Complexity Theory SS 2016

Class Handout 7

Exercise 1:

Show that for any *bounded* polynomial time computable function $H : \mathbb{N} \to \mathbb{N}$, it holds that $SAT_H \in \mathbf{NPC}$.

Exercise 2:

- a) Argue that all regular languages are in L.
- b) Consider the following grammar G = (T, N, P, S) for correctly nested parentheses: $T = \{(,)\}, N = \{S\}$ and

$$P = \{S ::= (S), S ::= S S, S ::= \epsilon\}.$$

Show that $L(G) \in \mathbf{L}$.

Exercise 3:

For two Boolean formulas ϕ, ϕ' over variables X_1, \ldots, X_n , we write $\phi \approx \phi'$ if they are semantically equivalent, i.e. $\forall (x_1, \ldots, x_n) \in \{0, 1\}^n : \phi(x_1, \ldots, x_n) = \phi'(x_1, \ldots, x_n)$. The length $|\phi|$ of a formula ϕ is the number of Boolean operators in ϕ . ϕ is minimal if no equivalent formula is shorter, i.e. for all ϕ' with $\phi' \approx \phi$ it holds that $|\phi'| \ge |\phi|$. We define

 $MINBOOL := \{ \langle \phi \rangle \mid \phi \text{ is a minimal Boolean formula} \}.$

- a) Why is the following argument for the claim that $MINBOOL \in \text{co-NP}$ not convincing? We show that $\overline{MINBOOL} \in \mathbf{NP}$. $\overline{MINBOOL}$ is (essentially) the language of Boolean formulas ϕ for which a shorter equivalent formula exists. Given a formula ϕ , an NTM can nondeterministically guess a formula ϕ' of size $k < |\phi|$. If ϕ' is equivalent to ϕ , we accept (otherwise, we reject). Hence ϕ is accepted if and only if $\phi \in \overline{MINBOOL}$.
- b) Show that if $\mathbf{P} = \mathbf{NP}$ then $MINBOOL \in \mathbf{P}$.