Chapter 6 - Oracles and the Limits of Diagonalization

- Define oracle Turing machines (OTMs).
- OTMs are a powerful and often used tool in complexity theory.
- Show that that there is an oracle A for which the classes P^A and NP^A are identical.
- Show that there is an oracle B for which the classes P^B and NP^B are different.
- Diagonalization is oblivious to oracles.
- ► Conclude that straightforward applications of diagonalization will not yield proofs for P ≠ NP.

Oracle Turing machines (OTMs)

Definition 6.1

- An oracle Turing machine (OTM) M? is a TM (deterministic or nondeterministic) with a special tape, called the oracle tape, and three special states q?, qyes, qno.
- For an arbitrary language A ⊆ {0,1}* we denote by M^A the OTM M? with access to oracle A.
- If M^A is in a state different from q_?, then the next step of M^A is defined as for usual TMs.
- If M^A is in state q_? and the content of the oracle tape is z (ignoring the start symbol ▷), then M^A in one step goes into state q_{yes} if z ∈ A and into state q_{no} if z ∉ A. The contents of all tapes remain unchanged and the tape heads do not move.

Running times of OTMs

Definition 6.2

Let $M^{?}$ be an OTM such that for all languages A the OTM M^{A} halts on all inputs.

- The running time or time complexity of M[?] is the function f: N → N, where f(n) is the maximum number of steps that any OTM M^A, A ⊆ {0,1}* uses on any input of length n.
- The space complexity of $M^{?}$ is the function $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells that any OTM $M^{A}, A \subseteq \{0,1\}^{*}$ scans on any input of length n.

Remark

Observe that the oracle's reply on each query is obtained in a single step!

Oracles classes or relativized worlds

Definition 6.3 For every $A \subseteq \{0,1\}^*$ define

 $\mathbf{P}^{A} := \{L \mid L \text{ can be decided by a deterministic polynomial time } OTM M^{?} \text{ with oracle } A.\}$

 $NP^{A} := \{L \mid L \text{ can be decided by a nondeterministic polynomial}$ time OTM $M^{?}$ with oracle A. $\}$

PSPACE^A := { $L \mid L$ can be decided by a deterministic polynomial space OTM M[?] with oracle A.}

Examples

Polynomial time reductions and oracles

Let A, B be languages with $B \leq_p A$. Then

•
$$B \in \mathbf{P}^A$$
 and

► $B \in \mathbf{P}^{\overline{A}}$.

SAT oracles

- NP \subseteq P^{SAT} co-NP \subseteq P^{SAT}

Examples

Equivalence and minimality of Boolean formulas

- ▶ We call two Boolean formulas *equivalent*, if
 - $1. \ \mbox{they have the same set of variables and}$
 - 2. they are true on the same set of assignments to those variables.
- A Boolean formula is called *minimal* if no shorter Boolean formula is equivalent to it.

Two languages

$$\frac{\mathrm{MF}}{\mathrm{MF}} := \{ \langle \phi \rangle \mid \phi \text{ is a minimal Boolean formula} \}$$
$$\overline{\mathrm{MF}} = \{ \langle \phi \rangle \mid \phi \text{ is a not minimal Boolean formula} \}$$

 $\frac{\text{Observation}}{\overline{\mathrm{MF}} \in \mathbf{NP}^{SAT}}$

A nondetermistic oracle TM for $\overline{\mathrm{MF}}$

$$N_{\overline{\mathrm{MF}}}^{SAT} =$$
 "On input ϕ :

- 1. Nondeterministically guess a Boolean formula ψ with length shorter than the length of ϕ .
- 2. Compute $\neg(\phi \Leftrightarrow \psi)$, write this formula on the oracle tape, and go to state $q_{?}$.
- 3. From state $q_{\rm no}$ go to state $q_{\rm accept}$, from state $q_{\rm yes}$ go to state $q_{\rm reject}$."

The limits of diagonalization

Theorem 6.4

- 1. An oracle A exists with $\mathbf{P}^A \neq \mathbf{NP}^A$.
- 2. An oracle B exists with $\mathbf{P}^B = \mathbf{N}\mathbf{P}^B$.

Proof for existence of B

• Set
$$B := \mathsf{TQBF}$$
.

 $\Rightarrow \ \mathbf{NP}^{\mathsf{TQBF}} \subseteq \mathbf{NPSPACE} \subseteq \mathbf{PSPACE} \subseteq \mathbf{P}^{\mathsf{TQBF}}$

Proof for existence of A - sketch

For A arbitrary define

$$L_A := \{1^n \mid n \in \mathbb{N}, \exists x \in A \text{ with } |x| = n\}.$$

For all $A : L_A \in \mathbf{NP}^A$.

Construct A, such that for every polynomial time deterministic OTM M[?]_i there is a number n_i ∈ N with

$$1^{n_i} \in L(M_i^A) \Leftrightarrow 1^{n_i} \notin L_A.$$

 $\Rightarrow L_A \notin \mathbf{P}^A.$

Construction of A(1)

- ► Let M[?]₁, M[?]₂,... be an enumeration of all polynomial time deterministic OTMs.
- Choose e_i such that the running time of M[?]_i is bounded by n^{e_i} (note that the running time of an OTM is defined independently from any specific oracle)
- Inductively construct finite sets $A_0, \tilde{A}_0, A_1, \tilde{A}_1, \ldots$ satisfying
 - 1. $A_j \subset A_i$ and $\tilde{A}_j \subset \tilde{A}_i$ for all j < i, and

2.
$$A_i \cap \tilde{A}_i = \emptyset$$
 for all *i*.

• Set
$$A_0 = \tilde{A}_0 = \emptyset$$
.

► Assume A_j, Ã_j, j = 0, ..., i − 1 have already been defined properly.

Set

$$n_i:= \min\{n \mid 2^n > n^{e_i} ext{ and } n > |x| ext{ for all } x \in A_{i-1} \cup ilde{A}_{i-1}\}$$

Construction of A(2)

- ► To define A_i and Ã_i we simulate M[?]_i with input 1^{n_i}. The oracle queries of M[?]_i are answered as follows:
 - 1. Set $X_i := \emptyset$.
 - 2. If an oracle query x is in A_{i-1} , go to state q_{yes} .
 - 3. If an oracle query x is in \tilde{A}_{i-1} , go to state q_{no} .
 - If an oracle query x is neither in A_{i-1} nor in Ã_{i-1}, go to q_{no} and set X_i := X_i ∪ {x}.
- If $M_i^?$ accepts 1^{n_i} , we set

$$A_i := A_{i-1}$$
 and $ilde{A}_i := ilde{A}_{i-1} \cup \{0,1\}^{n_i}$

▶ If $M_i^?$ rejects 1^{n_i} , choose $w_i \in \{0,1\}^{n_i} \setminus X_i$ and set

$$A_i := A_{i-1} \cup \{w_i\}$$
 and $ilde{A}_i := ilde{A}_{i-1} \cup X_i$.

► Finally, set

$$A:=\bigcup_{i\geq 1}A_i.$$