Johannes Blömer Jan Bobolz, Gennadij Liske 05. May 2016 submission due: 17. May 2016, 16:00

Complexity Theory

SS 2016

Homework 4

Please submit your solutions via email to Gennadij or put it into the box at F2.111.

Exercise 1 (4 points): Let $A, B \subseteq \{0,1\}^*$ be languages and $\mathbf{C}_1, \mathbf{C}_2 \subseteq \mathcal{P}(\{0,1\}^*)$ complexity classes. Show that

- a) if $A \subseteq B$, then $\overline{B} \subseteq \overline{A}$.
- b) if $\mathbf{C}_1 \subseteq \mathbf{C}_2$, then co- $\mathbf{C}_1 \subseteq$ co- \mathbf{C}_2 .
- c) if $co-C_1 \subseteq C_1$, then $C_1 = co-C_1$.
- d) $\mathbf{P} \subseteq \mathbf{NP} \cap \operatorname{co-NP}$.

Exercise 2 (4 points):

Let $s : \mathbb{N} \to \mathbb{N}$ be space-constructible. Show that

- a) $NSPACE(s(n)) \subseteq co-NSPACE(s(n)^2).$
- b) co-**NSPACE** $(s(n)) \subseteq$ **NSPACE** $(s(n)^2)$.
- c) NPSPACE = co-NPSPACE.

Exercise 3 (8 points):

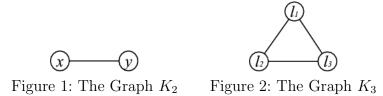
Let G = (V, E) be an (undirected) graph. A vertex cover in G is a set $U \subseteq V$ such that the nodes in U cover all edges, i.e. for any $(u, v) \in E$, $u \in U$ or $v \in U$. Let

 $VertexCover := \{ \langle G, k \rangle \mid G \text{ is a graph that contains a vertex cover of size at most } k \}$

• Show that $3SAT \leq_P VertexCover$.

Hint: First consider the following two facts:

- a) Any vertex cover of K_2 (Figure 1) requires at least one node.
- b) Any vertex cover of K_3 (Figure 2) requires at least two nodes.



Find a representation of a Boolean formula ϕ as a graph G_{ϕ} . For this, the graph G_{ϕ} should contain two types of subgraphs ("gadgets"): ones that represent the assignment of 0 or 1 to a variable, and ones that represent the clauses of ϕ .

You need to ensure that ϕ is satisfiable if and only if G_{ϕ} has a vertex cover of a certain size.