
Fiat-Shamir identification 
-  offers security against cheating prover: 
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Theorem 3.5 (restated) For any δ ≥ 2− l+2  and any algorithm C 
there exists an algorithm ′C  with the following properties:

1. If on input N,vA  C impersonates A with probability ≥ δ,  

   then ′C  on input N,vA  computes a square root of vA mod N

   with probability 0.03;

2. If C runs in time T, then ′C  runs in time O T/δ( ).

-  offers security against cheating verifier: 

 

Theorem 3.15 (restated) The Fiat-Shamir protocol is a perfect 
zero-knowledge protocol for the language QR.



Proofs of knowledge - preliminaries 
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− R ⊆ {0,1}* × {0,1}*  binary relation, (x,y) ∈R :⇔ R(x,y) = 1 

− x ∈{0,1}* : W(x) := {w ∈{0,1}* :R(x,w) = 1},w ∈W(x) called

called witnesses for x.

− LR := {x ∈{0,1}* : W(x) ≠ ∅} language corresponding to R

− R polynomially bounded:⇔ there is a c ∈N such that for all

x ∈{0,1}*  and all w ∈W(x) :| w | ≤ | x |c

− R polynomially verifiable :⇔ R(⋅,⋅) can be computed in

polynomial time

− R NP-relation:⇔ R polynomially bounded and polynomially

verifiable



Proofs of knowledge - preliminaries 
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Observation

− If R is an NP-relation, then LR ∈NP.

− If L ∈NP, then there is an NP-relation R with L = LR.

  

Definition 3.7 (restated)  V is a polynomial verifier for language 

L ⊆ Σ∗  if  V is a verifier for L and 

1. the running time of V on input w,c( ) is polynomial in w ,

2. there is a polynomial p:N → N such that for all w ∈L there

is a c ∈ 0,1{ }p w( )  with V w,c( ) = 1.

If language L has a polynomial verifier we call it polynomially

verifiable.



Relations and languages - examples 
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Example L = QR

− x = (N,v),N ∈,v ∈N
* ,w ∈N

*

− RQR (x,w) = 1:⇔ w2 = x modN.

 

Example L = SAT

− x = φ boolean formula, w assignment to varaibles

− RSAT (x,w) = 1:⇔ φ(w) = true.

  

Example L = DL

− x = (p,g,v),p ∈  prime,g,v ∈ p
* ,w ∈ p−1

− RDL(x,w) = 1:⇔ gw = v mod p



Fiat-Shamir identification protocol  

A B 

cert(A),x 

accepts iff response 

  r ← ZN
* ,x := r2 mod N

verifies cert(A) 

 b ← 0,1{ }
b 

 t := r ⋅sA
b  mod N

t 

 t
2 = x ⋅vA

b  mod N

challenge 
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Fiat-Shamir identification - security 

  

Theorem 3.4 (restated) For any ε > 0 and any algorithm C 
thereexists an algorithm ′C  with the following properties:

1. If on input N,vA  C impersonates A with probability

   1/2 + ε,ε > 0,  then ′C  on input N,vA  computes a square 

   root of vA mod N with probability 1/2;

2. If C runs in time T, then ′C  runs in time O T/ε( ).

6 

Fiat-Shamir proves knowledge of a witness for (N,vA) in  
relation RQR! 



Schnorr identification protocol  

A B 

cert(A),x 

accepts iff response 

  k ← Zp−1,x := gk mod p

verifies cert(A) 

  r ← 1,…,2l{ }
r 

 y := k + a ⋅r  mod p-1

y 

y r
Ax g v  mod p= ⋅

challenge 
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Impersonation in Schnorr protocol 

  

Theorem 3.16 (restated) For any δ ≥ 2− l+2  and any algorithm C 
there exists an algorithm ′C  with the following properties:

1. If on input p,g,vA  C impersonates A with probability ≥ δ,  

   then ′C  on input p,g,vA  computes a discrete logarithm of vA

   to base  g with probability 0.03;

2. If C runs in time T, then ′C  runs in time O T/δ + log2 p( )( ).
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Schnorr proves knowledge of a witness for (p,g,vA) in  
relation RDL! 



Definition of proofs of knowledge   

 

− V / P interactive protocol for some language L  

− R relation with LR = L

− K probabilistic polynomial time algorithm 

− P*  (cheating) prover for V / P
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K has oracle access to prover P*,  if

1. K can chose randomness r used by P*.

2. K can fix an initial part x of the communication between 

V,P*.

3. K obtains as answer the next message from P*  given r 

and x.



Definition of proofs of knowledge   
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K has oracle access to prover P*,  if

1. K can chose randomness r used by P*.

2. K can fix an initial part x of the communication between 

V,P*.

3. K obtains as answer the next message from P*  given r 

and x.

Oracle access can be used to 
-  simulate runs of protocol V/P* 
-  simulate runs of protocol V/P*, where randomness of P* 

and initial part x is fixed 
-  initial part may be obtained from previous simulations 



Definition of proofs of knowledge   
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Definition 3.17 Let V/P be an interactive proof for a language 

LR ∈NP, where LR  for relation R. V/P is called a proof of 

knowledge with knowledge error δ, if there is a ppt K (with

oracle access to provers)  such that for all provers P*  and 

every x satisfying

Pr V / P*(x) = accept⎡⎣ ⎤⎦ ≥ δ + ε

KP*

(x) outputs an element w ∈W(x) in time polynomial in 

|x| and 1/ε.

The running time of K is allowed to be expected polynomial 
time.



Fiat-Shamir and proofs of knowledge 

  

Theorem 3.4 (restated) For any ε > 0 and any algorithm C 
there exists an algorithm ′C  with the following properties:

1. If on input N,vA  C impersonates A with probability

   1/2 + ε,ε > 0,  then ′C  on input N,vA  computes a square 

   root of vA mod N with probability 1/2;

2. If C runs in time T, then ′C  runs in time O T/ε( ).
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Corollary 3.18 The Fiat-Shamir protocol is a proof of 
knowledge with knowledge error 1/2.



From C to C‘ 

 

′C  on input N,vA

1. repeat at most 1 δ − times

a) z ← 0,1{ }R
,b ← 0,1{ }l

b) simulate C with random bits z and b

c) if C succeeds set b 1( ): = b and goto 2) 

2. repeat at most 1 δ − times

a) b ← 0,1{ }l

b) simulate C with random bits z and b

c) if C succeeds set b 2( ): = b and goto 3)

3. if b 1( ) ≠ b 2( ) ,  output b 1( ) ,b 2( )  and corresponding t 1( ) , t 2( ).
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Impersonation in Schnorr protocol 

  

Theorem 3.16 (restated) For any δ ≥ 2− l+2  and any algorithm C 
there exists an algorithm ′C  with the following properties:

1. If on input p,g,vA  C impersonates A with probability ≥ δ,  

   then ′C  on input p,g,vA  computes a discrete logarithm of vA

   to base  g with probability 0.03;

2. If C runs in time T, then ′C  runs in time O T/δ + log2 p( )( ).
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Corollary 3.19 The Schnorr protocol is a proof of knowledge 

with knowledge error 2− l+2.



∑- protocols  
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- R,LR  as before

- C some finite set, often additive group

response 

z 
 z ← z(x,w)

 c ← Cc 

 r ← r(x,w,z,c) r 

 ϕ(x,w,z,c,r)?

challenge 

 P with input (x,w) ∈R  V with input x ∈LR



∑- protocols  
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response 

z 
 z ← z(x,w)

 c ← Cc 

 r ← r(x,w,z,c) r 

 ϕ(x,w,z,c,r)?

challenge 

 P with input (x,w) ∈R  V with input x ∈LR

 

Definition 3.20 A three round protocol as above is called a 
Σ-protocol if it satisfies the three properties

1. completeness
2. special soundness
3. special honest verifier zero-knowledgeness.



∑- protocols - properties  
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completeness If P and V follow the protocol, then V always
accepts.

special soundness There exists a ppt algorithm E (extractor)
which given x ∈LR  and any two accepting transcripts (z,c,r)

and (a,c',r') with c ≠ c' computes a witness w satisfying
(x,w) ∈R.

special honest verifier zero-knowledgeness There exists a
ppt algorithm S (simulator) which given any x ∈LR  and any

challenge c produces transcripts (z,c,r) with the same 
distribution as in the real protocol V/P.



Schnorr protocol  
P V 

z 

accepts iff response 

  k ← Zp−1,z := gk mod p

  c ← 1,…,2l{ }
c 

 r := k − w ⋅c mod p-1
r 

 z = gr ⋅vc  mod p

challenge 
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Lemma 3.21 The Schnorr protocol is a Σ-protocol for the
relation RDL.

  

Example L = DL

− x = (p,g,v),p ∈  prime,g,v ∈ p
* ,w ∈ p−1

− RDL(x,w) = 1:⇔ gw = v mod p



∑- protocols, proofs of knowledge, extractors 
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Theorem 3.22 Every Σ-protocol is a proof of knowledge with
knowledge error 1 | C |.



∑- protocols and zero-knowledgeness 
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Theorem 3.23 Every Σ-protocol can be transformed into a 
zero-knowledge protocol.  

response 

(z,cP) 
 z ← z(x,w),cP ← C

 cV ← CcV 

 r ← r(x,w,z,cP + cV) r 

 ϕ(x,w,z,cP + cV,r)?

challenge 

 P with input (x,w) ∈R  V with input x ∈LR

The tranformed protocol: 



Composition of ∑-protocols - AND
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Example L = AND −DL

− p ∈!  prime,g,v ∈" p
* ,xi = (p,g,vi),vi,wi ∈" p−1,i = 1,2

− RDL(x1,w1,x2,w2) = 1:⇔ gwi = vi mod p,i = 1,2

P V 

z1,z2 

accepts iff response 

  

ki ← Zp−1,zi := gki mod p

i = 1,2

  c ← 1,…,2l{ }
c 

 

ri := ki − w ⋅c mod p-1,

i = 1,2 r1,r2 

 zi = gri ⋅vi
c  mod p,i = 1,2

challenge 



Composition of ∑-protocols - OR

  

Example L = OR-DL
− p ∈!  prime,g,v ∈" p

* ,xi = (p,g,vi),vi,wi ∈" p−1,i = 1,2

− ROR−DL(x1,w1,x2,w2) = 1:⇔ ∃i : gwi = vi mod p

  

Assume P knows w1 with gw1 = v1 mod p.

1. P chooses c2 ← C, and using simulator computes
transcript (z2,c2,r2). P also chooses k1 ← ! p−1,  sets  

z1 := gk1 mod p and sends (z1,z2) to V.
2. V chooses c ← C and sends it to P.
3. P computes c1 := c − c2  and r1 := k1 − w1c1 mod p − 1.

P sends (r1,r2) to V.
4. V accepts iff zi = grivi

ci mod p, for i = 1,2,and 
c1 + c2 = c mod p − 1.


