Fiat-Shamir identification

- offers security against cheating prover:

Theorem 3.5 (restated) For any & >27*? and any algorithm C
there exists an algorithm C’ with the following properties:

1. If on input N,v, C impersonates A with probability > 9,

then C’ on input N,v, computes a square root of v, mod N
with probability 0.03;

2. If Cruns in time T, then C’ runs in time (’)(TIB).

— offers security against cheating verifier:

Theorem 3.15 (restated) The Fiat-Shamir protocol is a perfect
zero-knowledge protocol for the language QR. 1



Proofs of knowledge - preliminaries

- R c{0,1} x{0,1} binary relation, (x,y) eR:= R(x,y) =1

- xe€{0,1} : W(x):={w € {0,1} :R(x,w) =1},w € W(x) called
called witnesses for x.

- L, :={xe{0,1} : W(x) # J} language corresponding to R

— R polynomially bounded :< there is a ¢ € N such that for all
x€{0,1} and allw e W(x):|w |<|x [

— R polynomially verifiable :< R(-,-) can be computed in
polynomial time

— R NP-relation:< R polynomially bounded and polynomially

verifiable



Proofs of knowledge - preliminaries

Observation

— IfRis an NP-relation, then L, € NP.
— If L eNP, then there is an NP-relation Rwith L=L_.

Definition 3.7 (restated) V is a polynomial verifier for language

Lc X' if Vis a verifier for L and

1. the running time of V on input (w,c)is polynomial in 'w

2. there is a polynomial p:N — N such that for all w €L there

is ace{0,1"") with V(w,c)=1.

If language L has a polynomial verifier we call it polynomially

verifiable. 3



Relations and languages - examples
Example L = SAT

— X = ¢ boolean formula, w assignment to varaibles

R, (X,W) =1: ¢(w) = true.

Example L = QR
- x=(N,v),NeN,veZ ,weZ,

— R (x,w)=1: w?=xmodN.

Example L =DL
- x=(p,g,V),peN prime,gveZ ,weZ_

1

- R, (x,w)=1:9g" =vmodp



Fiat-Shamir identification protocol

A
r < Z,x:=r’mod N

t:=r-s’ modN

cert(A),x
>

challenge
b

<€

t

>
response

verifies cert(A)
b « {0,1}

accepts iff
t =x-v5 mod N




Fiat-Shamir identification - security

Theorem 3.4 (restated) For any € > 0 and any algorithm C
thereexists an algorithm C’ with the following properties:

1. If on input N,v, C impersonates A with probability
1/2 + €, >0, then C” on input N,v, computes a square
root of v, mod N with probability 1/2;

2. If C runs in time T, then C’ runs in time O(Tle).

Fiat-Shamir proves knowledge of a witness for (N,v,) in
relation Rqg!



Schnorr identification protocol

A

k7 ,x:=g"'modp

17

y:=k+a-r mod p-1

cert(A),x
>

challenge

r
<€

y

>
response

verifies cert(A)
r « {1,...,2'}

accepts iff
x=g’ v, modp




Impersonation in Schnorr protocol

Theorem 3.16 (restated) For any § > 27"? and any algorithm C
there exists an algorithm C’ with the following properties:

1. If on input p,g,v, C impersonates A with probability > 6,
then C’ on input p,g,v » computes a discrete logarithm of v,
to base g with probability 0.03;

2. If C runs in time T, then C’ runs in time (’)(TIS +log? (p))

Schnorr proves knowledge of a witness for (p,g,v,) in
relation Ry, !



Definition of proofs of knowledge

— VP interactive protocol for some language L
— Rrelationwith L =L

— K probabilistic polynomial time algorithm

— P’ (cheating) prover for V /P

K has oracle access to prover P, if

1. K can chose randomness r used by P".

2. K can fix an initial part x of the communication between
V,P.

3. K obtains as answer the next message from P" given r

and Xx.



Definition of proofs of knowledge
K has oracle access to prover P, if
1. K can chose randomness r used by P".
2. K can fix an initial part x of the communication between
V,P.
3. K obtains as answer the next message from P given r

and Xx.

Oracle access can be used to
- simulate runs of protocol V/P’
— simulate runs of protocol V/P’, where randomness of P’
and initial part x is fixed

- initial part may be obtained from previous simulations



Definition of proofs of knowledge

Definition 3.17 Let V/P be an interactive proof for a language
L. eNP, where L_ for relation R. V/P is called a proof of
knowledge with knowledge error 9, if there is a ppt K (with
oracle access to provers) such that for all provers P* and
every x satisfying

Pr[V [P (x) = accept] >6+e

K" (x) outputs an element w € W(x) in time polynomial in

|| and 1/e.

The running time of K is allowed to be expected polynomial
time.
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Fiat-Shamir and proofs of knowledge

Theorem 3.4 (restated) For any € > 0 and any algorithm C
there exists an algorithm C’ with the following properties:

1. If on input N,v, C impersonates A with probability

1/2 + €,€ >0, then C" on input N,v, computes a square
root of v, mod N with probability 1/2;

2. If C runs in time T, then C’ runs in time O(Tlg).

Corollary 3.18 The Fiat-Shamir protocol is a proof of
knowledge with knowledge error 1/2.
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FromCtoC*

C’oninputN,v,
1. repeat at most 1/8 — times
a) z«{0,1}" ,b<«{0,1}
b) simulate C with random bits zand b
c) if C succeeds set b"): =b and goto 2)
2. repeat at most 1/8 — times
a) b« {0,1}I
b) simulate C with random bits zand b

c) if C succeeds set b®: =b and goto 3)
3. ifb!" 2b®, output b ,b® and corresponding t'",t®?.
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Impersonation in Schnorr protocol

Theorem 3.16 (restated) For any § =2 and any algorithm C
there exists an algorithm C’ with the following properties:

1. If on input p,g,v, C impersonates A with probability > 6,
then C’ on input p,g,v » computes a discrete logarithm of v,
to base g with probability 0.03;

2. If C runs in time T, then C’ runs in time O(TIS +log? (p))

Corollary 3.19 The Schnorr protocol is a proof of knowledge
with knowledge error 27",

14



> = protocols

- R,L_ as before

- C some finite set, often additive group

P with input (x,w) eR

Z —z(X,w)

>

challenge

C
<

r <r(x,w,z,c) .

>

response

V with input x eL_

c«C

o(x,w,z,c,r)?

1




> = protocols

P with input (x,w) eR V with input x e L
Z «—z(X,w)
z
—_—
challenge
c c«C
—
r «<r(x,w,z,c) i
—_—
response o(x,w,z,c,r)?

Definition 3.20 A three round protocol as above is called a
2-protocol if it satisfies the three properties
1. completeness

2. special soundness
3. special honest verifier zero-knowledgeness.



> - protocols - properties

completeness If P and V follow the protocol, then V always
accepts.

special soundness There exists a ppt algorithm E (extractor)
which given x eL_ and any two accepting transcripts (z,c,r)
and (a,c’,r') with c # ¢’ computes a withess w satisfying

(x,w) e R.

special honest verifier zero-knowledgeness There exists a
ppt algorithm S (simulator) which given any x eL_ and any

challenge ¢ produces transcripts (z,c,r) with the same
distribution as in the real protocol V/P.
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Schnorr protocol

P \"

k7, ,,z:=g"mod p z

—

c«{1,...,2'}
challenge 003
<
r.=k—w-c mod p-1

r

e

accepts iff
response
z=¢g -v° modp

Lemma 3.21 The Schnorr protocol is a X-protocol for the
relation R, .

Example L =DL
- X= (p!gsv)ap eN prime’g’v < Z;’W € Zp_1

- R, (x,w)=1:g" =vmodp
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>~ protocols, proofs of knowledge, extractors

Theorem 3.22 Every X-protocol is a proof of knowledge with
knowledge error 1/|C|.
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> - protocols and zero-knowledgeness

Theorem 3.23 Every X-protocol can be transformed into a
zero-knowledge protocol.

The tranformed protocol:

P with input (x,w) eR V with inputx el
z < z(x,w),c, < C
(Z!CP)
——
challenge
Cy c, «<C

b
r <r(x,w,z,c, +c,) ;

——

¢(x,w,z,c, +c,,r)?

response




Composition of > _-protocols - AND

Example L = AND - DL

— peN prime,g,v Z’I;,xi =(p,9,v,),V,, W, €Z__,i=1,2

- R, (x,,w,,x,,w,)=1:=¢g" =v. modp,i=1,2

p Vv
Ki—1Z, ,,2;:= g“mod p
P Z1!ZZ 3
i=1,2
|
challenge C(_{1""’2}
S
ri= ki —w -c mod p-1,
i=1,2 L
response accepts iff
Zi = gri -V;: mod p,l = 1!2
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Composition of }_-protocols - OR

Example L = OR-DL

- peN prime,g,veZL,xi =(p,9,V,),V;, W, €Z__,i=1,2

— R o (X, W,,X,,W,)=1:=3i:g" =v, mod p

Assume P knows w, with g"* = v, mod p.

1. P chooses c, « C, and using simulator computes

transcript (z,,c,,r,). P also chooses k, <~ Z _,, sets

z,:=g" mod p and sends (z,,2,) to V.

V chooses ¢ < C and sends it to P.

P computesc . :=c—c, andr =k, —w.c modp-1.

P sends (r,,r,) to V.

4. V accepts iff z =g'v. modp, fori=1,2,and
c,+c,=cmodp-1.

PN



