Complexity Theory

$\mathrm{SS}~2016$

Class Handout 14

Exercise 1:

Using the result of Theorem 8.7 (**BPP** $\subseteq \Sigma_2$), prove the Corollary 8.8, that is

 $\mathbf{BPP} \subseteq \Sigma_2 \cap \Pi_2.$

Exercise 2: Explain why

- a) $\mathbf{RP} \subseteq \mathbf{NP}$
- b) $\mathbf{P} \subseteq \mathbf{ZPP} \subseteq \mathbf{RP} \subseteq \mathbf{BPP}$

Exercise 3:

For $A \subseteq \{0,1\}^m$ and $t \in \{0,1\}^m$, let $t \oplus A := \{t \oplus z \mid z \in A\}$ as in the proof for **BPP** $\subseteq \Sigma_2$. Let $t_1, \ldots, t_n \in \{0,1\}^m$. Explain why

- a) $|A| = |t \oplus A|$.
- b) $t_1 \in t_2 \oplus A \Leftrightarrow t_2 \in t_1 \oplus A$.
- c) $\left|\bigcup_{i=1}^{n} t_i \oplus A\right| \le n \cdot |A|$

Exercise 4:

Give an inclusion diagram of the complexity classes introduced in the lecture:

P, NP, co-NP, NPC, PSPACE, NPSPACE, L, NL, co-NL, NP^{TQBF} , P^{TQBF} , PH, Δ_1 , Δ_2 , Π_1 , Π_2 , Σ_1 , Σ_2 , $\Sigma_2 \cap \Pi_2$, $\Sigma_2 \cup \Pi_2$ RP, co-RP, ZPP, BPP

Mark known equalities and inequalities. What relations are conjectured?