Chapter 6 - Oracles and the Limits of Diagonalization

- Define oracle Turing machines (OTMs).
- OTMs are a powerful and often used tool in complexity theory.
- Show that that there is an oracle A for which the classes \mathbf{P}^{A} and $\mathbf{N P}^{A}$ are identical.
- Show that there is an oracle B for which the classes \mathbf{P}^{B} and $\mathbf{N P}{ }^{B}$ are different.
- Diagonalization is oblivious to oracles.
- Conclude that straightforward applications of diagonalization will not yield proofs for $\mathbf{P} \neq \mathbf{N P}$.

Oracle Turing machines (OTMs)

Definition 6.1

- An oracle Turing machine (OTM) $M^{\text {? }}$ is a TM (deterministic or nondeterministic) with a special tape, called the oracle tape, and three special states $q_{\text {? }}, q_{\mathrm{yes}}, q_{\mathrm{no}}$.
- For an arbitrary language $A \subseteq\{0,1\}^{*}$ we denote by M^{A} the OTM $M^{\text {? }}$ with access to oracle A.
- If M^{A} is in a state different from $q_{\text {? }}$, then the next step of M^{A} is defined as for usual TMs.
- If M^{A} is in state $q_{\text {? }}$ and the content of the oracle tape is z (ignoring the start symbol \triangleright), then M^{A} in one step goes into state q_{y} if $z \in A$ and into state q_{no} if $z \notin A$. The contents of all tapes remain unchanged and the tape heads do not move.

Running times of OTMs

Definition 6.2

Let $M^{\text {? }}$ be an OTM such that for all languages A the OTM M^{A} halts on all inputs.

- The running time or time complexity of $M^{\text {? }}$ is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps that any OTM $M^{A}, A \subseteq\{0,1\}^{*}$ uses on any input of length n.
- The space complexity of M ? is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of tape cells that any OTM $M^{A}, A \subseteq\{0,1\}^{*}$ scans on any input of length n.

Remark

Observe that the oracle's reply on each query is obtained in a single step!

Oracles classes or relativized worlds

Definition 6.3

For every $A \subseteq\{0,1\}^{*}$ define
$\mathbf{P}^{A}:=\{L \mid L$ can be decided by a deterministic polynomial time OTM $M^{?}$ with oracle $\left.A.\right\}$
$\mathbf{N P}^{A}:=\{L \mid L$ can be decided by a nondeterministic polynomial time OTM $M^{?}$ with oracle A.\}
$\operatorname{PSPACE}^{A}:=\{L \mid L$ can be decided by a deterministic polynomial space OTM $M^{\text {? }}$ with oracle A.\}

Examples

Polynomial time reductions and oracles
Let A, B be languages with $B \leq_{p} A$. Then

- $B \in \mathbf{P}^{A}$ and
- $B \in \mathbf{P}^{\bar{A}}$.

SAT oracles

- $\mathbf{N P} \subseteq \mathbf{P}^{S A T}$
- $\mathbf{c o -} \mathbf{N P} \subseteq \mathbf{P}^{S A T}$

Examples

Equivalence and minimality of Boolean formulas

- We call two Boolean formulas equivalent, if

1. they have the same set of variables and
2. they are true on the same set of assignments to those variables.

- A Boolean formula is called minimal if no shorter Boolean formula is equivalent to it.

Two languages
MF $:=\{\langle\phi\rangle \mid \phi$ is a minimal Boolean formula $\}$
$\overline{\mathrm{MF}}=\{\langle\phi\rangle \mid \phi$ is a not minimal Boolean formula $\}$
Observation
$\overline{\mathrm{MF}} \in \mathbf{N P}^{S A T}$

A nondetermistic oracle TM for $\overline{\mathrm{MF}}$

$N_{\mathrm{MF}}^{S A T}="$ On input $\phi:$

1. Nondeterministically guess a Boolean formula ψ with length shorter than the length of ϕ.
2. Compute $\neg(\phi \Leftrightarrow \psi)$, write this formula on the oracle tape, and go to state $q_{\text {? }}$.
3. From state $q_{\text {no }}$ go to state $q_{\text {accept }}$, from state $q_{\text {yes }}$ go to state $q_{\text {reject. }}$."

The limits of diagonalization

Theorem 6.4

1. An oracle A exists with $\mathbf{P}^{A} \neq \mathbf{N} \mathbf{P}^{A}$.
2. An oracle B exists with $\mathbf{P}^{B}=\mathbf{N} \mathbf{P}^{B}$.

Proof for existence of B

- Set $B:=$ TQBF.
$\Rightarrow \mathbf{N P}^{\text {TQBF }} \subseteq \mathbf{N P S P A C E} \subseteq \mathbf{P S P A C E} \subseteq \mathbf{P}^{\text {TQBF }}$

Proof for existence of A - sketch

- For A arbitrary define

$$
L_{A}:=\left\{1^{n} \mid n \in \mathbb{N}, \exists x \in A \text { with }|x|=n\right\} .
$$

- For all $A: L_{A} \in \mathbf{N P}^{A}$.
- Construct A, such that for every polynomial time deterministic OTM $M_{i}^{?}$ there is a number $n_{i} \in \mathbb{N}$ with

$$
1^{n_{i}} \in L\left(M_{i}^{A}\right) \Leftrightarrow 1^{n_{i}} \notin L_{A} .
$$

$\Rightarrow L_{A} \notin \mathbf{P}^{A}$.

Construction of $A(1)$

- Let $M_{1}^{?}, M_{2}^{?}, \ldots$ be an enumeration of all polynomial time deterministic OTMs.
- Choose e_{i} such that the running time of M_{i} ? is bounded by $n^{e_{i}}$ (note that the running time of an OTM is defined independently from any specific oracle)
- Inductively construct finite sets $A_{0}, \tilde{A}_{0}, A_{1}, \tilde{A}_{1}, \ldots$ satisfying 1. $A_{j} \subset A_{i}$ and $\tilde{A}_{j} \subset \tilde{A}_{i}$ for all $j<i$, and

2. $A_{i} \cap \tilde{A}_{i}=\emptyset$ for all i.

- Set $A_{0}=\tilde{A}_{0}=\emptyset$.
- Assume $A_{j}, \tilde{A}_{j}, j=0, \ldots, i-1$ have already been defined properly.
- Set

$$
n_{i}:=\min \left\{n \mid 2^{n}>n^{e_{i}} \text { and } n>|x| \text { for all } x \in A_{i-1} \cup \tilde{A}_{i-1}\right\}
$$

Construction of A (2)

- To define A_{i} and \tilde{A}_{i} we simulate $M_{i}^{?}$ with input $1^{n_{i}}$. The oracle queries of M_{i} ? are answered as follows:

1. Set $X_{i}:=\emptyset$.
2. If an oracle query x is in A_{i-1}, go to state $q_{\text {yes }}$.
3. If an oracle query x is in \tilde{A}_{i-1}, go to state q_{no}.
4. If an oracle query x is neither in A_{i-1} nor in \tilde{A}_{i-1}, go to q_{no} and set $X_{i}:=X_{i} \cup\{x\}$.

- If $M_{i}^{?}$ accepts $1^{n_{i}}$, we set

$$
A_{i}:=A_{i-1} \text { and } \tilde{A}_{i}:=\tilde{A}_{i-1} \cup\{0,1\}^{n_{i}} .
$$

- If $M_{i}^{?}$ rejects $1^{n_{i}}$, choose $w_{i} \in\{0,1\}^{n_{i}} \backslash X_{i}$ and set

$$
A_{i}:=A_{i-1} \cup\left\{w_{i}\right\} \text { and } \tilde{A}_{i}:=\tilde{A}_{i-1} \cup X_{i} .
$$

- Finally, set

$$
A:=\bigcup_{i \geq 1} A_{i} .
$$

