Complexity Theory

 SS 2016
Homework 5

Exercise 1 (4 points):
As usual, for functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$, we write $f(\mathcal{O}(g(n))):=\{f \circ h \mid h \in \mathcal{O}(g(n))\}$. Show that

- $\mathcal{O}\left(2^{n}\right) \neq 2^{\mathcal{O}(n)}$ (inequality of sets).
- $2^{\mathcal{O}(f(n))}=k^{\mathcal{O}(f(n))}$ for any $f: \mathbb{N} \rightarrow \mathbb{N}$ and $k \in \mathbb{N}, k>1$ (equality of sets).

Exercise 2 (4 points):
Use the characterization of NP from Theorem 3.4 and give concrete k, A such that

$$
S A T=\left\{x \in \Sigma^{*} \mid \exists z \in\{0,1\}^{|x|^{k}}:(x, z) \in A\right\}
$$

In particular, you should argue why your solution is correct and that $A \in \mathbf{P}$.
Exercise 3 (4 points):
Use the characterization of co-NP from Theorem 3.4 and give concrete k, B such that

$$
T A U T=\left\{x \in \Sigma^{*} \mid \forall z \in\{0,1\}^{|x|^{k}}:(x, z) \in B\right\}
$$

In particular, you should argue why your solution is correct and that $B \in \mathbf{P}$.

