Chapter 3 - Inside NP

- co-classes and co-NP
- existence of languages that are neither in \mathbf{P} nor NP-complete
- Relations between classes $\mathbf{P}, \mathbf{N P}$, and co-NP

Between P and NP

- NPC := class of NP-complete problems
- Write $L_{1}={ }_{p} L_{2}$, if $L_{1} \leq_{p} L_{2}$ and $L_{2} \leq_{p} L_{1}$

Theorem 3.1 (Ladner) If $\mathbf{P} \neq \mathbf{N P}$, then there is a language $L \in \mathbf{N P}$, that is neither in \mathbf{P} nor in NPC.

Co-classes

Definition 3.2

Let \mathbf{C} be a class of languages. The class co- \mathbf{C} is defined by

$$
\text { co- } \mathbf{C}:=\{L \mid \text { the complement } \bar{L} \text { of } L \text { is in } \mathbf{C}\} .
$$

In particular,

$$
\text { co-NP }:=\{L \mid \text { the complement } \bar{L} \text { of } L \text { is in } \mathbf{N P}\} .
$$

Remarks

- Note that co-C is (in general) not the complement of \mathbf{C}.
- For complement \bar{L} of language L, ignore malformed elements.
- $\mathbf{P}=\mathrm{co}-\mathbf{P}$ and PSPACE $=$ co-PSPACE

NP and co-NP

Example

- A tautology is a Boolean formula ϕ that is true for all assignments to its variables.
- TAUT $:=\{\langle\phi\rangle \mid \phi$ is a tautology $\}$
- TAUT \in co-NP

Theorem 3.3
If $\mathbf{N P} \neq$ co-NP, then $\mathbf{P} \neq \mathbf{N P}$.

Alternative characterizations for NP and co-NP

Theorem 3.4
$L \subseteq \Sigma^{*}$ is in $\mathbf{N P}$, if and only if $k \in \mathbb{N}$ and $A \in \mathbf{P}$ exist with

$$
L=\left\{x \in \Sigma^{*} \mid \exists z \in\{0,1\}^{|x|^{k}}:(x, z) \in A\right\} .
$$

Corollary 3.5
$L \subseteq \Sigma^{*}$ is in co-NP, if and only if $k \in \mathbb{N}$ and $B \in \mathbf{P}$ exist with

$$
L=\left\{x \in \Sigma^{*} \mid \forall z \in\{0,1\}^{|x|^{k}}:(x, z) \in B\right\} .
$$

co-NP-completeness

Definition 3.6

A language B is co-NP-complete, if it satisfies two conditions:

1. $B \in c o-N P$, and
2. every language $A \in$ co-NP is polynomial time reducible to B.

We denote by co-NPC the class of co-NP-complete languages.

$\mathbf{P}, \mathbf{N P}$, and co-NP

Theorem 3.7
If there is a NP-complete language A that is in co-NP, then $\mathbf{N P}=c o-\mathbf{N P}$.

Corollary 3.8
If $\mathbf{N P} \neq$ co-NP, then languages in $\mathbf{N P} \cap$ co-NP are not NP-complete.

Conjectured relations between $\mathbf{P}, \mathbf{N P}$, co-NP

Ladner's theorem

Theorem 3.1 (Ladner)
If $\mathbf{P} \neq \mathbf{N P}$, then there is a language $L \in \mathbf{N P}$, that is neither in \mathbf{P} nor in NPC.

A strange variant of SAT

- M_{i} TM with Gödel number i.
- For $H: \mathbb{N} \rightarrow \mathbb{N}$ define language $S A T_{H}$ as follows:

$$
\begin{aligned}
S A T_{H}: & :=\left\{\psi 01^{n^{H(n)}}: \psi \in S A T \text { und }|\psi|=n\right\} \\
& \operatorname{SAT}_{H}(x):= \begin{cases}1, & \text { if } x \in S A T_{H} \\
0, & \text { if } x \notin S A T_{H}\end{cases}
\end{aligned}
$$

- Use specific $H: \mathbb{N} \rightarrow \mathbb{N}$ defined as follows:
$H(n)$ is the smallest number $i<\log \log (n)$ such that for every $x \in\{0,1\}^{*}$ with $|x| \leq \log (n)$ the Turing machine M_{i} outputs $S A T_{H}(x)$ within $i|x|^{i}$ steps. If there is no such number i, then $H(n)=\log \log (n)$.

Properties of H and $S A T_{H}$

Lemma 3.9

1. H is well-defined.
2. H can be computed in time $\mathcal{O}\left(n^{3}\right)$.

Lemma 3.10

1. If $S A T_{H} \in \mathbf{P}$, then there is a constant $C \in \mathbb{N}$ such that $H(n) \leq C$ for all n.
2. If $S A T_{H} \notin \mathbf{P}$, then for every $C \in \mathbb{N}$ there are only finitely many $n \in \mathbb{N}$ with $H(n) \leq C$. In particular,

$$
\lim _{n \rightarrow \infty} H(n)=\infty
$$

The final steps of the proof

Case $S A T_{H} \in \mathbf{P}$
$\Rightarrow H(n) \leq C$ for some constant C (Lemma 3.10)
\Rightarrow For all Boolean formulas ψ

$$
\left|\psi 01^{|\psi|^{H(\mid \psi \psi)}}\right| \leq|\psi|^{C+1} .
$$

$\Rightarrow S A T \in \mathbf{P}$ and $\mathbf{P}=\mathbf{N P}$. \&

The final steps of the proof

Case $S A T_{H} \in$ NPC

\Rightarrow There is a polynomial time reduction f from $S A T$ to $S A T_{H}$. Assume f can be computed in time n^{C}.
\Rightarrow There is $n_{0} \in \mathbb{N}$ with $H(n) \geq 2 C$ for all $n \geq n_{0}$ (Lemma 3.10)
\Rightarrow For all ϕ with $|\phi|>n_{0}^{2}$, if $f(\phi)=\psi 01^{|\psi|^{H(|\psi|)}}$, then $|\psi| \leq \sqrt{|\phi|}$.
$\Rightarrow S A T \in \mathbf{P}$ and $\mathbf{P}=\mathbf{N P}$. z

