Johannes Blömer Jan Bobolz, Gennadij Liske

23. June 2016 submission due: 04. July 2016, 15:30

Complexity Theory SS 2016

Homework 11

Exercise 1 (10 points): Let $A, B \subseteq \{0, 1\}^*$. Show that

- If $A \in \mathbf{P}$, then $\mathbf{P}^A = \mathbf{P}$.
- If $\mathbf{NP} = \mathbf{P}^{SAT}$, then $\mathbf{NP} = \text{co-NP}$.
- $\overline{SAT} \in \mathbf{P}^{SAT}$.
- If $A \leq_P B$, then $\mathbf{P}^A \subseteq \mathbf{P}^B$.
- There is a $C \subseteq \{0,1\}^*$ s.t. $\mathbf{P} \neq \mathbf{P}^C$.
- If $A \subseteq \{0,1\}^k$ for some $k \in \mathbb{N}$, then $\mathbf{P}^A = \mathbf{P}$.

Exercise 2 (10 points):

Consider the DTM D from the space hierarchy theorem proof:

- D = "On input $w \in \{0, 1\}^*$:
 - 1. Let n be the length of w.
 - 2. Compute f(n) using space constructibility, and mark off this much tape. If later stages ever attempt to use more space, *reject*.
 - 3. If w is not of the form $\langle M \rangle 10^*$, reject.
 - 4. Simulate M on input w while counting the number of steps used in the simulation. If the count ever exceeds $2^{f(n)}$, reject.
 - 5. If M accepts, *reject*. If M rejects, *accept*."
- a) Show that if we change Step 4 to simply "Simulate M on input w", then D is not a decider anymore.
- b) Show that if we change "f(n)" to " $\lceil f(n)/2 \rceil$ " in Step 2, and " $2^{f(n)}$ " to " $2^{\lceil f(n)/2 \rceil}$ " in Step 4, then L(D) still cannot be decided in space o(f(n)). *Hint:* show that for all M using space o(f(n)), D accepts $\langle M \rangle 10^{\ell}$ if and only if M rejects $\langle M \rangle 10^{\ell}$ for some sufficiently large $\ell \in \mathbb{N}$.