Complexity Theory

SS 2016

Homework 3

Exercise 1 (10 points):
Consider the following way of defining graphs implicitly. Let Π be a set of symbols and let $P: \Pi^{*} \times \Pi^{*} \rightarrow\{0,1\}$ be a predicate that can be decided by a linear space DTM.
We define the directed graph $G_{\Pi, P, k}:=\left(V_{k}, E_{k}\right)$ whose nodes are $V_{k}:=\Pi^{k}$ and whose edge relation is defined through P, i.e. $E_{k}:=\left\{(a, b) \in V_{k}^{2} \mid P(a, b)=1\right\}$. We define the language

$$
\operatorname{Path}_{\Pi, P}:=\left\{\langle k, u, v, t\rangle \mid u, v \in \Pi^{k} \wedge\right.
$$

there is a directed path from u to v of length at most t in $\left.G_{\Pi, P, k}\right\}$.
a) Show that $P a t h \quad$, P can be decided in $\mathcal{O}(k \cdot \log (t))$ space by giving an algorithm and proving its space requirements.
Hint: you can borrow heavily from the CANYIELD procedure in the lecture.
b) Prove Savitch's theorem: Let $s(n)$ be a space constructible function, then it holds that $\operatorname{NSPACE}(s(n)) \subseteq \mathbf{D S P A C E}\left(s(n)^{2}\right)$.
(a) Specify Π, P for any given $s(n)$ space NTM N.
(b) Reduction: For $w \in \Sigma^{*}$, what are k, u, v, t such that $w \in L(N) \Leftrightarrow\langle k, u, v, t\rangle \in$ Path $_{\Pi, P}$?
(c) Specify a DTM deciding $L(N)$ in space $s(n)^{2}$.
(d) Where did you use that $s(n)$ is space constructible?

Exercise 2 (10 points):
Let ϕ be a 3 cnf formula, i.e. a Boolean formula in conjunctive normal form where every clause consists of exactly three literals. An imperfect assignment for ϕ is an assignment $\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$ such that $\phi\left(x_{1}, \ldots, x_{n}\right)=1$ but in every clause there is at least one unsatisfied literal (e.g., $\left(x_{1}, x_{2}, x_{3}\right)=(1,0,0)$ is an imperfect assignment for ($x_{1} \vee \overline{x_{2}} \vee x_{3}$) but not for $\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)$).
a) Show that if $\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$ is an imperfect assignment for ϕ, then its negation $\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right)$ is an imperfect assignment for ϕ as well.
b) Let $i S A T:=\{\langle\phi\rangle \mid$ there exists an imperfect assignment for $\phi\}$. Show that $3 S A T \leq_{P}$ $i S A T$.
Hint: try replacing each clause $c_{i}=\left(L_{1} \vee L_{2} \vee L_{3}\right)$ (for its three literals L_{i}) with $\left(L_{1} \vee L_{2} \vee z_{i}\right) \wedge\left(\overline{z_{i}} \vee L_{3} \vee b\right)$ for new variables z_{i} and a single new variable b.
c) Use this result to argue that $i S A T$ is NP-complete.

