
Chapter 6 - Oracles and the Limits of Diagonalization

I Define oracle Turing machines (OTMs).

I OTMs are a powerful and often used tool in complexity theory.

I Show that that there is an oracle A for which the classes PA

and NPA are identical.

I Show that there is an oracle B for which the classes PB and
NPB are different.

I Diagonalization is oblivious to oracles.

I Conclude that straightforward applications of diagonalization
will not yield proofs for P 6= NP.
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Oracle Turing machines (OTMs)

Definition 6.1

I An oracle Turing machine (OTM) M? is a TM (deterministic
or nondeterministic) with a special tape, called the oracle
tape, and three special states q?, qyes, qno.

I For an arbitrary language A ⊆ {0, 1}∗ we denote by MA the
OTM M? with access to oracle A.

I If MA is in a state different from q?, then the next step of MA

is defined as for usual TMs.

I If MA is in state q? and the content of the oracle tape is z
(ignoring the start symbol B), then MA in one step goes into
state qyes if z ∈ A and into state qno if z 6∈ A. The contents of
all tapes remain unchanged and the tape heads do not move.
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Running times of OTMs

Definition 6.2
Let M? be an OTM such that for all languages A the OTM MA

halts on all inputs.

I The running time or time complexity of M? is the function
f : N→ N, where f (n) is the maximum number of steps that
any OTM MA,A ⊆ {0, 1}∗ uses on any input of length n.

I The space complexity of M? is the function f : N→ N, where
f (n) is the maximum number of tape cells that any OTM
MA,A ⊆ {0, 1}∗ scans on any input of length n.

Remark
Observe that the oracle’s reply on each query is obtained in a
single step!
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Oracles classes or relativized worlds

Definition 6.3
For every A ⊆ {0, 1}∗ define

PA := {L | L can be decided by a deterministic polynomial time

OTM M? with oracle A.}

NPA := {L | L can be decided by a nondeterministic polynomial

time OTM M? with oracle A.}

PSPACEA := {L | L can be decided by a deterministic

polynomial space OTM M? with oracle A.}
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Examples

Polynomial time reductions and oracles

Let A,B be languages with B ≤p A. Then

I B ∈ PA and

I B ∈ PA.

SAT oracles

I NP ⊆ PSAT

I co-NP ⊆ PSAT
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Examples

Equivalence and minimality of Boolean formulas

I We call two Boolean formulas equivalent, if

1. they have the same set of variables and
2. they are true on the same set of assignments to those variables.

I A Boolean formula is called minimal if no shorter Boolean
formula is equivalent to it.

Two languages

MF := {〈φ〉 | φ is a minimal Boolean formula}
MF = {〈φ〉 | φ is a not minimal Boolean formula}

Observation
MF ∈ NPSAT
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A nondetermistic oracle TM for MF
NSAT
MF

= ”On input φ:

1. Nondeterministically guess a Boolean formula ψ
with length shorter than the length of φ.

2. Compute ¬(φ⇔ ψ), write this formula on the
oracle tape, and go to state q?.

3. From state qno go to state qaccept, from state qyes
go to state qreject.”
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The limits of diagonalization

Theorem 6.4

1. An oracle A exists with PA 6= NPA.

2. An oracle B exists with PB = NPB .

Proof for existence of B

I Set B := TQBF.

⇒ NPTQBF ⊆ NPSPACE ⊆ PSPACE ⊆ PTQBF
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Proof for existence of A - sketch

I For A arbitrary define

LA := {1n | n ∈ N, ∃x ∈ A with |x | = n}.

I For all A : LA ∈ NPA.

I Construct A, such that for every polynomial time deterministic
OTM M?

i there is a number ni ∈ N with

1ni ∈ L(MA
i )⇔ 1ni 6∈ LA.

⇒ LA 6∈ PA.
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Construction of A (1)

I Let M?
1 ,M

?
2 , . . . be an enumeration of all polynomial time

deterministic OTMs.

I Choose ei such that the running time of M?
i is bounded by nei

(note that the running time of an OTM is defined
independently from any specific oracle)

I Inductively construct finite sets A0, Ã0,A1, Ã1, . . . satisfying
1. Aj ⊂ Ai and Ãj ⊂ Ãi for all j < i , and

2. Ai ∩ Ãi = ∅ for all i .

I Set A0 = Ã0 = ∅.
I Assume Aj , Ãj , j = 0, . . . , i − 1 have already been defined

properly.

I Set

ni := min{n | 2n > nei and n > |x | for all x ∈ Ai−1 ∪ Ãi−1}
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Construction of A (2)

I To define Ai and Ãi we simulate M?
i with input 1ni . The

oracle queries of M?
i are answered as follows:

1. Set Xi := ∅.
2. If an oracle query x is in Ai−1, go to state qyes.

3. If an oracle query x is in Ãi−1, go to state qno.
4. If an oracle query x is neither in Ai−1 nor in Ãi−1, go to qno

and set Xi := Xi ∪ {x}.
I If M?

i accepts 1ni , we set

Ai := Ai−1 and Ãi := Ãi−1 ∪ {0, 1}ni .

I If M?
i rejects 1ni , choose wi ∈ {0, 1}ni \ Xi and set

Ai := Ai−1 ∪ {wi} and Ãi := Ãi−1 ∪ Xi .

I Finally, set

A :=
⋃
i≥1

Ai .
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