I. Motivation and topics

Cryptography scientific study of techniques for securing digital information, transactions, and distributed computations.

- Main goals
 - confidentiality
 - privacy
 - integrity
 - authenticity
 - non-repudiation
- while maintaining avalability

Course concentrates on authenticity, non-repudiation, and privacy (a little bit).

Scenario

wants to listen change impersonate

Scenario can be more complex

- more participants
- different roles of participants
- more complex tasks

Scenario

Goals & methods

 data integrity - hash functions, message authentication codes
entity/data authentication - message authentication codes, digital signatures, identification protocols,

– non-repudiation - digital signatures

Goals and methods

- authentication
 - message authentication codes
 - digital signatures
 - identification protocols
- non-repudiation
 - digital signatures, identification protocols
- privacy
 - multi-party computations
 - oblivious transfer

Authentication

data origin authentication

– connected to messages

entity authentication

– access control

Basic principles

0. Principle (Kerckhoff) The cryptographic scheme must not be required to be secret and must be able to fall into the hands of the adversary without inconvenience.

- 1. Principle One must formulate a rigorous and precise definition of security for a given cryptographic problem.
- 2. Principle If the security of a cryptographic construction relies on an unproven assumption, this must be stated precisely.
- 3. Principle Cryptographic constructions require rigorous proofs of security with respect to the security definition and the underlying assumptions.

Assumptions

- 1. Concrete assumptions "The following mathematical/ computational problem is hard to solve."
- ➔ factoring, discrete logarithms
- 2. General assumptions "Computationally hard problems of the following type exist."
- \clubsuit languages in NP\P exist, one-way functions exist.

mostly follow 2. → foundations of cryptography

Organization

- Information about this course
- http://cs.uni-paderborn.de/cuk/lehre/veranstaltungen/ss-2016/ cryptographic-protocols/
- Here you find
 - handouts
 - slides
 - literature
 - announcements

Prerequisites

- elementary probability theory
- algorithm theory
- basic complexity theory
- very basic number theory