Complexity Theory SS 2016 Class Handout 4

Exercise 1:

We write $A \leq_{sp} B$ if there is a polynomial *space* reduction of A to B, i.e. a function $f : \{0,1\}^* \to \{0,1\}^*$ that can be computed by a polynomial *space* Turing machine such that $w \in A \Leftrightarrow f(w) \in B$ for all $w \in \{0,1\}^*$.

- a) Let $L, L' \in \mathbf{PSPACE}$ be arbitrary and $L' \neq \emptyset$ and $L' \neq \{0, 1\}^*$. Prove that it holds $L \leq_{sp} L'$.
- b) Where did you need that $L' \neq \emptyset$ and $L' \neq \{0, 1\}^*$?
- c) Why it does not make sense to define **PSPACE**-completeness over polynomial *space* reductions?

Exercise 2:

Prove for two languages $A, B \subseteq \{0, 1\}^*$:

- a) If $B \in \mathbf{NP}$ and $A \leq_p B$, then $A \in \mathbf{NP}$.
- b) If B is **NP**-complete and $A =_p B$ (i.e. $A \leq_p B$ and $B \leq_p A$), then A is **NP**-complete.
- c) If A is **NP**-complete, then the complement \overline{A} of A is co-**NP**-complete.

Exercise 3:

Consider the **NP**-complete languages Clique and

$$\operatorname{IndSet} = \left\{ \langle G, k \rangle \middle| \begin{array}{c} G = (V, E) \text{ is an undirected graph and} \\ \text{there exists a subset } U \subseteq V \text{ with } |U| = k \\ \text{such that no two nodes in } U \text{ are connected by an edge.} \end{array} \right\} \ .$$

Show by reduction:

Clique \leq_p IndSet .