Complexity Theory

 $\mathrm{SS}~2016$

Class Handout 12

Exercise 1: Show that $NP(NP) = NP^{SAT}$.

Exercise 2:

Recall that we proved on Class Handout 7 that if $\mathbf{P} = \mathbf{NP}$, then $MINBOOL \in \mathbf{P}$. Re-prove this fact using your knowledge about the polynomial time hierarchy.

Exercise 3:

Find a place for the language

$$L = SAT \times \overline{SAT}$$

in the polynomial time hierarchy. Show that you cannot place it lower: if L is in any of the lower classes, then $\mathbf{NP} = \text{co-NP}$.

Exercise 4:

We want to give an intuition for the claim that diagonalization is oracle-agnostic. Consider the following diagonalization argument proving that there are languages that are not recursively enumerable:

Let M_1, M_2, \ldots be an enumeration of all DTMs.

We construct language A as follows: Let $A_0 = \emptyset$. To define A_i , assume that A_j for j < i has already been defined properly. If M_i accepts 1^i , set $A_i := A_{i-1}$. Otherwise, set $A_i := A_{i-1} \cup \{1^i\}$. Finally, set $A := \bigcup_{i \ge 1} A_i$.

- a) Finish the proof by arguing that A is not Turing-recognizable.
- b) Show that there is an oracle L such that A can be recognized by some OTM M^L .
- c) Show that for every oracle L, there is a language A' that is not recognized by any OTM M^L .

Note that this also immediately implies that there are still undecidable problems in a relativized world where the halting problem is decidable.