Chapter 5 - Hierarchy Theorems

- Show that giving a TM more space increases the class of problems that it can solve (Space Hierarchy Theorem).
- Show that giving a TM (significantly) more time increases the class of problems that it can solve (Time Hierarchy Theorem).
- Use diagonalization to prove these results.

Preliminaries

o-Notation

Let $f, g: \mathbb{N} \to \mathbb{N}$ be functions. We write g = o(f) if and only if $\lim_{n\to\infty} g(n)/f(n) = 0$. Equivalently,

$$g = o(f) \Leftrightarrow \forall c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : f(n) \ge c \cdot g(n).$$

Definition 5.1

A function $f : \mathbb{N} \to \mathbb{N}$, where f(n) is at least $\Omega(\log(n))$, is called space constructible if the function that maps the string 1^n to the binary representation of f(n) is computable in space $\mathcal{O}(f(n))$.

Gödel numbers

Notation

For a TM *M* denote by $\langle M \rangle$ the Gödel number of *M* (in any reasonable format you like).

Theorem 5.2 The language

 $G\"{odel} := \{ w \in \{0,1\}^* \mid w = \langle M \rangle \text{ for some TM } M \}$

is decidable in space $O(\log(|w|))$ and time $O(|w| \cdot \log(|w|))$.

Universal Turing machines

Definition 5.3

A DTM U is called universal if it can simulate any Turing machine M, given the Gödel number of machine M.

Theorem 5.4

There is a universal Turing machine that can simulate a s(n) space DTM M in space $c \cdot (|\langle M \rangle| + s(n))$ for some constant c.

The space hierarchy theorem

Theorem 5.5

For any space constructible function $f : \mathbb{N} \to \mathbb{N}$, a language A exists that is decidable in space $\mathcal{O}(f(n))$ but not in space o(f(n)).

Proof of the space hierarchy theorem

D = "On input $w \in \{0,1\}^*$:

- 1. Let n be the length of w.
- Compute f(n) using space constructibility, and mark off this much tape. If later stages ever attempt to use more space, reject.
- 3. If w is not of the form $\langle M \rangle 10^*$, reject.
- Simulate *M* on input *w* while counting the number of steps used in the simulation. If the count ever exceeds 2^{f(n)}, reject.
- 5. If *M* accepts, *reject*. If *M* rejects, *accept*."

Key facts

- 1. D decides L(D) in space O(f(n)).
- 2. L(D) cannot be decided in space o(f(n)).

Consequences

Corollary 5.6

For any two functions $f_1, f_2 : \mathbb{N} \to \mathbb{N}$, where $f_1(n)$ is $o(f_2(n))$ and f_2 is space constructible,

 $\mathsf{DSPACe}(f_1(n)) \subsetneq \mathsf{DSPACe}(f_2(n)).$

Corollary 5.7

For any two real numbers $0 < \epsilon_1 < \epsilon_2$,

 $\mathsf{DSPACE}(n^{\epsilon_1}) \subsetneq \mathsf{DSPACE}(n^{\epsilon_2}).$

Corollary 5.8 $NL \subsetneq PSPACE$.

Time constructible functions

Definition 5.9

A function $t : \mathbb{N} \to \mathbb{N}$, where t(n) is at least $\Omega(n \log(n))$, is called time constructible if the function that maps the string 1^n to the binary representation of t(n) is computable in time $\mathcal{O}(t(n))$ (on a single tape DTM).

Remark

The condition $t(n) = \Omega(n \log(n))$ is necessary. Even a simple function like the identity requires time $\Omega(n \log(n))$ to compute on a single tape DTM.

The time hierarchy theorem

Theorem 5.10

For any time constructible function $t : \mathbb{N} \to \mathbb{N}$, a language A exists that is decidable in time $\mathcal{O}(t(n))$ but not in time $o(t(n)/\log(t(n)))$.

Corollary 5.11

For any two functions $t_1, t_2 : \mathbb{N} \to \mathbb{N}$, where $t_1(n)$ is $o(t_2(n)/\log(t_2(n)))$ and t_2 is time constructible,

$\mathsf{DTIME}(t_1(n)) \subsetneq \mathsf{DTIME}(t_2(n)).$

Corollary 5.12

For any two numbers $1 \leq \epsilon_1 < \epsilon_2$ we have

 $\mathsf{DTIME}(n^{\epsilon_1}) \subsetneq \mathsf{DTIME}(n^{\epsilon_2}).$

Between L and PSPACE

Conjecture

In the following sequence all inclusions are proper,

 $\mathsf{L} \subsetneq \mathsf{N}\mathsf{L} \subsetneq \mathsf{P} \subsetneq \mathsf{P} \subsetneq \mathsf{P}\mathsf{S}\mathsf{P}\mathsf{A}\mathsf{C}\mathsf{E}.$

Necessity of constructibility

Theorem 5.13

There is a computable non-constant function $f:\mathbb{N}\to\mathbb{N}$ such that

 $\mathsf{DTIME}(f(n)) = \mathsf{DTIME}(2^{f(n)}).$