
Johannes Blömer 02. June 2016
Jan Bobolz, Gennadij Liske submission due: 13. June 2016, 15:30

Complexity Theory

SS 2016

Homework 8

Exercise 1 (6 points):
Let f : Σ∗ → Σ∗ be a log space computable function. Show that f can be computed in
polynomial time. Infer that any log space computable function has at most polynomial length
output.

Exercise 2 (8 points):
Consider the language

SUMPAL := {(a, b) ∈ N2 | a + b is a palindrome}.

(a + b is considered the unique binary representation of a + b without leading zeros.)
Show that SUMPAL ∈ L.

Exercise 3 (10 points):
In the lecture, we use the notion of log space computability from [1] (over 3-tape Turing
machines) in order to define log space reductions. In [2] they use an alternative approach:
They define log space reductions over implicitly log space computable functions.
Namely, a function f : {0, 1}∗ → {0, 1}∗ is implicitly log space computable if it fulfills the
following requirements:

1. f is polynomially bounded (i.e. there is a polynomial p such that |f(x)| ≤ p(|x|) for all
x).

2. Lf = {〈x, i〉 | f(x)i = 1} ∈ L.

3. L′f = {〈x, i〉 | i ≤ |f(x)|} ∈ L.

Here, f(x)i denotes the i’th bit of f(x).

a) Show that the two definitions are equivalent, i.e. a function f is log space computable
if and only if it is implicitly log space computable.

b) Show that requirement 1 is necessary for the equivalence. For this, give an example of
a function f that is not log space computable but that fulfills requirements 2 and 3,
i.e. Lf , L

′
f ∈ L.

Literatur

[1] Michael Sipser, Introduction to the Theory of Computation, 2nd edition, 2006

[2] Sanjeev Arora and Boaz Barak, Computational Complexity – A Modern Approach, 2009,
Draft available online: http://theory.cs.princeton.edu/complexity/

