Complexity Theory

SS 2016
Homework 13

Exercise 1 (8 points):
Prove the statement "if $\Sigma_{k}=\Pi_{k}$ for some $k \in \mathbb{N}$, then the polynomial time hierarchy collapses to its k-th level", i.e.

$$
\mathbf{P H}=\Sigma_{k} .
$$

Hint: We suggest you go through the following steps:
a) Show that if $\Sigma_{\ell} \subseteq \Sigma_{\ell-1}$ for some $\ell>1$, then $\Sigma_{\ell}=\Pi_{\ell}$.
b) Show by induction that $\Sigma_{\ell+1} \subseteq \Sigma_{\ell}$ for all $\ell \geq k$ using Theorem 7.4 (twice) and (a).
c) Conclude that $\mathbf{P H}=\Sigma_{k}$.

Exercise 2 (6 points):
Let $f \in \mathbb{Z}[x]$ be a polynomial with variable x and integer coefficients. We denote the degree of f as $\operatorname{deg}(f)$.

Consider the following randomized algorithm \mathcal{A} that checks equality of two given polynomials. On input $f, g \in \mathbb{Z}[x], \mathcal{A}$ does the following:

- Let $d=\max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$.
- Choose a uniformly random integer $z \in\{1, \ldots, 2 d\}$.
- If $f(z)=g(z)$ then accept, otherwise reject.
a) Argue that if $f=g$, then \mathcal{A} accepts with probability 1 .
b) Argue that if $f \neq g$, then \mathcal{A} accepts with probability at most $1 / 2$.

Hint: Note that $f(z)=g(z) \Leftrightarrow(f-g)(z)=0$. How many roots (zeros) does $f-g$ have at most?

Exercise 3 (8 points):
Let $L \in \mathbf{R P}$. Show that for any $c \in \mathbb{N}$, there is a polynomial p and a p-balanced NTM N such that

- if $w \notin L$, all computation branches of N reject.
- if $w \in L$, at most $2^{p(|w|)} / 2^{c}$ computation branches of N reject.

