Interactive protocols & zero-knowledge

- interactive protocols formalize what can be recognized by polynomial time restricted verifiers in arbitrary protocols
- generalizes NP
- zero-knowledge formalizes that verifiers learn nothing beyond recognizing language.

Class NP and verifiers

Definition 3.6 A verifier V for language L $\subseteq \Sigma^*$ is a computable

function V: $\Sigma^* \times \{0,1\}^* \rightarrow \{0,1\}$ such that

$$\mathbf{L} = \left\{ \mathbf{w} \in \Sigma^* \middle| \exists \mathbf{c} \in \left\{ \mathbf{0}, \mathbf{1} \right\}^* : \mathbf{V} \left(\mathbf{w}, \mathbf{c} \right) = \mathbf{1} \right\}.$$

Definition 3.7 V is a polynomial verifier for language $L \subseteq \Sigma^*$ if V is a verifier for L and

1. the running time of V on input (w,c) is polynomial in |w|,

2. there is a polynomial $p:\mathbb{N} \to \mathbb{N}$ such that for all $w \in L$ there is a $c \in \{0,1\}^{p(|w|)}$ with V(w,c) = 1.

If language L has a polynomial verifier we call it polynomially verifiable.

Class NP and verifiers

Theorem 3.8 A language L is in NP if and only if there is a polynomial verifier for L.

SAT and NP SAT:= $\{\phi | \phi \text{ is a satisfiable Boolean formula}\}$

$SAT \in NP$.

Quadratic residues

Definition 3.9 Let N \in N, then

 $\mathsf{QR}(\mathsf{N}) := \left\{ v \in \mathbb{Z}_{\mathsf{N}}^{*} \middle| \exists s \in \mathbb{Z}_{\mathsf{N}}^{*} \ s^{2} = v \text{ mod } \mathsf{N} \right\} \text{ is called the set of }$

- quadratic residues modulo N.
- $QNR(N) := \mathbb{Z}_{N}^{*} \setminus QR(N)$ is called the set of quadratic non-residues modulo N.

- $\mathbf{QR} := \left\{ \left(\mathbf{N}, \mathbf{v} \right) \middle| \mathbf{v} \in \mathbf{QR} \left(\mathbf{N} \right) \right\}$
- $QNR := \{(N,v) | v \notin QR(N)\}$

Property If $v \in QR(N)$ and $u \in QNR(N)$, then $v \cdot u \in QNR(N)$.

Observation QR \in **NP**.

Quadratic non-residues and protocols

What about QNR and NP?

Don't know, but

outputs 1 iff b = b'

Quadratic non-residues and protocols

outputs 1 iff b = b'

- **Properties**
- If (N,v) ∈ QNR, then P can make V accept with prob. 1.
 If (N,v) ∈ QR, then no matter what P does, V accepts only with prob. 1/2.

Interactive protocols

- **Interactive protocols**
 - use randomness
 - use communication
 - allow error in acceptance/rejection
- **Definition 3.10 A language L is in the class IP, if there are V,P** and a protocol V/P with
 - 1. for all $w \in L$ the verifier V outputs 1 with probability $\geq 2/3$ after execution of V/P with input w,
 - 2. for all w \notin L and all provers P' the verifier outputs 1 with probability $\leq 1/3$ after execution of V/P' with P' and input w,
 - 3. the overall running time of V is polynomial.

Interactive protocols

Definition 3.10 A language L is in the class IP, if there are V,P and a protocol V/P with

- 1. for all $w \in L$ the verifier V outputs 1 with probability $\geq 2/3$ after execution of V/P with input w,
- 2. for all w \notin L and all provers P' the verifier outputs 1 with probability $\leq 1/3$ after execution of V/P' with P' and input w,
- 3. the overall running time of V is polynomial.

Remarks

- In protocol V/P' V behaves as in V/P, but P' may behave differently from P.
- May assume that format of message of P' is as in V/P.
- Constants 2/3 and 1/3 are arbitrary, $(1+\epsilon)$ & $(1-\epsilon)$ suffice.

QR,QNR and IP

Observation QR and QNR are in IP.

Theorem 3.11 NP \subseteq IP.

Observation QR \in **NP**.

Fiat-Shamir revisited

Properties

- If $(N, v) \in QR$,

then P can make V accept with prob. 1. - If $(N,v) \in QNR$, then no matter what P' does, V accepts only with prob. 1/2. 13

Fiat-Shamir revisited

Transcripts

Definition 3.11 Let L be a language, $v \in L$ and V/P be an interactive protocol for L. A transcript $\tau \in \{0,1\}^*$ of V/P on input v consists of v, the output and all messages exchanged between V and P. By $T_{v,P}(v)$ we denote the random variable corresponding to these transcripts, i.e. $Pr[T_{v,P}(v) = \tau]$ denotes the probability that the transcript of V/P on input v is τ .

Remark Similarly for a probabilistic algorithm S we denote by S(v) the random variable corresponding to the output of S on input v, i.e. by $Pr[S(v) = \tau]$ we denote the probability that S on input v outputs τ .

Fiat-Shamir revisited

Zero-knowledge protocols

Definition 3.12 Let L be a language and V/P be an interactive protocol for L. Protocol V/P is called a (honest verifier) zero-knowledge protocol, if there is a ppt S such that for

all
$$\mathbf{v} \in \mathbf{L}$$
 and all $\tau \in \{\mathbf{0}, \mathbf{1}\}^*$
 $\Pr\left[\mathsf{T}_{\mathsf{v},\mathsf{P}}\left(\mathbf{v}\right) = \tau\right] = \Pr\left[\mathsf{S}\left(\mathbf{v}\right) = \tau\right].$

Remarks

- Definition only says something about $v \in L$.
- ppt verifier V learn nothing from execution of V/P since all it learns (=transcript) it can compute alone (via S).

Zero-knowledge protocols and Fiat-Shamir

Theorem 3.13 The Fiat-Shamir protocol is a zero-knowledge protocol for the language QR.

Fact Let $N \in \mathbb{N}$, then every element in QR(N) has the same number of square roots modulo N, namely $|\mathbb{Z}_N^*|/|QR(N)|$.

Fiat-Shamir identification protocol

Zero-knowledge protocols and Fiat-Shamir

Theorem 3.13 The Fiat-Shamir protocol is a zero-knowledge protocol for the language QR.

- S on input $v \in \mathbb{Z}_{N}^{*}$
 - $\quad b \leftarrow \big\{0,1\big\}, t \leftarrow \mathbb{Z}_{N}^{*}$
 - $x := t^2 \cdot v^{-b} \mod N$
 - output (v,x,b,t,1)

Zero-knowledge protocols and Fiat-Shamir

Theorem 3.13 The Fiat-Shamir protocol is a zero-knowledge protocol for the language QR.

- Why is zero-knowledge possible?
- Protocol and simulator compute same transcripts, but in different order.
- In Fiat-Shamir, first compute square, then square root.
- In simulator, first compute root, then square it.
- Squaring is easy, taking square roots modulo N (probably) not.

Perfect zero-knowledge protocols

- **Definition 3.14 Let L be a language and V/P be an interactive** protocol for L. Protocol V/P is called a perfect
- zero-knowledge protocol, if for all ppt verifiers V^{*} there is a
- ppt S^{*} such that for all $v \in L$ and all $\tau \in \{0,1\}^*$
 - 1. with probability $\leq 1/2 S^*$ output a special symbol \perp ,

2.
$$\Pr\left[\mathsf{T}_{\mathsf{V}^*,\mathsf{P}}(\mathsf{v})=\tau\right]=\Pr\left[\mathsf{S}^*(\mathsf{v})=\tau\middle|\mathsf{S}^*(\mathsf{v})\neq\bot\right].$$

Remarks

- In protocol V^{*}/P P behaves as in V/P, but V^{*} may behave differently from V.
- May assume that format of message of V^* is as in V/P.

Zero-knowledge protocols and Fiat-Shamir

Theorem 3.15 The Fiat-Shamir protocol is a perfect zero-knowledge protocol for the language QR.

- \mathbf{S}^* on input $\mathbf{v} \in \mathbb{Z}_{N}^*$
 - $b \leftarrow \{0,1\}, t \leftarrow \mathbb{Z}_N^*, x := t^2 \cdot v^{-b} \text{ mod } N$
 - simulate V^{*} with input (v,N,x), until V^{*} outputs a bit b'.
 - if b ≠ b', output \bot , else output (v,x,b,t,1)

Schnorr identification – setup

- TA chooses primes p,q such that q|p-1 and $q > 2^{l}$, chooses generator z of \mathbb{Z}_{p}^{*} and sets $g := z^{p-1/q}$.
- A chooses $a \leftarrow \mathbb{Z}_q$, sets $v_A := g^{-a} \mod p$.
- **TA** sets cert(A) := $(id(A), v_A, Sign_{TA}(id(A), v_A))$

Remark g has order q.

Schnorr identification protocol

Impersonation in Schnorr protocol

- **Theorem 3.16** For any $\delta \ge 2^{-l+2}$ and any algorithm C there exists an algorithm C' with the following properties:
- 1. If on input p,q,g,v_A C impersonates A with probability $\geq \delta$, then C' on input p,q,g,v_A computes a discrete logarithm of v_A to base g with probability 0.03;

2. If C runs in time T, then C' runs in time $\mathcal{O}(T/\delta + \log^2(p))$.

From C to C '

- C' on input p,q,g,v_A
 - 1. repeat at most $1/\delta$ times

a)
$$\mathbf{z} \leftarrow \{\mathbf{0},\mathbf{1}\}^{\mathsf{R}}, \mathbf{r} \leftarrow \{\mathbf{1},\ldots,\mathbf{2}^{\mathsf{I}}\}$$

- b) simulate C with random bits z and r
- c) if C succeeds set r_1 : = r and goto 2)
- 2. repeat at most $1/\delta$ times
 - a) $r \leftarrow \{1, \dots, 2^{l}\}$
 - b) simulate C with random bits z and r
 - c) if C succeeds set r_2 : = r and goto 3)
- 3. if $r_1 \neq r_2$, output r_1, r_2 and corresponding y_1, y_2 .

Zero-knowledge protocols and Schnorr

- Theorem 3.17 The Schnorr protocol is a zero-knowledge protocol.
- **Observations**
 - The Schnorr protocol is not known to be perfect zeroknowledge unless 2ⁱ is small.
 - No attacks against Schnorr protocol are known.
- **Okamoto protocol**
 - efficiency similar to Schnorr
 - still not zero-knowledge
 - but witness hiding