Johannes Blömer Jan Bobolz, Gennadij Liske 30. June 2016 submission due: 11. July 2016, 15:30

Complexity Theory

SS 2016

Homework 12

Exercise 1 (6 points): Prove Theorem 6.4 part 2, namely:

 $\mathbf{NP}^{TQBF} \subseteq \mathbf{NPSPACE} \subseteq \mathbf{PSPACE} \subseteq \mathbf{P}^{TQBF}.$

Exercise 2 (8 points): Prove Lemma 7.3 by showing that for all $k \in \mathbb{N}_0$

$$\Delta_k = \operatorname{co-}\Delta_k \subseteq \Sigma_k \cap \Pi_k \subseteq \Sigma_k \cup \Pi_k \subseteq \Delta_{k+1} \subseteq \Sigma_{k+1}.$$

Exercise 3 (10 points):

In the following, we prove that there is an oracle A such that $\mathbf{NP}^A \neq \mathrm{co-}(\mathbf{NP}^A)$.

- a) For any language A, let $L_A = \{1^n \mid \exists x \in A : |x| = n\}$ like in the lecture. Show that for any A, it holds that $\overline{L_A} \in \text{co-}(\mathbf{NP}^A)$.
- b) It remains to show that there is an A such that $\overline{L_A} \notin \mathbf{NP}^A$. Consider the construction of A in the lecture, which needs to be adapted for our proof. We give the following hints:
 - The general approach and the definition of e_i, n_i can stay the same.
 - If there is an accepting computation path for $M_i^?$ on input 1^{n_i} , we need to ensure that $1^{n_i} \notin \overline{L_A}$ by including at least one w_i of the correct length in A_i .
 - When including that particular w_i , we need to make sure that the oracle answers on the accepting computation path are unaffected. How should you define X_i ?
 - If there is no accepting computation path for $M_i^?$ on input 1^{n_i} , we need to ensure that $1^{n_i} \in \overline{L_A}$ by excluding all x of length n_i from A (i.e. including them in \tilde{A}_i).

If suffices to give the construction of A. You do not have to formally prove that $\overline{L_A} \notin \mathbf{NP}^A$.