III. Authentication - identification protocols

Definition 3.1 Entity authentication is a process whereby one party B is assured of the identity of a second party A involved in a protocol.

Processes called identification protocols.

Examples

Passwords
Passports
PINs

Goals of identification protocols

- 1. If A and B are honest, B will accept A's identity.
- 2. B cannot reuse an identification exchange to impersonate A to a third party C.
- 3. Only with negligible probability a party C distinct from A is able to cause B to accept C as A's identity.
- 4. The previous points remain true even if
 - a large number of authentications between A and B have been observed;
 - C has participated in previous executions of the protocol (either as A or B).

Challenge-response protocols

In a challenge-response protocol A proves its identity to B by demonstrating knowledge of a secret known to be associated to A without revealing the secret itself to B.

Structure 1.commitment (to a secret) 2.challenge 3.response Simple identification based on signatures $\Pi = (Gen, Sign, Vrfy)$ signature scheme with message length,

 (pk_A, sk_A) A's key pair.

r is called nonce. Chosen for each execution. Guarantees time dependence.

4

Trusted authorities

- Trusted authorities (TA) are entities trusted by all parties involved in a protocol,
- can sign messages (Sig_{TA}, Ver_{TA}),
- associates identities to entities (id(A) for entity A).

Fiat-Shamir identification – setup

- TA chooses 2 random primes $p,q \in [2^{n-1}, 2^n 1]$, N := p · q
- A chooses $s_A \leftarrow \mathbb{Z}_N^*$, sets $v_A := s_A^2 \mod N$.
- **TA** sets cert(A) := $(id(A), v_A, Sign_{TA}(id(A), v_A))$

Fiat-Shamir identification protocol

Factoring and modular square roots

Theorem 3.2 For any $\delta > 0$ and any algorithm C there exists an algorithm C' with the following properties:

1. If on input $N = p \cdot q$, p,q prime, and $a \leftarrow \mathbb{Z}_N^*$, C finds $b \in \mathbb{Z}_N$ satisfying $b^2 = a \mod N$ with probability δ , then C' on input N computes p,q with probability $\delta/2$;

2. If C runs in time T, then C' runs in time $\mathcal{O}(T+\log^2(N))$.

Chinese Remainder Theorem

- Chinese Remainder Theorem Let $m_1, ..., m_r \in \mathbb{N}$ be pairwise relatively prime, i.e. $gcd(m_i, m_j) = 1$ for $i \neq j$. Let $b_1, ..., b_r \in \mathbb{N}$
- be arbitrary integers. Then the system of congruences

has a unique solution modulo $m = m_1 \cdots m_r$.

Corollary 3.3 Let $N = p \cdot q$ be the product of two distinct odd primes. For every $a \in \mathbb{Z}_N^*$ the equation $x^2 = a \mod N$ has either 0 or 4 solutions. In case of 4 solutions, these solutions are of the form $\pm s_1, \pm s_2, s_2 \pm s_1$.

From C to C '

C' on input N

- 1. choose $b \leftarrow \mathbb{Z}_{N}$
- 2. if $d = gcd(b,N) \neq 1$, output d,N/d
- $3. a := b^2 \mod N$
- 4. simulate C with input N,a to obtain $w \in \mathbb{Z}_{N}^{*}$
- 5. if $w^2 = a \mod N$ and $w \neq \pm b \mod N$, compute d = gcd(w b, N) and output d, N/d

Fiat-Shamir identification - security

- **Theorem 3.4 For any** $\varepsilon > 0$ and any algorithm C there exists an algorithm C' with the following properties:
- 1. If on input N,v_A C impersonates A with probability $1/2 + \varepsilon, \varepsilon > 0$, then C' on input N,v_A computes a square root of v_A mod N with probability 1/2;
- 2. If C runs in time T, then C' runs in time $\mathcal{O}(T/\epsilon)$.

Fiat-Shamir is a proof of knowledge!

From C to C '

- C' on input N,v_A
 - 1. repeat $1/(2\epsilon)$ times
 - a) simulate C to obtain $x \in \mathbb{Z}_{N}^{*}$
 - b) simulate C with x,b = 0 and x,b = 1
 - c) if C succeeds for both choices of b, let $t_0^{}, t_1^{}$ be C's responses, output $t_1 \cdot t_0^{-1} \mod N$.

Fiat-Shamir identification protocol

Fiat-Shamir identification - security

Theorem 3.5 For any $\delta \ge 2^{-l+2}$ and any algorithm C there exists an algorithm C' with the following properties:

- 1. If on input N,v_A C impersonates A with probability $\geq \delta$, then C' on input N,v_A computes a square root of v_A mod N with probability 0.03;
- 2. If C runs in time T, then C' runs in time $\mathcal{O}(T/\delta)$.

From C to C '

- C' on input N,v_A
 - 1. repeat at most $1/\delta$ times

a)
$$\mathbf{z} \leftarrow \{\mathbf{0},\mathbf{1}\}^{\mathsf{R}}, \mathbf{b} \leftarrow \{\mathbf{0},\mathbf{1}\}$$

- b) simulate C with random bits z and b
- c) if C succeeds set $b^{(1)}$: = b and goto 2)
- 2. repeat at most $1/\delta$ times

a)
$$\mathbf{b} \leftarrow \{\mathbf{0},\mathbf{1}\}^{\mathsf{I}}$$

- b) simulate C with random bits z and b
- c) if C succeeds set $b^{(2)}$: = b and goto 3)
- 3. if $b^{(1)} \neq b^{(2)}$, output $b^{(1)}, b^{(2)}$ and corresponding $t^{(1)}, t^{(2)}$.

Security against (cheating) B

Can B gain information from FS-protocol that will enable him to impersonate A?

- B sees triples (x,b,t) with $t^2 = x \cdot v_A^b \mod N$
- B can generate these triples (x,b,t) by himself

a)
$$b \leftarrow \{0,1\}$$

b) $t \leftarrow \mathbb{Z}_N^*$
c) $x := v_A^{-b} \cdot t^2 \mod N$

triples have same distribution as in FS-protocol

B learns nothing in FS-protocol.

Formalized and strenthened by zero-knowledge protocols.