Cryptographic Protocols SS 2016

Handout 3

Exercises marked (*) or (**) will be checked by tutors. We encourage submissions of solutions by small groups of up to four students.

Exercise 1:

Compute the solutions of $x^2 = 16 \mod 77$ using the Chinese Remainder Theorem.

Exercise 2:

Let N be a product of s distinct odd primes $\{p_1, \ldots, p_s\}$ and $a \in \mathbb{Z}_N^*$. How many solutions does the equation $x^2 = a \mod N$ have? How many solutions does this equation have if $p_1 = 2$ and $\{p_2, \ldots, p_s\}$ are distinct odd primes as before?

Exercise 3 (4 points):

(**) Let p be an odd prime, $N = p^2$ and $a \in \mathbb{Z}_N^*$. How many solutions does the equation $x^2 = a \mod N$ have? How to compute these, given the square roots of a modulo p?

Hint: Write $x \in \mathbb{Z}_N$ as $x_0 + x_1 \cdot p$ for some $x_0, x_1 \in \mathbb{Z}_p$.

Exercise 4:

Consider the Fiat-Shamir identification protocol modified as follows.

System parameters: A trusted authority (TA) chooses RSA modulus $N := p \cdot q$. N is published to all participants.

User parameters: User A chooses a private $s_A \leftarrow \mathbb{Z}_N^*$. Her public key is $v_A := s_A^2 \mod N$. (Furthermore, the TA issues a certificate that v_A really is the public key of A.) **Protocol:** To prove the identity to B, the user A runs the following protocol:

$\underline{A\left(N,s_{A}\right)}$		$\underline{B\left(N,v_{A}\right)}$
choose $r \leftarrow \mathbb{Z}_N^*$, compute $r_1 := r^2 \mod N$ and $r_2 := 25 \cdot r^2 \mod N$		
_	$\xrightarrow{r_1,r_2}$	
	$\overset{b_1,b_2}{\longleftarrow}$	choose $b_1, b_2 \leftarrow \{0, 1\}$
compute $t_1 := r \cdot s_A^{b_1} \mod N$ and $t_2 := 5 \cdot r \cdot s_A^{b_2} \mod N$	$\stackrel{t_1,t_2}{\longrightarrow}$	
	7	accepts iff $t_1^2 = r_1 \cdot v_A^{b_1} \mod N$ and $t_2^2 = r_2 \cdot v_A^{b_2} \mod N$

(Furthermore, before starting the actual protocol, A sends v_A and the certificate issued by the TA to B. They only proceed if B's verification of this certificate is successful.) Show that:

- a) Correctness: If both A and B are honest, B will accept A's identity.
- b) After running this protocol B can compute the secret key of A efficiently if B chooses the bits b_1, b_2 appropriately.

Exercise 5 (4 points):

(**) Consider the Guillous-Quisquater identification protocol which is based on RSA. **System parameters:** A trusted authority (TA) chooses RSA parameters $N := p \cdot q$ and some $e \in \mathbb{Z}_{\phi(N)}^*$. The parameters (N, e) are published to all participants. **User parameters:** User A chooses a private $x_A \leftarrow \mathbb{Z}_N^*$. Her public key is $X_A := x_A^e \mod N$. (Furthermore, the TA issues a certificate that X_A really is the public key of A.) **Protocol:** To prove the identity to B, the user A runs the following protocol:

 $\begin{array}{c} \underline{A}\left(N,e,x_{A}\right) & \underline{B}\left(N,e,X_{A}\right) \\ \text{choose } r \leftarrow \mathbb{Z}_{N}^{*} & \\ \text{compute } R := r^{e} \mod N & \\ & \stackrel{R}{\rightarrow} & \\ \text{choose } f \leftarrow \mathbb{Z}_{e} \\ & \stackrel{f}{\leftarrow} & \\ \text{compute } y := r \cdot x_{A}^{f} \mod N & \\ & \stackrel{y}{\rightarrow} & \\ & & \text{compute } Y := y^{e} \mod N \\ & & \text{accepts iff } Y = R \cdot X_{A}^{f} \mod N \end{array}$

(Furthermore, before starting the actual protocol, A sends X_A and the certificate issued by the TA to B. They only proceed if B's verification of this certificate is successful.) Show that:

- a) Correctness: If both A and B are honest, B will accept A's identity.
- b) Some evil C can successfully impersonate A if she can knows B's challenge f before the protocol starts. (This implies the existence of a 1/e-forger which guesses f and successfully impersonates A if the guess was correct.)
- c) Analogously to the last exercise show how B can compute the secret key of A, when running the protocol twice with the same R.