Complexity Theory SS 2016

Class Handout 13

Exercise 1: Show that

$\mathbf{PH} \subseteq \mathbf{PSPACE}$.

Exercise 2: Prove that if $\mathbf{PH} = \mathbf{PSPACE}$, then there is a k such that $\Sigma_k = \mathbf{PSPACE}$.

Exercise 3:

Consider the properties of the p-balanced NTM in the Definition 8.3 of the class **RP**. Show that these properties can be exchanged by the following two:

a) If $w \notin L$, then

 $\Pr_{y \leftarrow \{0,1\}^{p(|w|)}} \left[N \text{ accepts } w \text{ on the computational branch corresponding to } y \right] = 0 \ .$

b) If $w \in L$, then

 $\Pr_{y \leftarrow \{0,1\}^{p(|w|)}}\left[N \text{ accepts } w \text{ on the computational branch corresponding to } y\right] \geq 1/2$.

Present an analogous definition for the class $\operatorname{co-}\mathbf{RP}$.

Exercise 4:

Recall that $\mathbf{ZPP} = \mathbf{RP} \cap \text{co-RP}$. Show that if $L \in \mathbf{ZPP}$ then there exist a probabilistic algorithm with expected polynomial time which outputs 1 on input $w \in L$ and outputs 0 on input $w \notin L$.

Exercise 5:

For every δ , $0 < \delta < 1$ define the class $\mathbf{RP}(\delta)$ as the class of languages L for which there exist a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a p-balanced NTM N with following properties:

- a) If $w \in L$, then at least $\delta \cdot 2^{p(|w|)}$ of the computation branches of N on input w accept.
- b) If $w \notin L$, then all computation branches of N on input w reject.

Note that $\mathbf{RP} = \mathbf{RP}[1/2]$ according to the definition of \mathbf{RP} . Show that for every δ as above it holds $\mathbf{RP} = \mathbf{RP}[\delta]$.