Chapter 3 - Inside NP

- co-classes and co-NP
- existence of languages that are neither in P nor NP-complete
- Relations between classes P, NP, and co-NP

Between **P** and **NP**

- NPC := class of NP-complete problems
- Write $L_1 =_p L_2$, if $L_1 \leq_p L_2$ and $L_2 \leq_p L_1$

Theorem 3.1 (Ladner)

If $P \neq NP$, then there is a language $L \in NP$, that is neither in P nor in NPC.

Co-classes

Definition 3.2

Let C be a class of languages. The class co-C is defined by

co-
$${f C}:=\left\{L\left| the \; complement \; ar{L} \; of \; L \; is \; in \; {f C}
ight\}.$$

In particular,

$$co-NP := \{L \mid the \ complement \ \overline{L} \ of \ L \ is \ in \ NP \}.$$

Remarks

- ► Note that co-**C** is (in general) not the complement of **C**.
- For complement \overline{L} of language L, ignore malformed elements.
- ► **P** = co-**P** and **PSPACE** = co-**PSPACE**

NP and co-NP

Example

- A tautology is a Boolean formula \u03c6 that is true for all assignments to its variables.
- $TAUT := \{ \langle \phi \rangle \mid \phi \text{ is a tautology} \}$
- ► TAUT ∈ co-NP

```
Theorem 3.3 If NP \neq co-NP, then P \neq NP.
```

Alternative characterizations for NP and co-NP

Theorem 3.4 $L \subseteq \Sigma^*$ is in **NP**, if and only if $k \in \mathbb{N}$ and $A \in \mathbf{P}$ exist with

$$L = \left\{ x \in \Sigma^* \left| \exists z \in \{0,1\}^{|x|^k} : (x,z) \in A \right\} \right\}.$$

Corollary 3.5 $L \subseteq \Sigma^*$ is in co-NP, if and only if $k \in \mathbb{N}$ and $B \in \mathbf{P}$ exist with $L = \left\{ x \in \Sigma^* \mid \forall z \in \{0,1\}^{|x|^k} : (x,z) \in B \right\}.$

co-**NP**-completeness

Definition 3.6

A language B is co-**NP**-complete, if it satisfies two conditions:

1. $B \in co$ -**NP**, and

2. every language $A \in co$ -**NP** is polynomial time reducible to B.

We denote by co-NPC the class of co-NP-complete languages.

$\boldsymbol{\mathsf{P}}, \boldsymbol{\mathsf{NP}}, \, \text{and co-} \boldsymbol{\mathsf{NP}}$

Theorem 3.7 If there is a NP-complete language A that is in co-NP, then NP = co-NP.

Corollary 3.8 If $NP \neq co$ -NP, then languages in $NP \cap co$ -NP are not NP-complete.

Conjectured relations between P, NP, co-NP

Ladner's theorem

Theorem 3.1 (Ladner)

If $P \neq NP$, then there is a language $L \in NP$, that is neither in P nor in NPC.

A strange variant of SAT

► *M_i* TM with Gödel number *i*.

▶ For $H : \mathbb{N} \to \mathbb{N}$ define language SAT_H as follows:

$$SAT_{H} := \left\{ \psi 01^{n^{H(n)}} : \psi \in SAT \text{ und } |\psi| = n \right\}$$

$$SAT_H(x) := \begin{cases} 1, & \text{if } x \in SAT_H \\ 0, & \text{if } x \notin SAT_H \end{cases}$$

• Use specific $H : \mathbb{N} \to \mathbb{N}$ defined as follows:

H(n) is the smallest number $i < \log \log(n)$ such that for every $x \in \{0,1\}^*$ with $|x| \le \log(n)$ the Turing machine M_i outputs $SAT_H(x)$ within $i|x|^i$ steps. If there is no such number i, then $H(n) = \log \log(n)$. Properties of H and SAT_H

Lemma 3.9

- 1. H is well-defined.
- 2. H can be computed in time $\mathcal{O}(n^3)$.

Lemma 3.10

- 1. If $SAT_H \in \mathbf{P}$, then there is a constant $C \in \mathbb{N}$ such that $H(n) \leq C$ for all n.
- 2. If $SAT_H \notin \mathbf{P}$, then for every $C \in \mathbb{N}$ there are only finitely many $n \in \mathbb{N}$ with $H(n) \leq C$. In particular,

$$\lim_{n\to\infty}H(n)=\infty.$$

The final steps of the proof

Case $SAT_H \in \mathbf{P}$

 \Rightarrow $H(n) \leq C$ for some constant C (Lemma 3.10)

 $\Rightarrow\,$ For all Boolean formulas ψ

$$\psi 01^{|\psi|^{H(|\psi|)}} \leq |\psi|^{C+1}.$$

 \Rightarrow SAT \in **P** and **P** = **NP**. \not

The final steps of the proof

Case $SAT_H \in \mathbf{NPC}$

- ⇒ There is a polynomial time reduction f from SAT to SAT_H. Assume f can be computed in time n^{C} .
- \Rightarrow There is $n_0 \in \mathbb{N}$ with $H(n) \ge 2C$ for all $n \ge n_0$ (Lemma 3.10)
- $\Rightarrow \text{ For all } \phi \text{ with } |\phi| > n_0^2 \text{, if } f(\phi) = \psi 01^{|\psi|^{H(|\psi|)}} \text{, then } |\psi| \le \sqrt{|\phi|}.$
- \Rightarrow SAT \in **P** and **P** = **NP**. \not