Complexity Theory

SS 2016
Homework 8

Exercise 1 (6 points):
Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a \log space computable function. Show that f can be computed in polynomial time. Infer that any \log space computable function has at most polynomial length output.

Exercise 2 (8 points):
Consider the language

$$
\text { SUMPAL }:=\left\{(a, b) \in \mathbb{N}^{2} \mid a+b \text { is a palindrome }\right\} .
$$

($a+b$ is considered the unique binary representation of $a+b$ without leading zeros.) Show that $S U M P A L \in \mathbf{L}$.

Exercise 3 (10 points):
In the lecture, we use the notion of log space computability from [1] (over 3-tape Turing machines) in order to define \log space reductions. In [2] they use an alternative approach: They define log space reductions over implicitly log space computable functions.
Namely, a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is implicitly log space computable if it fulfills the following requirements:

1. f is polynomially bounded (i.e. there is a polynomial p such that $|f(x)| \leq p(|x|)$ for all $x)$.
2. $L_{f}=\left\{\langle x, i\rangle \mid f(x)_{i}=1\right\} \in \mathbf{L}$.
3. $L_{f}^{\prime}=\{\langle x, i\rangle|i \leq|f(x)|\} \in \mathbf{L}$.

Here, $f(x)_{i}$ denotes the i 'th bit of $f(x)$.
a) Show that the two definitions are equivalent, i.e. a function f is log space computable if and only if it is implicitly \log space computable.
b) Show that requirement 1 is necessary for the equivalence. For this, give an example of a function f that is not \log space computable but that fulfills requirements 2 and 3 , i.e. $L_{f}, L_{f}^{\prime} \in \mathbf{L}$.

Literatur

[1] Michael Sipser, Introduction to the Theory of Computation, 2nd edition, 2006
[2] Sanjeev Arora and Boaz Barak, Computational Complexity - A Modern Approach, 2009, Draft available online: http://theory.cs.princeton.edu/complexity/

