Complexity Theory

SS 2016
Class Handout 14

Exercise 1:

Using the result of Theorem $8.7\left(\mathbf{B P P} \subseteq \Sigma_{2}\right)$, prove the Corollary 8.8, that is
$\mathbf{B P P} \subseteq \Sigma_{2} \cap \Pi_{2}$.

Exercise 2:

Explain why
a) $\mathbf{R P} \subseteq \mathbf{N P}$
b) $\mathbf{P} \subseteq \mathbf{Z P P} \subseteq \mathbf{R P} \subseteq \mathbf{B P P}$

Exercise 3:

For $A \subseteq\{0,1\}^{m}$ and $t \in\{0,1\}^{m}$, let $t \oplus A:=\{t \oplus z \mid z \in A\}$ as in the proof for $\mathbf{B P P} \subseteq \Sigma_{2}$. Let $t_{1}, \ldots, t_{n} \in\{0,1\}^{m}$. Explain why
a) $|A|=|t \oplus A|$.
b) $t_{1} \in t_{2} \oplus A \Leftrightarrow t_{2} \in t_{1} \oplus A$.
c) $\left|\bigcup_{i=1}^{n} t_{i} \oplus A\right| \leq n \cdot|A|$

Exercise 4:

Give an inclusion diagram of the complexity classes introduced in the lecture:

$$
\begin{gathered}
\mathbf{P}, \mathbf{N P}, \text { co-NP, NPC, PSPACE, NPSPACE, } \\
\mathbf{L}, \mathbf{N L}, \text { co-NL, } \\
\mathbf{N P}{ }^{T Q B F}, \mathbf{P}^{T Q B F}, \\
\mathbf{P H}, \Delta_{1}, \Delta_{2}, \Pi_{1}, \Pi_{2}, \Sigma_{1}, \Sigma_{2}, \Sigma_{2} \cap \Pi_{2}, \Sigma_{2} \cup \Pi_{2} \\
\mathbf{R P}, \text { co-RP, ZPP, BPP }
\end{gathered}
$$

Mark known equalities and inequalities. What relations are conjectured?

