Complexity Theory

SS 2016
Homework 9
Exercise 1 (8 points):
Let

$$
C Y C L E=\{\langle G\rangle \mid G \text { is a directed graph that contains a directed cycle }\} .
$$

a) Show that $C Y C L E \in \mathrm{NL}$
b) Show that CYCLE is NL-complete.

Hint: you could either show that $P A T H \leq_{L} C Y C L E$ or give a generic reduction from any NL language similar to the proof that PATH is NL-complete. The latter turns out to be significantly easier because of a convenient property of configuration graphs.

Exercise 2 (10 points):
In this exercise, we examine a witness-based characterization of the class NL.
Consider the following definition: A deterministic Turing machine M with input and witness tape has three tapes:

- A read-only input tape.
- A special read-only witness tape whose head cannot move left (it can only stay in place or move to the right).
- A work tape that works as usual.

We denote the input to M as (x, z), by which we mean that M is started with $\triangleright x \#$ on its input tape and $\triangleright z \#$ on its witness tape. $L(M):=\{(x, z) \mid M$ accepts $(x, z)\}$.
The space complexity $s(n)$ of M is the maximum number of cells scanned on the work tape when started with any input (x, z) with $|x|=n$ (we require that M halts on all inputs). M is a log space TM if its space complexity is $\mathcal{O}(\log (n))$.
a) Show that a language $L \subseteq\{0,1\}^{*}$ is in $\mathbf{N L}$ if and only if there exists a log space deterministic Turing machine M with input and witness tape and a polynomial p such that

$$
L=\left\{x \in\{0,1\}^{*} \mid \exists z \in\{0,1\}^{p(|x|)}:(x, z) \in L(M)\right\}
$$

b) Show that if we also allow the witness tape head to move left (but keep the log space restriction), then the class characterized above is NP instead of NL. More specifically: $L \subseteq\{0,1\}^{*}$ is in NP if and only if there exists a log space deterministic Turing machine M with input and witness tape (where the head is allowed to move left but which is still read-only) and a polynomial p such that

$$
L=\left\{x \in\{0,1\}^{*} \mid \exists z \in\{0,1\}^{p(|x|)}:(x, z) \in L(M)\right\}
$$

Hint: Given a language in NP, think about a suitable witness that can be checked in logarithmic space.

