Complexity Theory SS 2016

Class Handout 2

Exercise 1:

Show that **PSPACE** is closed under the operations union, complementation, and star.

Exercise 2:

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a NFA, where $\Sigma = \{0, 1\}$. Assume that there exist $w \in \{0, 1\}^*$ such that $w \notin L(M)$. Argue that then there exist $w^* \in \{0, 1\}^*$, $w^* \notin L(M)$ such that $|w| < 2^q$, where q = |Q| is the number of states of M.

How did we use this observation in the construction of the NTM for the language $\overline{ALL_{NFA}}$?

Exercise 3:

Let

$$\phi = Q_1 x_1 Q_2 x_2 \cdots Q_k x_k \ \psi \left(x_1, \dots, x_k \right)$$

be a fully quantified Boolean formula in prenex normal form. Every Q_i represents either a \forall or an \exists quantifier. We associate a game with ϕ as follows. Two players, called Player \mathcal{A} and Player \mathcal{E} , take turns selecting the values of the variables x_1, \ldots, x_k . Player \mathcal{A} selects values for the variables that are bound to \forall quantifiers, whereas Player \mathcal{E} selects values for the variables that are bound to \exists quantifiers. The order of play is the same as that of the quantifiers at the beginning of the formula. At the end of the game we declare that Player \mathcal{E} has won the game if $\psi(v_1, \ldots, v_k) = 1$, where v_1, \ldots, v_k are the values that the players have selected for the variables x_1, \ldots, x_k , respectively. If $\psi(v_1, \ldots, v_k) = 0$ we declare that Player \mathcal{A} has won.

Show that the following language is in **PSPACE**:

$$\text{FORMULA-GAME} = \left\{ \langle \phi \rangle \; \middle| \; \begin{array}{c} \text{Player } \mathcal{E} \text{ has a winning strategy in the} \\ \text{formula game associated with } \phi. \end{array} \right\} \; .$$