Johannes Blömer Jan Bobolz, Gennadij Liske

Complexity Theory SS 2016 Homework 3

Exercise 1 (10 points):

Consider the following way of defining graphs implicitly. Let Π be a set of symbols and let $P: \Pi^* \times \Pi^* \to \{0, 1\}$ be a predicate that can be decided by a linear space DTM. We define the directed graph $G_{\Pi,P,k} := (V_k, E_k)$ whose nodes are $V_k := \Pi^k$ and whose edge relation is defined through P, i.e. $E_k := \{(a, b) \in V_k^2 \mid P(a, b) = 1\}$. We define the language

 $Path_{\Pi,P} := \{ \langle k, u, v, t \rangle \mid u, v \in \Pi^k \land$

there is a directed path from u to v of length at most t in $G_{\Pi,P,k}$.

- a) Show that $Path_{\Pi,P}$ can be decided in $\mathcal{O}(k \cdot \log(t))$ space by giving an algorithm and proving its space requirements. Hint: you can borrow heavily from the CANYIELD procedure in the lecture.
- b) Prove Savitch's theorem: Let s(n) be a space constructible function, then it holds that $NSPACE(s(n)) \subseteq DSPACE(s(n)^2)$.
 - (a) Specify Π , P for any given s(n) space NTM N.
 - (b) Reduction: For $w \in \Sigma^*$, what are k, u, v, t such that $w \in L(N) \Leftrightarrow \langle k, u, v, t \rangle \in Path_{\Pi, P}$?
 - (c) Specify a DTM deciding L(N) in space $s(n)^2$.
 - (d) Where did you use that s(n) is space constructible?

Exercise 2 (10 points):

Let ϕ be a 3cnf formula, i.e. a Boolean formula in conjunctive normal form where every clause consists of exactly three literals. An *imperfect assignment* for ϕ is an assignment $(x_1, \ldots, x_n) \in \{0, 1\}^n$ such that $\phi(x_1, \ldots, x_n) = 1$ but in every clause there is at least one unsatisfied literal (e.g., $(x_1, x_2, x_3) = (1, 0, 0)$ is an imperfect assignment for $(x_1 \vee \overline{x_2} \vee x_3)$ but not for $(x_1 \vee \overline{x_2} \vee \overline{x_3})$).

- a) Show that if $(x_1, \ldots, x_n) \in \{0, 1\}^n$ is an imperfect assignment for ϕ , then its negation $(\overline{x_1}, \ldots, \overline{x_n})$ is an imperfect assignment for ϕ as well.
- b) Let $iSAT := \{ \langle \phi \rangle \mid \text{there exists an imperfect assignment for } \phi \}$. Show that $3SAT \leq_P iSAT$. *Hint: try replacing each clause* $c_i = (L_1 \lor L_2 \lor L_3)$ *(for its three literals* L_i *) with* $(L_1 \lor L_2 \lor z_i) \land (\overline{z_i} \lor L_3 \lor b)$ for new variables z_i and a single new variable b.
- c) Use this result to argue that iSAT is **NP**-complete.