Fiat-Shamir identification

- offers security against cheating prover:

Theorem 3.5 (restated) For any $\delta \ge 2^{-l+2}$ and any algorithm C there exists an algorithm C' with the following properties:

- 1. If on input N,v_A C impersonates A with probability $\geq \delta$, then C' on input N,v_A computes a square root of v_A mod N with probability 0.03;
- 2. If C runs in time T, then C' runs in time $\mathcal{O}(T/\delta)$.
- offers security against cheating verifier:
- **Theorem 3.15 (restated)** The Fiat-Shamir protocol is a perfect zero-knowledge protocol for the language QR.

Proofs of knowledge - preliminaries

- $R \subseteq \{0,1\}^* \times \{0,1\}^*$ binary relation, $(x,y) \in R : \Leftrightarrow R(x,y) = 1$
- $x \in \{0,1\}^{*} : W(x) := \{w \in \{0,1\}^{*} : R(x,w) = 1\}, w \in W(x) \text{ called witnesses for } x.$
- $L_R := \{x \in \{0,1\}^* : W(x) \neq \emptyset\}$ language corresponding to R
- − R polynomially bounded : ⇔ there is a c ∈ N such that for all $x \in \{0,1\}^*$ and all $w \in W(x)$: $|w| \le |x|^c$
- R polynomially verifiable : $\Leftrightarrow R(\cdot, \cdot)$ can be computed in polynomial time
- R NP-relation :⇔ R polynomially bounded and polynomially verifiable

Proofs of knowledge - preliminaries

Observation

- If R is an NP-relation, then $L_R \in NP$.
- If $L \in NP$, then there is an NP-relation R with $L = L_R$.

Definition 3.7 (restated) V is a polynomial verifier for language $L \subseteq \Sigma^*$ if V is a verifier for L and

1. the running time of V on input (w,c) is polynomial in |w|,

2. there is a polynomial $p:\mathbb{N} \to \mathbb{N}$ such that for all $w \in L$ there is a $c \in \{0,1\}^{p(|w|)}$ with V(w,c) = 1.

If language L has a polynomial verifier we call it polynomially verifiable.

Relations and languages - examples

Example L = SAT

- $\mathbf{x} = \phi$ boolean formula, w assignment to varaibles

$$- \mathsf{R}_{\mathsf{SAT}}(\mathsf{x},\mathsf{w}) = \mathsf{1}:\Leftrightarrow \phi(\mathsf{w}) = \mathsf{true}.$$

Example L = QR

-
$$\mathbf{x} = (\mathbf{N}, \mathbf{v}), \mathbf{N} \in \mathbb{N}, \mathbf{v} \in \mathbb{Z}_{\mathbf{N}}^{*}, \mathbf{w} \in \mathbb{Z}_{\mathbf{N}}^{*}$$

$$- \mathsf{R}_{\mathsf{QR}}(\mathsf{x},\mathsf{w}) = 1 : \Leftrightarrow \mathsf{w}^2 = \mathsf{x} \bmod \mathsf{N}.$$

Example L = DL

- $\mathbf{x} = (\mathbf{p}, \mathbf{g}, \mathbf{v}), \mathbf{p} \in \mathbb{N}$ prime, $\mathbf{g}, \mathbf{v} \in \mathbb{Z}_{p}^{*}, \mathbf{w} \in \mathbb{Z}_{p-1}^{*}$

$$- R_{DL}(x,w) = 1 :\Leftrightarrow g^{w} = v \mod p$$

Fiat-Shamir identification protocol

Fiat-Shamir identification - security

- Theorem 3.4 (restated) For any $\varepsilon > 0$ and any algorithm C thereexists an algorithm C' with the following properties:
- 1. If on input N,v_A C impersonates A with probability $1/2 + \varepsilon, \varepsilon > 0$, then C' on input N,v_A computes a square root of v_A mod N with probability 1/2;
- 2. If C runs in time T, then C' runs in time $\mathcal{O}(T/\epsilon)$.
- Fiat-Shamir proves knowledge of a witness for (N,v_A) in relation R_{QR} !

Schnorr identification protocol

Impersonation in Schnorr protocol

Theorem 3.16 (restated) For any $\delta \ge 2^{-l+2}$ and any algorithm C there exists an algorithm C' with the following properties:

- 1. If on input p,g,v_A C impersonates A with probability $\geq \delta$, then C' on input p,g,v_A computes a discrete logarithm of v_A to base g with probability 0.03;
- 2. If C runs in time T, then C' runs in time $\mathcal{O}(T/\delta + \log^2(p))$.

Schnorr proves knowledge of a witness for (p,g,v_A) in relation R_{DL} !

Definition of proofs of knowledge

- V / P interactive protocol for some language L
- R relation with $L_R = L$
- K probabilistic polynomial time algorithm
- P^{*} (cheating) prover for V / P
- K has oracle access to prover P^{*}, if
 - **1.** K can chose randomness r used by P^{*}.
 - K can fix an initial part x of the communication between V,P*.
 - 3. K obtains as answer the next message from P^{*} given r and x.

Definition of proofs of knowledge

K has oracle access to prover P^{*}, if

- **1.** K can chose randomness r used by P^{*}.
- K can fix an initial part x of the communication between V,P*.
- 3. K obtains as answer the next message from P^{*} given r and x.
- Oracle access can be used to
 - simulate runs of protocol V/P*
 - simulate runs of protocol V/P*, where randomness of P* and initial part x is fixed
 - initial part may be obtained from previous simulations

Definition of proofs of knowledge

Definition 3.17 Let V/P be an interactive proof for a language $L_R \in NP$, where L_R for relation R. V/P is called a proof of knowledge with knowledge error δ , if there is a ppt K (with oracle access to provers) such that for all provers P^{*} and every x satisfying

$$\Pr\left[V/P^{*}(x) = \operatorname{accept}\right] \geq \delta + \epsilon$$

 $K^{P^*}(x)$ outputs an element $w \in W(x)$ in time polynomial in |x| and $1/\epsilon$.

The running time of K is allowed to be expected polynomial time.

Fiat-Shamir and proofs of knowledge

- Theorem 3.4 (restated) For any $\varepsilon > 0$ and any algorithm C there exists an algorithm C' with the following properties:
- 1. If on input N,v_A C impersonates A with probability $1/2 + \varepsilon, \varepsilon > 0$, then C' on input N,v_A computes a square root of v_A mod N with probability 1/2;
- 2. If C runs in time T, then C' runs in time $\mathcal{O}(T/\epsilon)$.
- **Corollary 3.18** The Fiat-Shamir protocol is a proof of knowledge with knowledge error 1/2.

From C to C '

- C' on input N,v_A
 - 1. repeat at most $1/\delta$ times

a)
$$\mathbf{z} \leftarrow \{\mathbf{0},\mathbf{1}\}^{\mathsf{R}}, \mathbf{b} \leftarrow \{\mathbf{0},\mathbf{1}\}$$

- b) simulate C with random bits z and b
- c) if C succeeds set $b^{(1)}$: = b and goto 2)
- 2. repeat at most $1/\delta$ times

a)
$$\mathbf{b} \leftarrow \{\mathbf{0},\mathbf{1}\}^{\mathsf{I}}$$

- b) simulate C with random bits z and b
- c) if C succeeds set $b^{(2)}$: = b and goto 3)
- 3. if $b^{(1)} \neq b^{(2)}$, output $b^{(1)}, b^{(2)}$ and corresponding $t^{(1)}, t^{(2)}$.

Impersonation in Schnorr protocol

Theorem 3.16 (restated) For any $\delta \ge 2^{-l+2}$ and any algorithm C there exists an algorithm C' with the following properties:

1. If on input p,g,v_A C impersonates A with probability $\geq \delta$, then C' on input p,g,v_A computes a discrete logarithm of v_A to base g with probability 0.03;

2. If C runs in time T, then C' runs in time $\mathcal{O}(T/\delta + \log^2(p))$.

Corollary 3.19 The Schnorr protocol is a proof of knowledge with knowledge error 2^{-l+2} .

∑- protocols

- R,L_R as before
- C some finite set, often additive group

∑- protocols

Definition 3.20 A three round protocol as above is called a Σ -protocol if it satisfies the three properties

- 1. completeness
- 2. special soundness
- 3. special honest verifier zero-knowledgeness.

\sum - protocols - properties

completeness If P and V follow the protocol, then V always accepts.

special soundness There exists a ppt algorithm E (extractor) which given $x \in L_R$ and any two accepting transcripts (z,c,r) and (a,c',r') with $c \neq c'$ computes a witness w satisfying $(x,w) \in R$.

special honest verifier zero-knowledgeness There exists a ppt algorithm S (simulator) which given any $x \in L_R$ and any challenge c produces transcripts (z,c,r) with the same distribution as in the real protocol V/P.

Schnorr protocol

Lemma 3.21 The Schnorr protocol is a Σ -protocol for the relation R_{DL} .

Example L = DL

- $\mathbf{x} = (\mathbf{p}, \mathbf{g}, \mathbf{v}), \mathbf{p} \in \mathbb{N}$ prime, $\mathbf{g}, \mathbf{v} \in \mathbb{Z}_{p}^{*}, \mathbf{w} \in \mathbb{Z}_{p-1}^{*}$

$$- \mathsf{R}_{\mathsf{DL}}(\mathsf{x},\mathsf{w}) = 1 :\Leftrightarrow g^{\mathsf{w}} = \mathsf{v} \bmod p$$

Σ - protocols, proofs of knowledge, extractors

Theorem 3.22 Every Σ -protocol is a proof of knowledge with knowledge error 1/|C|.

\sum - protocols and zero-knowledgeness

Theorem 3.23 Every Σ -protocol can be transformed into a zero-knowledge protocol.

The tranformed protocol:

P with input $(x, w) \in R$ V with input $x \in L_{p}$ $z \leftarrow z(x,w), c_{p} \leftarrow C$ (**Z**,**C**_P) challenge $\mathbf{c}_{v} \leftarrow \mathbf{C}$ C_{V} $\mathbf{r} \leftarrow \mathbf{r}(\mathbf{x}, \mathbf{w}, \mathbf{z}, \mathbf{c}_{P} + \mathbf{c}_{V})$ $\varphi(\mathbf{x}, \mathbf{w}, \mathbf{z}, \mathbf{c}_{P} + \mathbf{c}_{V}, \mathbf{r})$? response

Composition of \sum -protocols - AND

Example L = AND - DL

-
$$\mathbf{p} \in \mathbb{N}$$
 prime, $\mathbf{g}, \mathbf{v} \in \mathbb{Z}_{p}^{*}, \mathbf{x}_{i} = (\mathbf{p}, \mathbf{g}, \mathbf{v}_{i}), \mathbf{v}_{i}, \mathbf{w}_{i} \in \mathbb{Z}_{p-1}, i = 1, 2$

$$- \mathsf{R}_{\mathsf{DL}}(\mathsf{x}_1,\mathsf{w}_1,\mathsf{x}_2,\mathsf{w}_2) = 1 :\Leftrightarrow \mathsf{g}^{\mathsf{w}_i} = \mathsf{v}_i \bmod \mathsf{p}, i = 1, 2$$

Composition of \sum -protocols - OR

Example L = OR-DL

- $\mathbf{p} \in \mathbb{N}$ prime, $\mathbf{g}, \mathbf{v} \in \mathbb{Z}_{p}^{*}, \mathbf{x}_{i} = (\mathbf{p}, \mathbf{g}, \mathbf{v}_{i}), \mathbf{v}_{i}, \mathbf{w}_{i} \in \mathbb{Z}_{p-1}, i = 1, 2$

$$- \mathsf{R}_{\mathsf{OR}-\mathsf{DL}}(\mathsf{x}_1,\mathsf{w}_1,\mathsf{x}_2,\mathsf{w}_2) = 1 :\Leftrightarrow \exists i : g^{\mathsf{w}_i} = \mathsf{v}_i \mod p$$

Assume P knows w_1 with $g^{w_1} = v_1 \mod p$.

- 1. P chooses $c_2 \leftarrow C$, and using simulator computes transcript (z_2, c_2, r_2) . P also chooses $k_1 \leftarrow \mathbb{Z}_{p-1}$, sets $z_1 := g^{k_1} \mod p$ and sends (z_1, z_2) to V.
- 2. V chooses $c \leftarrow C$ and sends it to P.
- 3. P computes $c_1 := c c_2$ and $r_1 := k_1 w_1 c_1 \mod p 1$. P sends (r_1, r_2) to V.
- 4. V accepts iff $z_i = g^{r_i} v_i^{c_i} \mod p$, for i = 1, 2, and $c_1 + c_2 = c \mod p - 1$.