing B.5: Scaled luminance computation kernel.

B.1.4 SAT generation

As described in Section 6.1.4, SAT generation is accomplished using a C++ class,
SATHarris, which uses routines from the CUDA library CUDPP to assist in generat-
ing SATs. Listing B.6 shows the two most important methods of the SATHarris class:
init and compute.

[~

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Source Code Page 13

void SATCUDA:: init ()

{

/! allocate SAT for first set of row scans

CUDA_SAFE_CALL(cudaMallocPitch((void=*x) &_sat[0],
&_outRowPitchInBytes ,
_wxsizeof (float),

_h));

// allocate SAT for second set of row scans

/1l (post—transpose)

/1

/!l note that _sat[1] has transposed dimension of _sat[0]

/!l so we use the transposed dimension variables _ow and _oh

CUDA_SAFE_CALL(cudaMallocPitch((voidx*x) &_sat[1],
&_outRowPitchInBytesT,
_owxsizeof (float),
_oh));

// fill both SAT dataset with 0O

CUDA_SAFE_CALL(cudaMemset2D (_sat[0], _outRowPitchInBytes, O,
_outRowPitchInBytes, _h));

CUDA_SAFE _CALL(cudaMemset2D(_sat[1], _outRowPitchInBytesT , O,
_outRowPitchInBytesT , _oh));

/! get row pitch in elements

_outRowPitchInElements = _outRowPitchInBytes/sizeof (float);
_outRowPitchInElementsT = _outRowPitchInBytesT/sizeof (float);
_inRowPitchInElements = _inRowPitchInBytes/sizeof (float);

// set up CUDPP configuration for (inclusive) scan.
CUDPPConfiguration config;

config.op = CUDPP_ADD;

config.datatype = CUDPP_FLOAT;

config.algorithm = CUDPP_SCAN;

config.options = CUDPP_OPTION_FORWARD | CUDPP_OPTION_INCLUSIVE;

// create a CUDPP plan object for the first set of row scans
CUDPPResult result = cudppPlan(&_scanPlanl, config, _w, _h,
_inRowPitchInElements);
if (CUDPP_SUCCESS != result)
{
LOG("Error creating CUDPPPlan 1");
exit(—1);
}

// create a CUDPP plan object for the second set of row scans

result = cudppPlan(&_scanPlan2, config, _ow, _oh,
_outRowPitchInElementsT);

if (CUDPP_SUCCESS != result)

{

52

53

54

55

56

57

58

59

60

61

62

63

65

66

67

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Page 14

Chapter B

LOG("Error creating CUDPPPlan 2");

exit(—1);
}
_initialized = true;
//_ow = _outRowPitchInElements;

// create the timers
CUT_SAFE_CALL(cutCreateTimer(&_scanTimer));
CUT_SAFE_CALL(cutCreateTimer (& _transposeTimer));

} // end SATHarris:: init ()
/!
void SATCUDA:: compute ()

{
if (!_input){

LOG("SATCUDA: :compute(): input has not been set!");

return ;

}
if (!_initialized){

LOG("SATCUDA: : compute () : SAT has not been initilized!");

return ;

}

// set the in/out buffer indices
_in = 0;
_out = 1
_ow = _h;

_scanTime = O;
_transposeTime = O0;

CUT_SAFE _CALL(cutResetTimer (_scanTimer));
CUT_SAFE_CALL(cutResetTimer (_transposeTimer));

// first set of row scans

{
CUT_SAFE_CALL(cutStartTimer (_scanTimer));

// Run the scan
cudppMultiScan (_scanPlanl , _sat[_in], _input, _w,

CUDA_SAFE_CALL(cudaThreadSynchronize ());

CUT_SAFE_CALL(cutStopTimer (_scanTimer));
}

/] transpose

_h);

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

Source Code Page 15

CUT_SAFE_CALL(cutStartTimer (_transposeTimer));

// now transpose

SAT_transpose_fast(_sat[_out], _sat[_in],
_outRowPitchInElementsT ,
_outRowPitchInElements ,
_w, _h);

CUDA_SAFE _CALL(cudaThreadSynchronize ());

CUT_SAFE_CALL(cutStopTimer (_transposeTimer));
}

// second set of row scans

{
CUT_SAFE_CALL(cutStartTimer (_scanTimer));

// result may either be written directly to a dedicated PBO
if (_outPBO)
cudppMultiScan(_scanPlan2 , _outPBO, _sat[_out],

_ow, _oh);
// or to the dataset _sat[1]
else
cudppMultiScan (_scanPlan2, _sat[_out], _sat[_out],
_ow, _oh);

CUDA_SAFE _CALL(cudaThreadSynchronize ());

CUT_SAFE_CALL(cutStopTimer (_scanTimer));
}

// compute total scan and transpose times
_scanTime = cutGetTimerValue(_scanTimer);
_transposeTime = cutGetTimerValue(_transposeTimer);

Listing B.6: SAT generation C++ code.

The transpose function called on Line 13 in Listing B.6 interfaces an efficient, shared
memory based transpose kernel supplied with the CUDA 3.2 SDK.

B.1.5 Dodging-and-burning

Section 6.1.5 proposed four implementations of the dodging-and-burning kernel. The two
most efficient implementations used texture memory and shared memory for SAT access,
both with unrolled loops.

The dodging-and-burning kernel using texture memory for SAT access is shown in Listing
B.7.

41

42

43

44

45

46

47

48

49

50

51

Page 16 Chapter B

__global__ void dodgeAndBurn_TexUnrolled (uchar4* out_data,

floatx lumMap,

floatx sLumMap,

int mapPitch,

float alpha,

float phi,

float epsilon ,

float gamma,

int imgw)

float scales[8] = {1.0, 3.0,5.0,7.0,11.0,17.0,25.0,31.0};

// map thread to (x,y) coordinate
int bx = blockDim.x*blocklIdx .x;
int by = blockDim.yxblockldx.y;
int x = bx + threadldx .x;

int y = by + threadldx.y;

/!l compute global array in and out indices
int maplndex = yxmapPitch + x;
int i = yximgw + Xx;

// retrieve input HDR pixel,

// luminance and scaled luminance
float4 res = tex2D(inTex, x, y);
float lum = exp (lumMap[mapIlndex]);
float 1s = sLumMap[maplIndex];

// init adjacent levels of box filter pyramid
float center = lIs;
float surround = getAverageTex(y, x, scales[1]);

float w;
COMPUTE W (1);

// proceed with dodging—and—burning

if (fabs(w) < epsilon){
center = surround ;
surround = getAverageTex(y, x, scales[2]);
COMPUTE W(scales [1]);

}

if (fabs(w) < epsilon){
center = surround ;
surround = getAverageTex(y, x, scales[3]);
COMPUTE W(scales [2]);

}

if (fabs(w) < epsilon){
center = surround ;
surround = getAverageTex(y, x, scales[4]);
COMPUTE W(scales [3]);

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

IS

® N o Ww

Source Code Page 17

}
if (fabs(w) < epsilon){
center = surround;
surround = getAverageTex(y, x, scales[5]);
COMPUTE W(scales [4]);
}
if (fabs(w) < epsilon){
center = surround;
surround = getAverageTex(y, x, scales[6]);
COMPUTE W(scales[5]);
}
if (fabs(w) < epsilon){
center = surround;
}

/!l now do local tone mapping
float Idr = (ls/(l+center))=*255;

/!l write tone mapped RGB values to output PBO
out_data[i] = make_uchar4(
min(ldr*__powf(res.x/lum, gamma), 255.0f),
min(ldr*__powf(res.y/lum, gamma), 255.0f),
min(ldr*__powf(res.z/lum, gamma), 255.0f),
255);

Listing B.7: Dodging-and-burning kernel using texture memory for SAT access.

The COMPUTE_W () macro first used on Line 35 in Listing B.7 is used to hide arithmetic
clutter required for computing the center-surround function defined in Section 4.1.2, as
well to simplify kernel-wide modification whenever this function is changed. Its defini-
tions is given in Listing B.8.

#define COMPUTE W(sc) (w = (center—surround) / \

(__powf (2.0, phi)x(alpha/((sc)*(sc))) \
+ center))

Listing B.8: Center-surround function computation.

Another important function used in Listing B.7 is getAverageTex, first used on Line
32. This function uses the SAT texture to compute the average scaled luminance within
a square region surrounding a given position. Its definition is given in Listing B.9. Note
that trasposed coordinates are used whenever it is called from Listing B.7.

__device__ float getAverageTex(int x, int y, float size)

{

/!l compute distance in each direction from center (Xx,y)
int offset=(int)(0.5xsize);

// for storing result
float result = 0.0;

/!l compute integral of scaled luminance within

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Page 18 Chapter B

}

/! specified region

result = tex2D (satTex, x+offset ,y+offset);
result —= tex2D (satTex, x+offset, y—offset —1);
result —= tex2D(satTex , x—offset —1, y+offset);
result += tex2D (satTex, x—offset —1, y—offset —1);

// return average scaled luminance
return result/(sizexsize);

Listing B.9: A function that accesses a SAT stored in texture memroy to computing the

average scaled luminance in a square region surrounding a given location.

The shared memory dodging-and-burning implementation is displayed in Listing B.10

global__ void dodgeAndBurn_SM_Unrolled(uchar4+ out_data,
float lavg,
float alpha,
float phi,
float epsilon,
float gamma,
int imgw)

/!l shared memory cache

// column allocated with 48+1 elements

/1l to reduce shared memory bank conflicts

__shared__ float cache[48][48+1];

float scales[8] = {1.0, 3.0,5.0,7.0,11.0,17.0,25.0,33.0};

// map thread to 2D image pixel pos
int bx = blockDim.x*blockIdx .x;

int by = blockDim.yxblockldx.y;

int tx = threadldx.x;

int ty = threadldx.y;

int bw = blockDim.x;

int bh = blockDim.y;

int x = bx + threadldx .x;

int y = by + threadldx.y;

/!l compute input sat element position
int satx = by + threadldx.x;
int saty = bx + threadldx.y;

/! position of current pixel inside SM cache
int xc = tx+bw;
int yc = ty+bh;

int i = yximgw + Xx;
// retrieve input HDR pixel,

// luminance and scaled luminance
/1

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

Source Code Page 19

/! note: instead of reading from luminance and

/! scaled luminance maps, we recompute the appropriate values.
// This has little impact on performance and reduces

/! kernel register usage.

float4 res = tex2D(inTex, x, y);

float lum = RGB2LUM(res.x, res.y, res.z);

float 1s = lum=x(alpha/lavg);

// fill apron

CACHE(ty+bw, tx+bw) = SATTEX (satx , saty);
CACHE(ty+bw, tx) = SATTEX(satx—bw, saty);
CACHE(ty+bw, tx+2xbh) = SATTEX(satx+bw, saty);

CACHE(ty , tx) = SATTEX(satx—bw, saty—-bw);
CACHE(ty , tx+bh) = SATTEX(satx, saty—bw);
CACHE(ty , tx+2xbh) = SATTEX(satx+bw, saty-—-bw);

CACHE(ty+2xbw, tx) = SATTEX(satx—-bw, saty+bw);
CACHE(ty+2%bw, tx+bh) = SATTEX(satx , saty+bw);
CACHE(ty+2xbw, tx+2xbh) = SATTEX(satx+bw, saty+bw);

/! barrier: move on only once all thread have loaded their
/! part of the apron
__syncthreads ();

// init adjacent levels of box filter pyramid
float center = ls;
float surround = BOX(xc,yc,scales[1]);

float w;
COMPUTE W (1.0);

/!l proceed with dodging—and—burning
if (abs(w) < epsilon){
center = surround;
surround = BOX(xc,yc,scales[2]);
COMPUTE W(scales [1]);

}

if (abs(w) < epsilon){
center = surround;
surround = BOX(xc,yc,scales[3]);
COMPUTE W(scales[2]);

}

if (abs(w) < epsilon){
center = surround;
surround = BOX(xc,yc,scales[4]);
COMPUTE W(scales[3]);

}

if (abs(w) < epsilon){

center = surround;
surround = BOX(xc,yc,scales[5]);

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

=T - Y T N e R R

Page 20 Chapter B

COMPUTE W(scales [4]);

}
if (abs(w) < epsilon){
center = surround;
surround = BOX(xc,yc,scales[6]);
COMPUTE W(scales[5]);
}
if (abs(w) < epsilon){
center = surround;
}

/! now do local tone mapping
float Idr = (ls/(l+center))=x255;

// write tone mapped RGB values to output PBO
out_data[i] = make_uchar4(
min(ldr*__powf(res.x/lum, gamma), 255.0f),
min(ldr*__powf(res.y/lum, gamma), 255.0f),
min(ldr*__powf(res.z/lum, gamma), 255.0f),
255);

Listing B.10: Dodging-and-burning kernel using shared memory for SAT access.

Once again, the code in Listing B.10 uses macros to reduce clutter and simplify modifi-
cation. The macro CACHE, first used on Line 47, is used to simplify access to the cache
shared memory array, and the macro BOX, first used on Line 65, uses the array cache to
compute the average scaled luminance surrounding a given location. These macros are
defined in Listing B.11.

#define CACHE(x,y) (cachel[y][x])

#define BOX(x,y,radius) (\
(\
CACHE((x)+((int)(0.5%xradius)) ,(y)+((int)(0.5%xradius))) — \
CACHE((x)+((int)(0.5xradius)), y—((int)(0.5%xradius))—1) — \
CACHE((x)—((int)(0.5xradius))—1, (y)+((int)(0.5%xradius))) + \
CACHE((x)—((int)(0.5xradius))—1, (y)—((int)(0.5xradius))—1)
) / (radiusxradius) \

)

Listing B.11: Macros used in the shared memory dodging-and-burning implementation.

B.2 GLSL

This section lists the GLSL and C++ code used to implement the four shader programs or
submodules shown in Figure 5-19 in Chapter 5.

Source Code Page 21

B.2.1 Luminance compuation

The GLSL fragment shader code used for luminance computation is given in Listing
B.12.

/! hdr input texture
uniform sampler2D hdrTex;

void main(void)
{
// get color from the texture
vec4d currTexel = texture2D (hdrTex, gl_TexCoord[0].st);
float lum = dot(vec3(0.2125,0.7154,0.0721), currTexel.rgb);

/! save luminance and log—luminance
// in output channels
gl_FragColor.r = log(lum + 1.0f);
gl_FragColor.y Ium

Listing B.12: A GLSL fragment shader for computing luminance.

B.2.2 Scaled luminance computation

Scaled luminance is computed with the fragment shader shown in Listing B.13.

uniform sampler2D lumTex; // luminance map
uniform float alpha;

void main(void)
{
// get luminance for current texel
float 1 = texture2D (lumTex, gl_TexCoord[0].st).g;

// retrieve average log—lum from top of mipmap
float IMean = tex2Dlod (lumTex, float4 (0.5, 0.5, 0.0, 100)).r;
IMean = exp(IMean);

// compute scaled luminance
float 1s = (alpha / IMean) % 1;

/1l save output
gl_FragColor.x
gl_FragColor.y

Is;
1

Listing B.13: A GLSL fragment shader for computing scaled luminance.

Page 22 Chapter B

B.2.3 SAT generation

SAT generation in the shader tone mapping module is accomplished using a combination
of GLSL shaders and C++ code. The C++ code responsible for manipulating the shaders
is gathered in the class SATSengupta, described in Section 6.2.4. The most important
code in the SATSengupta: : compute () function, which invokes a series of GLSL shaders
to generate a SAT from an input texture, is shown in Listing B.14.

/1
// Horizontal pass
/!
int topLevel = ceil(log((double)_w)/log(2.0));
1ibGL :: GLTexture* 1in;
IibGL :: GLTexturex out;

// screen—aligned quad for invoking shaders
libGL :: GLCanvas* canvas;

// up sweep: reduction
for (int d = 1; d <= topLevel; d++)

{
if (d == 1) in = _inTex;
else in = _texLevelsH_PartialSum[d—1];
out = _texLevelsH_PartialSum|[d];
canvas = _canvasHLevels[d—1];

/! bind appropriate Frame Buffer Object
_fboHLevels[d]—>bind ();
_fboHLevels[d]—>setTarget(out);

// enable the reduction shader
_shaderHorUp—>enable ();

glActiveTexture (GL_TEXTUREO);
_shaderHorUp—>setUniform1f("imgw", in—>w());

in—>bind ();
_shaderHorUp—>setUniform1li("tSrc", 0);
canvas —>draw () ;

in—>release ();

/1 done
_shaderHorUp—>disable ();
_fboHLevels[d]—>release ();

}

// down sweep

libGL :: GLTexturex parentTex;

libGL :: GLTexturex currTex ;

for (int d = topLevel —1; d >= 0; d—)

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

83

84

85

86

87

88

89

Source Code Page 23

}
/1
/1
/1

/1

// set outpu
out = _texLevelsH_Result[d];

/l set parent texture
if (d == topLevel —1) parentTex = _texLevelsH_PartialSum[d+1];
else parentTex _texLevelsH_Result[d+1];

// set current texture
if (d == 0) currTex = _inTex;
else currTex = _texLevelsH_PartialSum|[d];

// set the input canvas
canvas = _canvasHLevels[d];

/!l bind appropriate Frame Buffer Object
_fboHLevels[d]—>bind ();
_fboHLevels[d]—>setTarget(out);

/!l enable the down pass shader

_shaderHorDown—>enable ();
_shaderHorDown—>setUniform1f("imgw", currTex—>w());
_shaderHorDown—>setUniform1f ("parentw", parentTex —>w());

// bind the input textures

glActiveTexture (GL_TEXTUREO);

parentTex —>bind ();
_shaderHorDown—>setUniformli("tParentLevel", 0);

glActiveTexture (GL_TEXTURE]1);
currTex —>bind ();

_shaderHorDown—>setUniformli("tCurrLevel", 1);

/! invoke the program
canvas —>draw () ;

/1 cleanup
_shaderHorDown—>disable ();
_fboHLevels[d]—>release ();

Vertical pass is similar to horizontal one

point output at the final result

_outTex = _texLevelsV_Result[0];

Listing B.14: A GLSL fragment shader for computing scaled luminance.

The code in Listing B.14 uses Sengupta’s algorithm to for scan computation (see Section
5.2.4), where each parallel algorithm step is performed by a shader program.

]

Page 24 Chapter B

As explained in Section 5.2.4, scan computation using Sengupta’s algorithm is accom-
plished using two phases: a reduction phase and a down-sweep phase. Therefore, a total
of four GLSL shader programs are used for SAT generation: two reduction shaders, each
customized to operate on columns or rows, and two down-sweep shaders, also invidually
modified to operate on columns or rows. Since column scans are a simple permutation of
row scans, only the row scan shaders are shown here. The following subsections detail
the GLSL shader programs used for each phase of row scan computation.

B.2.3.1 Reduction phase

The vertex and fragment shaders used for reduction scan phase are shown in Listing B.15
and B.16, respectively. These shaders are interfaced through the object _shaderHorUp in
Listing B.14.

uniform float imgw;

void main ()

{

gl_Position = ftransform ();

float tw = 1.0/imgw; // texel width
vec2 uv = gl_MultiTexCoord0O.xy;

gl_TexCoord [0].xy
gl_TexCoord [0].wz

}s

vec2(2+xuv.x—0.5%xtw, uv.y);
vec2(2xuv.x+0.5%tw, uv.y);

Listing B.15: GLSL vertex shader code for the reduction phase of Sengupta’s scan algo-
rithm.

uniform sampler2D tSrc;

void main ()

{
vecd uv = gl_TexCoord[0];
float curr = texture2D (tSrc, uv.xy).r;
float next = texture2D (tSrc, uv.wz).r;

// remember, output is a single—channel texture
gl_FragColor = curr+next;

}s

Listing B.16: GLSL fragment shader code for the reduction phase of Sengupta’s scan al-
gorithm.

B.2.3.2 Down-sweep phase

All important work involved in the down-sweep phase is computed using fragment
shaders. The fragment shader program used for the down-sweep phase is given in List-
ing B.17. To better understand the code in Listing B.17, compare it to its algorithm
specification, given in Section 5.2.4.

[~

w

IS

=)

Source Code

Page 25

uniform
uniform
uniform
uniform

sampler2D tParentLevel;
sampler2D tCurrLevel;
float imgw;

float parentw;

void main ()

{

)

vecd uv = gl_TexCoord[0];

float tw = 1.0/parentw;
/! use de—normalized x value to make life simpler
int x = (int)(uvximgw);
float t;
vec2 p = uv;
if(x > 0)
{
if ((int)x % 2 '= 0){
/1 if the parent texture width is 0
// uv.x == 0.5 will address the border between the
/!l center texels.
// 1f this is the case, make small adjustment

if(uv.x == 0.5 && (int)parentw % 2 ==

t
}

else

P
t

p —= vec2(0.5xtw, 0);
= texture2D (tParentLevel , p);

{

—= vec2(1.0/imgw, 0);

= texture2D (tCurrLevel , uv.xy) +
texture2D (tParentLevel , p);

texture2D (tCurrLevel , uv.xy);

gl_FragColor.r = t;

0)

two

Listing B.17: GLSL fragment shader code for the reduction phase of Sengupta’s scan al-

gorithm.

]

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Page 26 Chapter B

B.2.4 Dodging-and-burning

The final shader program, which uses the partial results generated by the shaders listed in

previous subsections to apply the final local tone mapping, is given in Listing B.18.

uniform sampler2D satTex;
uniform sampler2D lumTex;
uniform sampler2D hdrTex;

uniform float alpha;
uniform float phi;
uniform float epsilon;
uniform float gamma;

uniform float imgw;
uniform float imgh;

float box (float s, vec2 uv)

{
/! compute normalized size
vec2 nSize = vec2(s/imgw, s/imgh);
/l retrieve integral of scaled luminance in given region
/1 using SAT
float result = 0;
result = texture2D (satTex, uv + 0.5 *x nSize).r;
result —= texture2D (satTex , uv + vec2(0.5, —0.5) *x nSize).r;
result —= texture2D (satTex, uv + vec2(—0.5, 0.5) *x nSize).r;
result += texture2D (satTex, uv — 0.5 * nSize).r;
/! return average scaled luminance in region
return result/(sx*xs);
}

void main(void)

{
float scale[8] = {1.0,3.0,5.0,7.0,11.0,17.0,25.0,39.0};
vec2 uv = gl_TexCoord[0].xy;

// retrieve the scaled luminance from red channel
// of lum tex
float Is = texture2D (lumTex, uv).r;

/1 init first two levels of box filter pyramid
float center = lIs;
float surround = box(scale[l], uv);

/!l compute center—surround

float dNum = pow (2.0, phi)*alpha;

float denominator = dNum + center;

float w = (center — surround) / denominator;

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

Source Code

Page 27

/! proceed with dodging—and—burning
if (abs(w) < epsilon)

{
center = surround;
surround = box(scale[2], uv);
denominator = dNum / pow(scale[l] ,2.0) + center;
w = (center — surround) / denominator;
}
if (abs(w) < epsilon)
{
center = surround;
surround = box(scale[3], uv);
denominator = dNum / pow(scale[2] ,2.0) + center;
w = (center — surround) / denominator;
}
if (abs(w) < epsilon)
{
center = surround;
surround = box(scale[4], uv);
denominator = dNum / pow(scale[3] ,2.0) + center;
w = (center — surround) / denominator;
}
if (abs(w) < epsilon)
{
center = surround;
surround = box(scale[5], uv);
denominator = dNum / pow(scale[4] ,2.0) + center;
w = (center — surround) / denominator;
}
if (abs(w) < epsilon)
{
center = surround;
surround = box(scale[6], uv);
denominator = dNum / pow(scale[5] ,2.0) + center;
w = (center — surround) / denominator;
}
if (abs(w) < epsilon)
{
center = surround;
}

/!l compress scaled luminance

99

100

101

102

103

104

105

106

107

108

109

110

Page 28 Chapter B

float Idr = 1s / (1.0 + center);

/! retrieve input RGB and luminance values
vecd res = texture2D (hdrTex, uv);
float lum = texture2D (lumTex, uv).g; // use green channel

/1l save the compressed, RGB result.

gl_FragColor = vec4 (ldrxpow(res.x/lum, gamma),
Ildr+pow(res.y/lum, gamma),
Idrxpow(res.z/lum, gamma),

1);

Listing B.18: GLSL fragment shader code for dodging-and-burning.

	Introduction
	Problem description
	Aim
	Thesis structure

	Background Theory
	HDR Concepts in Imaging and Computer Graphics
	Color and luminance
	Dynamic range
	HDR Imaging
	HDR Rendering
	The tone mapping problem

	Image processing
	Introduction to digital images
	Image convolution

	GPU Concepts
	Shader programming
	General-Purpose GPU (GPGPU) programming
	The CUDA programming model

	Requirements Specification
	Enabling HDR Rendering in VND
	Tone mapping requirements
	Summary

	Related Work
	Reinhard's method for photographic tone reproduction
	Global luminance compression
	Local dodging-and-burning
	Performance

	Local tone mapping on the GPU
	A GPU pipeline for local photographic tone reproduction
	Convolution optimization by texture resampling
	Approximating Reinhard's local operator using GPU-based Summed-Area Tables

	Summary and discussion

	Approach
	Slomp and Oliveira's method
	Method description
	Optimization opportunities

	Optimizing SAT generation
	The building block of SATs: all-prefix-sums
	Sequential scan
	The non-work-efficient parallel scan used by Slomp and Oliveira
	A work-efficient parallel scan
	Leveraging GPU hardware with CUDA

	Using CUDA with OpenGL for post processing
	Procedure
	Results and discussion
	Conclusion

	A CUDA tone mapping module
	Luminance extraction
	Reduction
	Computing scaled luminance
	SAT generation
	Dodging-and-burning

	A shader tone mapping module
	Summary

	Implementation
	Tone mapping with CUDA
	Luminance extraction
	Reduction
	Scaled luminance computation
	SAT generation
	Dodging-and-burning

	Tone mapping with shaders
	A bypass vertex shader
	Luminance extraction
	Scaled luminance computation
	SAT generation
	Dodging-and-burning

	TMStudio: An OpenGL test platform
	Using TMStudio
	Implementational details
	Outlook

	Summary

	Results
	Tone mapping HDR night driving scenes
	Global vs local tone mapping
	Tone mapping parameters
	Summary

	The CUDA tone mapping module
	Performance
	Kernel properties

	Global tone mapping
	Comparison of CUDA and shader implementations
	A shader implementation of Slomp and Oliveira's original method
	SAT generation
	Local tone mapping performance
	A hybrid method
	High Definition resolutions in the HD Visualization Center

	Balancing speed and quality
	Conclusion

	Conclusion and Outlook
	Thesis summary
	Future work

	Bibliography
	Tools and Equipment
	The development system
	The HD Visualization Center
	HDR images

	Source Code
	CUDA
	Luminance computation
	Reduction
	Scaled luminance computation
	SAT generation
	Dodging-and-burning

	GLSL
	Luminance compuation
	Scaled luminance computation
	SAT generation
	Dodging-and-burning

