Complexity Theory SS 2016

Class Handout 11

Exercise 1:

Describe the error in the following fallacious "proof" that $\mathbf{P} \neq \mathbf{NP}$: Proof by contradiction: Assume that $\mathbf{P} = \mathbf{NP}$. Then $\mathbf{SAT} \in \mathbf{P}$ and hence, $\mathbf{SAT} \in \mathbf{DTIME}(n^k)$ for some k. Since every $L \in \mathbf{NP}$ is poly time reducible to \mathbf{SAT} , we have $\mathbf{NP} \subseteq \mathbf{DTIME}(n^k)$. Therefore, $\mathbf{P} \subseteq \mathbf{DTIME}(n^k)$. But, by the time hierarchy theorem, $\mathbf{DTIME}(n^{k+1})$ contains a language that is not in $\mathbf{DTIME}(n^k)$, which contradicts $\mathbf{P} \subseteq \mathbf{DTIME}(n^k)$. We deduce that $\mathbf{P} \neq \mathbf{NP}$.

Exercise 2:

Define the unique-SAT problem to be

USAT = { $\langle \phi \rangle \mid \phi$ is a Boolean formula that has a single satisfying assignment}.

Show that $USAT \in \mathbf{P}^{SAT}$.

Exercise 3:

Refute:

a) For every OTM M? and all $A, B \subseteq \Sigma^*$ it holds

$$L\left(M^A\right) = L\left(M^B\right) \quad .$$

b) For every OTM $M^{?}$ and all $A, B \subseteq \Sigma^{*}$ it holds

$$L\left(M^A\right) \neq L\left(M^B\right)$$
.

Exercise 4:

Show that: Savitch's theorem holds relatively to every oracle. That is, for every oracle $A \subseteq \Sigma^*$ and every space constructible function $s(n) \ge n$ it holds

$$\mathbf{NSPACE}(s(n))^A \subseteq \mathbf{DSPACE}(s(n)^2)^A$$
.