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Abstract

We study the generalized k-median problem with re-
spect to a Bregman divergence Dφ. Given a finite
set P ⊆ Rd of size n, our goal is to find a set C
of size k such that the sum of errors cost(P,C) =∑

p∈P minc∈C

{
Dφ(p, c)

}
is minimized. The Bregman

k-median problem plays an important role in many ap-
plications, e.g. information theory, statistics, text clas-
sification, and speech processing. We give the first
coreset construction for this problem for a large sub-
class of Bregman divergences, including important dis-
similarity measures such as the Kullback-Leibler diver-
gence and the Itakura-Saito divergence. Using these
coresets, we give a (1 + ε)-approximation algorithm
for the Bregman k-median problem with running time
O

(
dkn + d2( k

ε )Θ(1)
logk+2 n

)
. This result improves over

the previousely fastest known (1 + ε)-approximation al-
gorithm from [1]. Unlike the analysis of most coreset
constructions our analysis does not rely on the construc-
tion of ε-nets. Instead, we prove our results by purely
combinatorial means.

1 Introduction

Clustering is the problem of grouping a set of objects
into subsets — so-called clusters — such that similar
objects are grouped together. Algorithms for cluster-
ing objects have numerous applications in various ar-
eas of computer science such as machine learning, data
compression, speech and image analysis, data mining,
or pattern recognition. Obviously, in different applica-
tions we need to cluster different objects, such as text
documents, gene sequences, probability distributions or
speech signals. Therefore, the notion of (dis-)similarity
varies from application to application. The so-called
Bregman divergences play an important role in many of
these applications.

The quality of a clustering is measured using a well-
defined cost function involving the proper dissimilarity
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measure for a given application. A cost function that
has been proved useful in the past decades is the k-
median cost function. Here the objective is to parti-
tion a set of objects into k clusters, each with a given
cluster representative, such that the sum of errors from
each object to their representative is minimized. Many
approximation algorithms and techniques for this mini-
mization problem have been developed when the dissim-
ilarity measure used is a metric such as the Euclidean
distance (known as the Euclidean k-median problem),
or when the squared Euclidean distance is used (known
as the Euclidean k-means problem). However, until re-
cently for non-metric dissimilarity measures almost no
approximation algorithms were known.

This stands in sharp contrast to the fact that
many non-metric dissimilarity measures are used in
various applications. To name just a few examples, the
Mahalanobis divergence is used in statistics, the Pearson
correlation is used in genetics, the cosine similarity is
used in data mining, the Itakura-Saito divergence is
used in speech processing, and the Kullback-Leibler
divergence is used in machine learning, data mining, and
information theory. In fact, our original motivation for
clustering with general divergence measures came from
an industrial project on lossless compression of Java
and C++ executable code, where we used clustering
with respect to the Kullback-Leibler divergence. For
an overview of applications of various dissimilarity
measures and clustering algorithms we refer to [17, 23].

The Kullback-Leibler divergence is an instance of
a broader class of dissimilarity measures that has at-
tained considerable attention in the past few years: the
class of Bregman divergences. Bregman divergences in-
clude useful dissimilarity measures such as the squared
Euclidean distance as well as the above-mentioned Ma-
halanobis distance and Itakura-Saito divergence. While
research on the combinatorial and algorithmic proper-
ties of the Bregman k-median problem is relatively new,
some interesting results have been obtained recently.
In [4], Lloyd’s famous k-means heuristic has been gen-
eralized to all Bregman divergences. In [22], the no-
tion of Bregman Voronoi diagrams has been studied. A
first (1+ε)-approximation algorithm applicable to many



Bregman divergences has been proposed in [1].
In this paper we take another step in applying meth-

ods from computational geometry to clustering with
respect to Bregman divergences. Building heavily on
Chen’s work [8, 9], we describe the first coreset con-
struction for a large subclass of Bregman divergences,
including important dissimilarity measures such as the
Kullback-Leibler divergence. Unlike the analysis of
most coreset constructions our analysis does not rely
on the construction of ε-nets. Instead, we give a purely
combinatorial proof. Using these coresets we describe
a (1+ ε)-approximation algorithm solving the k-median
problem for large class of Bregman divergences. The al-
gorithm has running time O

(
dkn + d2( k

ε )Θ(1)
logk+2 n

)
.

Assuming that d and k are much smaller than n, this
result improves significantly over the previously fastest
known (1 + ε)-approximation algorithm from [1] which
runs in time O(d2( k

ε )Θ(1)
n).

1.1 Related work. Relatively little is known about
the complexity and geometry of the general Bregman k-
median problem. In [4], Banerjee et al. have generalized
Lloyd’s famous k-means heuristic to all Bregman diver-
gences. Thereby, they give a unified explanation for ear-
lier observations that the k-means heuristic is applicable
to individual measures such as the Itakura-Satito diver-
gence [6] or the Kullback-Leibler divergence [11]. In
[22], Nielsen et al. study the notion of Bregman Voronoi
diagrams and show how to compute them efficiently. A
first (1 + ε)-approximation algorithm applicable to the
k-median problem for many Bregman divergences has
been proposed by Ackermann et al. in [1]. This result
generalizes an earlier algorithm from [18] for the squared
Euclidean distances to a variety of Bregman divergences
and some other dissimilarity measures.

Coresets in the context of the Euclidean k-median
and the Euclidean k-means problem have been known
for some time (see [21, 3, 15, 10, 13]). A (k, ε)-coreset for
a set P is a small (weighted) set such that for any set C
of k cluster centers the (weighted) clustering cost of the
coreset is an approximation for the clustering cost of the
original set P with relative error at most ε. From this
definition it follows that a good approximate clustering
for the set P is given by a good approximate clustering
for the coreset. Many coreset constructions have been
given, most notably by Har-Peled and Kushal in [14]
where the size of the coreset is independent of the size
of the input set (but still exponential in dimension d).
Of the recent results, the coreset construction of Chen
in [8, 9] is of particular interest to our contribution. The
size of Chen’s coresets is only linear in d. Thus, these
coresets are well suited for high-dimensional settings.

Furthermore, a relaxed notion of coresets has been
introduced by Feldman et al. in [12]. The definition of
weak coresets differs slightly from the original definition
of a coreset. For a finite set Γ a set S is called a Γ-weak
coreset for P if for all sets of k cluster centers from Γ the
clustering cost of the coreset is a good approximation
to the clustering cost of the whole set P . This notion
of weak coreset plays a crucial role in our work.

1.2 Our results. We will use a generalized formu-
lation of the k-median problem. Let D(·, ·) be a dis-
similarity measure (e.g., a Bregman divergence) that
specifies the dissimilarity between two objects from do-
main X ⊆ Rd. For p ∈ X and C ⊆ X we also use
D(p, C) = minc∈C D(p, c) for simplicity of notation.

The k-median problem with respect to D is defined
as follows. We are given a finite set P ⊆ X of objects
from the domain. Our goal is to find a set C ⊆ X of
size k such that the sum of errors

cost(P,C) =
∑
p∈P

D(p, C)

is minimized. We denote the cost of such an optimal
solution by optk(P ). The elements of C are called k-
medians of P .

Throughout this paper, we consider the k-median
clustering problem for a large class of Bregman diver-
gences we call µ-similar Bregman divergences. To the
best of our knowledge, this class includes most of the
Bregman divergences that are used in practice, such as
the squared Euclidean distance, Mahalanobis distance,
Kullback-Leibler divergence, and Itakura-Saito diver-
gence. Our main results can be summarized as follows.

• Given a µ-similar Bregman divergence on domain
X ⊆ Rd. We show that for any P ⊆ X of
size n and for any finite Γ ⊆ X there exists a
weak coreset of size O

(
1
ε2 k log(n) log(k|Γ|k log n)

)
.

Furthermore, given a set of medians of a con-
stant factor bicriteria approximation of the k-
median problem, we show that with high prob-
ability such a coreset can be constructed in
time O

(
dkn + 1

ε2 k log(n) log(k|Γ|k log n)
)
, using

the coreset construction from [8, 9].

• Using weak coresets and an adaptation of
an algorithm from [1] we give a (1 + ε)-
approximation algorithm with running time
O

(
dkn + d2( k

ε )Θ(1)
logk+2 n

)
. To our knowledge,

this new algorithm is the asymptotically fastest
algorithm known for the k-median problem with
respect to a number of Bregman divergences
such as the Kullback-Leibler divergence and the
Itakura-Saito divergence.



We point out that due to the low dependency
on d our results are particularly relevant for high-
dimensional settings. Additionally, using the merge-
and-reduce technique from [15] our weak coresets can
also be applied to the data streaming model.

1.3 Our techniques. Unlike the analysis of most
”strong” coreset constructions our analysis does not rely
on the construction of ε-nets (e.g., compare to [15, 8, 9]).
Usually, the analysis of coresets via ε-nets requires the
underlying space to be a metric space. However, most
Bregman divergences are asymmetric, do not obey the
triangle inequality, and may even possess singularities,
i.e., there are p, q ∈ X such that D(p, q) = ∞. In
the close vicinity of such singularities no meaningful
clustering can take place, and also the use of ε-nets
is infeasible. Therefore, we restrict ourselves to the
subclass of so called µ-similar Bregman divergences that
avoid these singularities.

µ-similar Bregman divergences feature some quasi-
metric properties. That is, they are approximately sym-
metric and they obey the triangle inequality within a
constant factor. Using these properties and a straight-
forward adaptation of the proofs from [8, 9] based on
ε-nets, one finds that Chen’s coreset construction leads
to a (k, Θ(1))-coreset S. However, subtle technical dif-
ficulties arise from the asymmetry if we have to show
that S is a (k, ε)-coreset for arbitrarily small ε. Hence,
even in the case of µ-singular Bregman divergences, the
use of ε-nets to prove the existence of (k, ε)-coresets for
the Bregman k-median problem seems infeasible.

Therefore, we concentrate on the construction of Γ-
weak coresets. Our main contribution is the construc-
tion of an explicit, small Γ that includes all relevant
medians. By bounding the combinatorial complexity of
the approximate solutions computed by the algorithm
from [1], as well as bounding the combinatorial complex-
ity of Bregman k-median clusterings in general, we are
able to prove the existence of such a small Γ by purely
combinatorial means. In fact, our construction of weak
corsets can be applied to any approximation algorithm
if the combinatorial complexity of the algorithm’s pos-
sible outputs is small.

Our approach is similar in spirit to the approach
from [8, 9] for the metric k-median problem and the
metric k-means problem, as well as to the approach from
[12] for the Euclidean k-means problem.

2 Preliminaries

In this section we give a short introduction to Bregman
divergences. We introduce our notion of µ-similarity
and prove some important properties of µ-similar Breg-
man divergences. Furthermore, we derive a bound on
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Figure 1: Geometric interpretation of a Bregman diver-
gence.

the combinatorial complexity of (general) Bregman k-
median clusterings.

2.1 Bregman divergences. The dissimilarity mea-
sures known as Bregman divergences were first proposed
in 1967 by Lev M. Bregman [5]. For a study of Bregman
divergences and their optimization problems see [7].

Intuitively, a Bregman divergence can be seen as
the error when approximating a convex function by a
tangent hyperplane (see Figure 1). We will use the
following formal definition.

Definition 2.1. Let X ⊆ Rd. For any strictly convex,
differentiable function φ : X → R we define the
Bregman divergence with respect to φ as

Dφ(p, q) = φ(p)− φ(q)−∇φ(q)T(p− q)

for p, q ∈ X . Here ∇φ(q) denotes the gradient of φ at
point q.

Note that Dφ(p, q) equals the tail of the first-order Tay-
lor expansion of φ(p) at q. Bregman divergences include
many prominent dissimilarity measures like the square
of the `2-norm D`22

(p, q) = ‖p−q‖2 (with φ`22
(t) = ‖t‖2),

the generalized Kullback-Leibler divergence DKL(p, q) =∑
pi ln pi

qi
−

∑
(pi−qi) (with φKL(t) =

∑
ti ln ti−ti), and

the Itakura-Saito divergence DIS(p, q) =
∑ pi

qi
−ln pi

qi
−1

(with φIS(t) = −
∑

ln ti). We point out that, in general,
Bregman divergences are asymmetric and do not satisfy
the triangle inequality.

2.2 µ-similarity. Among the Bregman divergences
one class of dissimilarity measures plays an important
role in our work. For any positive definite matrix
A ∈ Rd×d the Mahalanobis distance with respect to A
is defined as

DA(p, q) = (p− q)TA (p− q)

for p, q ∈ Rd. The Mahalanobis distance was introduced
in 1936 by P. C. Mahalanobis [20] based on the inverse
of the correlation matrix of two random variables. The
Mahalanobis distance is a Bregman divergence given



by the generating function φA(t) = tTA t. Unlike
most Bregman divergences, Mahalanobis distances are
symmetric. Furthermore, they satisfy the following
double triangle inequality.

Lemma 2.1. For a Mahalanobis distance DA and for all
p, q, r ∈ Rd we have DA(p, q) ≤ 2

(
DA(p, r) + DA(r, q)

)
.

Proof. Since A is positive definite there exists a non-
singular matrix B ∈ Rd×d with A = BTB. We obtain

DA(p, q) = (p− q)TBTB (p− q)

= (Bp−Bq)T(Bp−Bq)

= ‖Bp−Bq‖2

≤ 2
(
‖Bp−Br‖2 + ‖Br −Bq‖2

)
= 2

(
DA(p, r) + DA(r, q)

)
.

Here the inequality ‖x− y‖2 ≤ 2
(
‖x− z‖2 + ‖z − y‖2

)
holds for all x, y, z ∈ Rd. �

To some extent, Mahalanobis distances are proto-
typical for many Bregman divergences that are used in
practice. This observation is formalized in the following
notion of µ-similarity, that has already been used in [1].

Definition 2.2. A Bregman divergence Dφ on domain
X ⊆ Rd is called µ-similar for positive real constant µ
iff there exists a positive definite matrix A such that for
Mahalanobis distance DA and for each p, q ∈ X we have

µDA(p, q) ≤ Dφ(p, q) ≤ DA(p, q).

Example: Let 0 < λ < υ. We consider the generalized
Kullback-Leibler divergence DKL(p, q) =

∑
pi ln pi

qi
−∑

(pi − qi) on domain X = [λ, υ]d ⊆ Rd. We show that
DKL is µ-similar with µ = λ

υ and A = 1
2λId.

To see this, note that for the strictly convex function
φKL(t) =

∑d
i=0 ti ln ti − ti, all second-order partial

derivatives exist and are continuous. The Kullback-
Leibler divergence is the tail of the first-order Taylor
expansion of φKL(p) at q. Therefore, by the Lagrange
form of the remainder term, there exists an ξ with
ξi ∈ [pi, qi] such that

DKL(p, q) =
1
2

d∑
i=1

d∑
j=1

∂2

∂ti∂tj
φKL(ξ)(pi − qi)(pj − qj)

=
1
2
(p− q)T∇2φKL(ξ)(p− q) .

Here ∇2φKL(ξ) denotes the Hessian matrix of φKL at
point ξ. Since ∂2

∂t2i
φ(t) = 1

ti
and ∂2

∂ti∂tj
φ(t) = 0 for i 6= j

the Hessian is a diagonal matrix and we obtain

DKL(p, q) =
1
2
(p− q)T


1

ξ1
1

ξ2

. . .
1

ξd

 (p− q) .

Using 1
υ ≤ 1

ξi
≤ 1

λ for each ξi, the observation follows.
�

To the best of our knowledge, most Bregman diver-
gences Dφ that are used in practice are µ-similar when
restricted to a domain X that avoids the singularities of
φ. A small overview of some µ-similar Bregman diver-
gences is given in Figure 2. It is an important property
that µ-similar Bergman divergences are approximately
symmetric and satisfy a variant of the double triangle
inequality, as is stated in the following lemma.

Lemma 2.2. For µ-similar Bregman divergence Dφ and
for all p, q, r ∈ X we have Dφ(p, q) ≤ 1

µ Dφ(q, p) and
Dφ(p, q) ≤ 2

µ

(
Dφ(p, r) + Dφ(q, r)

)
.

Proof. This lemma follows easily from Definition 2.2
and the symmetry and the double triangle inequality
of Mahalanobis distances (Lemma 2.1). �

2.3 Combinatorial complexity of Bregman k-
median clusterings. It is known that for all Bregman
divergences every two clusters of an optimal k-median
clustering solution are separated by a hyperplane (see
Lemma 3.1 of [22]). Hence, a single cluster of such a
solution is separated from the other k− 1 clusters by at
most k − 1 hyperplanes. This property is formalized in
the following definition.

Definition 2.3. We say set L ⊆ P is a j-linearly
separable subset of P iff there exist at most j oriented
hyperplanes H1,H2, . . . ,Hj such that

i) L ⊆ H+
i for all halfspaces H+

i defined by Hi, and

ii) for Lc = P \ L we have Lc ∩
(⋂j

i=1 H+
i

)
= ∅.

In terms of this notion, we find that for all Breg-
man divergences an optimal solution of the k-median
clustering problem forms a partition by (k− 1)-linearly
separable subsets of P . We can use this observation to
bound the combinatorial complexity of a given k-median
clustering problem.

Lemma 2.3. Let P ⊆ Rd, |P | = n. There are at most
ndk (k − 1)-linearly separable subsets of P .

Proof. Fix a single hyperplane Hi. There exists another
hyperplane Gi defined by d points from P such that
P ∩H+

i = P ∩G+
i . This argument can be repeated for

each of k− 1 hyperplanes H1,H2, . . . ,Hk−1. Therefore,
L = P ∩

⋂k−1
i=1 H+

i is properly defined by selecting
d(k − 1) points from P . It follows that the number
of (k − 1)-linearly separable subsets L of P is bounded
by

(
n

d(k−1)

)
≤ ndk. �



domain X φ(t) µ A Dφ(p, q)
squared `2-norm squared Euclidean distance

Rd ‖t‖2
2 1 Id ‖p− q‖2

2

generalized norm Mahalanobis distance
Rd tTAt 1 A (p− q)TA(p− q)

neg. Shannon entropy Kullback-Leibler divergence
[λ, ν]d ⊆ Rd

+

∑
ti ln(ti)− ti

λ
ν

1
2λId

∑
pi ln(pi

qi
)−

∑
(pi − qi)

Burg entropy Itakura-Saito divergence
[λ, ν]d ⊆ Rd

+ −
∑

ln(ti) λ2

ν2
1

2λ2 Id

∑ pi

qi
− ln(pi

qi
)− 1

harmonic (α > 0) harmonic divergence (α > 0)
[λ, ν]d ⊆ Rd

+

∑
1
tα
i

λα+2

να+2
α(α−1)
2λα+2 Id

∑
1

pα
i
− α+1

qα
i

+ αpi

qα+1
i

norm-like (α ≥ 2) norm-like divergence (α ≥ 2)
[λ, ν]d ⊆ Rd

+

∑
tαi

λα−2

να−2
α(α−1)

2 να−2Id

∑
pα

i + (α− 1)qα
i − αpiq

α−1
i

exponential Exponential loss
[λ, ν]d ⊆ Rd

∑
eti e−(ν−λ) eν

2 Id

∑
epi − (pi − qi + 1)eqi

Hellinger-like Hellinger-like divergence
[−ν, ν]d ⊆ (−1, 1)d −

∑√
1− t2i 2(1− ν2)

3
2 1

2(1−ν2)
3
2
Id

∑ 1−piqi√
1−q2

i

−
√

1− p2
i

Figure 2: Some µ-similar Bregman divergences.

In [4], Banerjee et al. show a remarkable connection
between Bregman divergences and Lloyd’s well known
k-means heuristic [19]. Among other results, they
showed that for each Bregman divergence the optimal
1-median of any given set S is uniquely defined by the
centroid cS = 1

|S|
∑

p∈S p of set S (also known as the
center of gravity of S). Using Lemma 2.3, we conclude
that for any given input set P ⊆ Rd at most ndk points
from Rd have to be considered as one of the optimal
k-medians of P .

Corollary 2.1. Let ΓP be the set of all centroids of all
(k−1)-linearly separable subsets of P . Then |ΓP | ≤ ndk.

3 Coreset construction

In this section we present a weak coreset construction
applicable to all µ-similar Bregman divergences. In
particular, we show how to construct a Γ-weak coreset
for an arbitrary but fixed and finite Γ.

3.1 Γ-weak coresets. Recently, coresets have
emerged as a standard technique in computational
geometry. Generally speaking, a coreset is a small
weighted set S that maintains the same clustering
behavior as the large input set P . Such a coreset can
be used as a smaller input set for an approximation
algorithm.

Let Dφ be a µ-similar Bregman divergence on
domain X ⊆ Rd. Coresets are usually defined
such that the weighted sum of errors costw(S, C) =∑

s∈S w(s) Dφ(s, C) is a (1 ± ε)-approximation of

cost(P,C) for any set C of size |C| = k. However, if
we recall that the combinatorial complexity of Bregman
clusterings is bounded this seems to be an unnecessarily
strict demand.

Therefore, we will use a relaxed notion of coresets
where only center points from a finite but significant
subset Γ ⊆ X are considered. We call this a Γ-weak
coreset. Weak coresets have already been used in [12].
However, our notion differs slightly from the previous
definition.

Definition 3.1. Let P ⊆ X and Γ ⊆ X . A weighted
multiset S ⊆ X with weight function w : S → R≥0 such
that

∑
s∈S w(s) = |P | is called a Γ-weak (k, ε)-coreset

of P iff for all C ⊆ Γ of size |C| = k we have

|cost(P,C)− costw(S, C)| ≤ ε cost(P,C) .(3.1)

3.2 Chens’s coreset construction. We make use
of Chen’s coreset construction from [8, 9]. Let A =
{a1, a2, . . . , aκ} be the medians of an [α, β]-bicriteria
approximation of a k-median Dφ-clustering of P , i.e.,
cost(P,A) ≤ α optk(P ) and |A| = κ ≤ βk. A simple
algorithm to obtain such a bicriteria approximation for
µ-similar Bregman divergences is given in the appendix.

Let P1, P2, . . . , Pκ be the partition of P induced
by assigning each p ∈ P to their closest ai ∈ A,
i.e. p ∈ Pi iff ai = arg mina∈A Dφ(p, a), breaking ties
arbitrarily. Furthermore, let R = 1

αn cost(P,A). Note
that R ≤ 1

n optk(P ). Let Br(ai) = {x Dφ(x, ai) ≤ r}
denote the Dφ-ball of radius r centered at ai.



Using A we define a partition {Pij}i,j of P by

Pi0 = Pi ∩BR(ai)

for i = 1, 2, . . . , κ and

Pij = Pi ∩
(
B2jR(ai) \B2j−1R(ai)

)
for i = 1, 2, . . . , κ and j = 1, 2, . . . , ν where ν =
dlog(αn)e. Note that {Pij}i,j is indeed a partition of
P since the existence of a p ∈ P with Dφ(p, A) > 2νR
leads to cost(P,A) > 2νR ≥ αnR = cost(P,A) which is
a contradiction.

For i, j let Sij be a uniform sample multiset from
Pij of size |Sij | = m. Let w(s) = 1

m |Pij | be the weight
associated with s ∈ Sij . We define S =

⋃
i,j Sij of size

|S| = mκν = mβkdlog(αn)e as our weak coreset. We
will show the following theorem.

Theorem 3.1. Let Γ ⊆ X be an arbitrary but fixed and
finite set. If m = Ω

(
α2

ε2 log
(

β
δ k|Γ|k log(αn)

))
then with

probability 1 − δ the weighted multiset S is a Γ-weak
(k, ε)-coreset of P .

Corollary 3.1. Given a set of medians of an [α, β]-
approximate k-median clustering of P for constants
α, β, with high probability a Γ-weak (k, ε)-coreset of P
of size O

(
1
ε2 k log(n) log(k|Γ|k log n)

)
can be constructed

in time O
(
dkn + 1

ε2 k log(n) log(k|Γ|k log n)
)
.

3.3 Proof of Theorem 3.1. We will make use of
the following probabilistic concentration bound, given
by Haussler [16].

Lemma 3.1. ([16]) Let be f : P → R and F ∈ R such
that we have 0 ≤ f(p) ≤ F for all p ∈ P . Let S ⊆ P
be a uniform sample multiset of size |S| ≥ 1

2ε2 ln 2
δ for

constant positive reals ε, δ. Then we have

Pr

∣∣∣∣ 1
|P |

∑
p∈P

f(p)− 1
|S|

∑
s∈S

f(s)
∣∣∣∣ ≤ εF

 ≥ 1− δ .

Our strategy to prove Theorem 3.1 is as follows.
First, we prove inequality (3.1) with high probability
for an arbitrary but fixed set C of size k. Subsequently,
we use the union bound to show that with probability
at least 1 − δ inequality (3.1) is satisfied for all C ⊆ Γ
of size k.

Lemma 3.2. Let C ⊆ X be a fixed set of size |C| = k.
If m ≥ 392α2

ε2µ2 ln
(

2κν|Γ|k
δ

)
then with probability 1 − δ

|Γ|k

we have

|cost(P,C)− costw(S, C)| ≤ ε cost(P,C) .

Proof. Fix i, j. For all p ∈ Pij define the function fij

by fij(p) = Dφ(p, C). Let q∗ ∈ Pij denote an input that
minimizes fij . Analogously to Lemma 2.2, we have

0 ≤ fij(p) ≤ 4
µ

(
Dφ(q∗, C) + Dφ(q∗, ai) + Dφ(p, ai)

)
≤ 4

µ

(
Dφ(q∗, C) + 2j+1R

)
for all p ∈ Pij . Hence, by Lemma 3.1 with probability
1− δ

κν|Γ|k we have∣∣∣∣ 1
|Pij |

cost(Pij , C)− 1
|Pij |

costw(Sij , C)
∣∣∣∣

≤ ε

7α

(
Dφ(q∗, C) + 2j+1R

)
.

By construction of Pij , for j ≥ 1 we have |Pij |2j+1R ≤
4 cost(Pij , A). For j = 0 we have |Pij |2j+1R = 2 |Pi0|R.
We obtain |Pij |2j+1R ≤ 4 cost(Pij , A) + 2 |Pij |R for all
j ≥ 0. Therefore,

|cost(Pij , C)− costw(Sij , C)|

≤ ε

7α

(
|Pij |Dφ(q∗, C) + |Pij |2j+1R

)
≤ ε

7α

(
cost(Pij , C) + 4 cost(Pij , A) + 2 |Pij |R

)
.

Summing up over all i, j, with probability 1 − δ
|Γ|k we

have

|cost(P,C)− costw(S, C)|

≤
∑
i,j

|cost(Pij , C)− costw(Sij , C)|

≤ ε

7α

(∑
i,j

cost (Pij , C) + 4
∑
i,j

cost (Pij , A) + 2R
∑
i,j

|Pij |
)

=
ε

7α

(
cost(P,C) + 4 cost(P,A) + 2nR

)
≤ ε

7α

(
cost(P,C) + 4α optk(P ) + 2 optk(P )

)
≤ ε

7α

(
7α cost(P,C)

)
= ε cost(P,C) .

�

By Lemma 3.2, for a fixed choice of C ⊆ Γ we have
inequality (3.1) with probability 1 − δ

|Γ|k . Since there

are at most
(|Γ|

k

)
≤ |Γ|k subsets C ⊆ Γ of size k we

obtain that with probability 1−δ the weighted multiset
S is a Γ-weak (k, ε)-coreset, proving Theorem 3.1. �

4 Application to Bregman k-median clustering

In this section we use our Γ-weak coresets to improve
the asymptotic running time of an existing (1 + ε)-
approximation algorithm for the Bregman k-median



clustering problem. In particular, we use a simple adap-
tation of the (1+ ε)-approximation algorithm Cluster
from [1] that works on a weighted input set. To improve
the running time, we construct a Γ-weak coreset with
respect to a carefully chosen, small Γ that includes all
medians relevant to algorithm Cluster. The definition
of this Γ is the most important part of this section.

Algorithm Cluster has already been shown to be
applicable for all µ-similar Bregman divergences. The
details of this algorithm are not important to us (the
reader is directed to [1] for an in-detail description).
We only need the following result.

Lemma 4.1. Fix input set P and bicriteria approxima-
tion A from the coreset construction. Then there exists
a set ΓCluster of size |ΓCluster| ≤ n( k

ε )Θ(1)
such that for

every possible (S, w) from Chen’s coreset construction
applied to P and A, and for every possible output C
of algorithm Cluster started with weighted set S, we
have C ⊆ ΓCluster.

The proof of this lemma is somewhat technical
and requires some insight into operation of algorithm
Cluster. However, the main idea of the proof is
straightforward. Any cluster center c ∈ C computed
by algorithm Cluster is the weighted centroid of a
(k

ε )Θ(1)-sized subset of S. Since the number of different
weights that can appear in applications of algorithm
Cluster to coresets is small, the number of all possible
weighted subsets defining a cluster center c can be
bounded by n( k

ε )Θ(1)
. The full proof of the lemma is

given in the appendix.
Now we can give the definition of Γ explicitly. Let

CP denote the optimal k-medians of P and let

Γ = ΓCluster ∪ CP .

By Lemma 4.1 we have the following bound on |Γ|.

Lemma 4.2. |Γ| ≤ n( k
ε )Θ(1)

Proof. We know |CP | = k. By Lemma 4.1 we have
|ΓCluster| ≤ n( k

ε )Θ(1)
. Therefore, |Γ| ≤ k + n( k

ε )Θ(1) ≤
n( k

ε )Θ(1)
. �

Note that the definition of Γ depends only on P
and A, and is independent of the random choices made
during the construction of coreset S. Also note that
we do not have to know the exact content of set Γ to
construct a Γ-weak coreset using Chen’s construction:
We only need a size bound on Γ, and this bound is
given by Lemma 4.2. Hence, we can state the following
approximation algorithm for the Bregman k-median
clustering problem.

Algorithm CoreCluster(P, k):
1: Obtain O(log k)-approximation A using algo-

rithm BregMeans++(P, k) (see Appendix).
2: Build Γ-weak (k, ε)-coreset S of P , using A and

Chen’s coreset construction.
3: Run adaptation of algorithm Cluster from [1]

on weighted input set S to obtain (1 + ε)-
approximate k-median set C.

Theorem 4.1. With constant probability, algorithm
CoreCluster computes a solution C of the k-median
problem with respect to µ-similar Bregman divergence
Dφ for input instance P of size |P | = n satisfying

cost(P,C) ≤ (1 + 7ε) optk(P )

in time O
(
dkn + d2( k

ε )Θ(1)
logk+2(n)

)
.

Proof. Since each step of our algorithm succeeds at least
with constant probability, we may assume that with
constant probability all three steps yield the desired
result.

Let CP denote the optimal k-medians for P and let
CS denote the optimal k-medians for weighted set S, i.e.
cost(P,CP ) = optk(P ) and costw(S, CS) = optk(S).
Using C ⊆ ΓCluster and the fact that S is a Γ-weak
(k, ε)-coreset we obtain

cost(P,C) ≤ 1
1− ε

costw(S, C).

Since C is a (1 + ε)-approximation for weighted input
set S we get

cost(P,C) ≤ 1 + ε

1− ε
costw(S, CS) ≤ 1 + ε

1− ε
costw(S, CP ).

Using CP ⊆ Γ and (3.1) we obtain

cost(P,C) ≤ (1 + ε)2

1− ε
cost(P,CP ) ≤ (1 + 7ε) optk(P )

since (1+ε)2

1−ε ≤ 1 + 7ε for ε ≤ 1
2 .

For the analysis of the running time, assume that we
can sample points from a given set in time O(1). Hence,
approximation A can be obtained in time O(dkn).
Furthermore, coreset S can be constructed in time
O(dkn + |S|). The adaptation of algorithm Cluster
for a weighted coreset S with

∑
s∈S w(s) = n has a

running time T (n, k) given by the recurrence

T (n, k) ≤ 2( k
ε )Θ(1)

T (n, k−1)+T (
n

2
, k)+d

(
2( k

ε )Θ(1)
+|S|

)
.

This recurrence is of the type

T (l, j) ≤ r T (l, j − 1) + T (l − 1, j) + c

for constants r = 2( k
ε )Θ(1)

and c = d
(
2( k

ε )Θ(1)
+|S|

)
where

the first parameter of T is replaced by its logarithm.



Claim 4.1. T (l, j) ≤ c rj lj

Proof. We show the claim by induction. For l = 1
or j < 2 we have constant running time and we get
T (l, j) ≤ c lor large enough constant c. Hence, let
l, j ≥ 2. By induction hypothesis we have

T (l, j) ≤ r
(
c rj−1lj−1

)
+ c rj(l − 1)j + c

≤ c rj
(
lj−1 + (l − 1)j + 1

)
.

Since l, j ≥ 2 we have lj−1 + (l− 1)j + 1 ≤ lj . Thus, we
have T (l, j) ≤ c rj lj . �

Using Claim 4.1, l = log n, and j = k we obtain

T (n, k) ≤ d
(
2( k

ε )Θ(1)
+ |S|

)
2( k

ε )Θ(1)
logk(n)

= O
(
|S| d 2( k

ε )Θ(1)
logk(n)

)
.

Using |S| = O
(
(k

ε )Θ(1) log2(n)
)

from Theorem 3.1 and
Lemma 4.2 we obtain the desired running time. �

5 Conclusion

We have shown that there exist small weak corsets for
the Bregman k-median problem. We have shown how to
use such weak coresets to significantly speed-up an exist-
ing approximation algorithm. In doing so, we presented
the currently asymptotically fastest algorithm known
for the k-median problem with respect to a number of
Bregman divergences such as the Kullback-Leibler di-
vergence and the Itakura-Saito divergence. Due to the
low dependency of the running time on d this algorithm
is particularly relevant for high-dimensional settings. It
is noteworthy that our weak corsets can be applied to
any approximation algorithm if the combinatorial com-
plexity of the algorithm’s possible outputs is small. We
also point out that using the merge-and-reduce tech-
nique from [15] our weak coresets can be applied to the
data streaming model.

However, some open problems remain. Considering
the results from [14] and [8, 9] the question arises
whether we can construct Bregman coresets that are
independent of n or d. Also, are there ”strong”
coresets for the Bregman k-median problem? What
further techniques from computational geometry can
be applied to Bregman divergences? Furthermore, it
remains an open problem whether there exists a (1+ ε)-
approximation algorithm for Bregman divergences with
singularities in their domain.

Finally, it is still unclear whether there are (1 +
ε)-approximation algorithms and coreset constructions
for many other important non-Bregman, non-metric
dissimilarity measures such as Pearson’s correlation or
cosine similarity.
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A Appendix

A.1 A constant factor approximation algo-
rithm. In this section, we show how to construct a
factor O(log k)-approximation for the k-median prob-

lem with respect to a µ-similar Bregman divergence Dφ.
The following algorithm can be used to obtain an initial
[O(log k), 1]-bicriteria approximation necessary for our
coreset construction (Section 3).

As approximation algorithm, we use a non-uniform
random sampling approach from [2]. This sampling
approach has been originally proposed in the context
of Euclidean k-means clustering, as well as for the k-
median problem using a j-th power of the `2-norm as
distance measure. We can show that the approach is
also applicable to µ-similar Bregman k-median cluster-
ings.

Algorithm BregMeans++(P, k):
1: Choose an initial point a1 uniformly at random

from P .
2: Let A be the set of already chosen points from P .

Then element p ∈ P is chosen with probability
Dφ(p,A)
cost(P,A) as next element of A.

3: Repeat step 2 until A contains k points.

We say A = {a1, a2, . . . , ak} is chosen at random
according to Dφ. We can prove the following theorem
using the µ-similarity of Dφ and a slight modification of
the proof of Theorem 3.1 from [2].

Theorem A.1. If Dφ is a µ-similar Bregman diver-
gence and A ⊆ X with |A| = k is chosen according
to Dφ, we have

E [cost(P,A)] ≤ 8
µ2

(2 + ln k) optk(P ) .

It is an easy application of Markov’s inequality
to see that, with high probability, algorithm Breg-
Means++ yields a constant factor approximation (re-
garding k as a constant) of optk(P ).

A.2 Details on the adaptation of the algorithm
from [1]. Algorithm Cluster is a generalization of an
earlier algorithm from [18]. It has been shown that with
constant probability this algorithm computes a (1 + ε)-
approximation for any µ-similar Bregman divergence.

In a nutshell, algorithm Cluster for unweighted
point sets works as follows. We leave out most technical
details which are explained in [1].

1. Using the superset sampling technique from [18] a
first approximate median for a ”large” cluster P1 is
found. More precisely, this approximate median is
constructed as the centroid of a uniform sample set
of size (k

ε )Θ(1) from P .

2. Let C̃ be the set of already found approximate
medians. If there is no ”large” cluster whose



approximate median has yet to be found, then
iteratively the n

2 , n
4 , n

8 , . . . points closest to C are
pruned from the point set. We keep removing
points until a new cluster becomes ”large” within
the remaining point set.

3. Since a new cluster has become ”large”, we find its
approximate median using the superset sampling
technique. Again, this approximate median is
constructed as the centroid of a uniform sample set
of size (k

ε )Θ(1) from P .

4. Steps 2.-3. are repeated until for each cluster an
approximate median has been found.

For weighted input sets, only slight modifications to
this algorithm are necessary. First, instead of uniform
random sampling a point p ∈ R is sampled with
probability w(p)

w(R) , where w(R) =
∑

p∈R w(p) denotes the
total weight of R. Second, when computing the centroid
of a set M ′, the weighted centroid

∑
p∈M ′

w(p)
w(M ′) p has to

be computed. Third, recall that w(S) = n. Instead of
removing the n

2 , n
4 , n

8 , . . . closest points from the point
set, the closest points with a total weight of n

2 , n
4 , n

8 , . . .
are pruned. However, from time to time the weight of
the closest points will not add up to exactly n

2i . In this
case, a single point p has to be replaced by two copies
p1, p2 with w(p) = w(p1) + w(p2) such that we can find
a partition with total weight n

2i .
The pseudocode of the adaptation of algorithm

Cluster from [1] for weighted input sets is given in
Figure 3.

A.3 Proof of Lemma 4.1. Since P and A are
fixed so is the partition {Pij}i,j of P from the coreset
construction. Let S be a weighted multiset with weight
function w obtained by the coreset construction from
Section 3. Let m be the constant number of elements
uniformly sampled from each Pij to obtain S.

First, let us ignore the weight function w. Recall
that each approximate median from the output of
Cluster is obtained as the (weighted) centroid of a
subset of size (k

ε )Θ(1) from S. There are at most( |S|
( k

ε )Θ(1)

)
≤ n( k

ε )Θ(1)
such subsets.

Now let us consider weight function w. Since |Pij |
and m are fixed so is the initial weight of each point
from input set S. Therefore, the number of weighted
centroids formed by the (k

ε )Θ(1)-sized subsets of input
set S with the initial weight function w is bounded by
n( k

ε )Θ(1)
. However, since sometimes the weight of a point

is split in the pruning step of the algorithm the weight
of some points will change. So we have to analyze the
number of different weights that may be assigned to
point s ∈ S during a run of algorithm Cluster.

Cluster(R, w, l, C̃):
R set of remaining input points of total weight w(R) = n
w weight function on R
j number of medians yet to be found

C set of medians already found

1: if l = 0 then return C̃
2: else
3: if l ≥ |R| then return C̃ ∪R
4: else
5: /* sampling phase */

6: sample a multiset M of size 96k2

ε2µδ
from R

7: T ←
˘
c | c wghtd. centroid of M ′ ⊆M, |M ′| = 3

εµδ

¯
8: for all c̃ ∈ T do
9: C(c̃) ← Cluster(R, w, j − 1, C̃ ∪ {c̃})

10: end for
11: /* pruning phase */
12: partition R into set N and R \N such that:
13: ◦ ∀p ∈ N, q ∈ R \N : Dφ(p, C̃) ≤ Dφ(q, C̃) and
14: ◦ w(N) = w(R\N) = n

2
(if necessary, split a point)

15: let w̃ be the new weight function on R \N
16: C∗ ← Cluster(R \N, w̃, j, C̃)
17: return C(c̃) or C∗ with minimum cost
18: end if
19: end if

Figure 3: Adaptation of algorithm Cluster for
weighted sets and µ-similar Dregman divergences Dφ.

Observe that the behavior and output of algorithm
Cluster will not change when the weight function of
the input set is scaled by a constant. Therefore, let us
consider set S with weight function ŵ such that ŵ(s) =
m w(s). Since for s ∈ Pij we have w(s) = 1

m |Pij | it
follows that function ŵ has only integral weights ŵ(s) =
|Pij |. Hence, there is a one-to-one correspondence to a
run of algorithm Cluster on unweighted input multiset
Ŝ where each s ∈ S is replaced by ŵ(s) copies of s.

Since splitting of weights for a point from S corre-
sponds to the situation when some points from Ŝ are
pruned and some are not we find that the weights of
ŵ remain integral during a run of algorithm Cluster.
Hence there are at most |Pij | ≤ n different weights as-
signed to point s ∈ Pij .

We conclude that there are at most n( k
ε )Θ(1)

dif-
ferent weight functions assigned to a (k

ε )Θ(1)-sized sub-
sets of input set S. Hence, there are at most n( k

ε )Θ(1)

weighted centroids of such a fixed subset of S. It follows
that the number of all possible output points from algo-

rithm Cluster is bounded by
(
n( k

ε )Θ(1)
)2

= n( k
ε )Θ(1)

.
�


