
Chapter 3 - Inside NP

I co-classes and co-NP

I existence of languages that are neither in P nor NP-complete

I Relations between classes P,NP, and co-NP

1 / 13

Between P and NP

I NPC := class of NP-complete problems

I Write L1 =p L2, if L1 ≤p L2 and L2 ≤p L1

Theorem 3.1 (Ladner)

If P 6= NP, then there is a language L ∈ NP, that is neither in P
nor in NPC.

2 / 13

Co-classes

Definition 3.2
Let C be a class of languages. The class co-C is defined by

co-C :=
{
L
∣∣the complement L̄ of L is in C

}
.

In particular,

co-NP :=
{
L
∣∣the complement L̄ of L is in NP

}
.

Remarks

I Note that co-C is (in general) not the complement of C.

I For complement L̄ of language L, ignore malformed elements.

I P = co-P and PSPACE = co-PSPACE

3 / 13

NP and co-NP

Example

I A tautology is a Boolean formula φ that is true for all
assignments to its variables.

I TAUT := {〈φ〉 | φ is a tautology}
I TAUT ∈ co-NP

Theorem 3.3
If NP 6= co-NP, then P 6= NP.

4 / 13

Alternative characterizations for NP and co-NP

Theorem 3.4
L ⊆ Σ∗ is in NP, if and only if k ∈ N and A ∈ P exist with

L =
{
x ∈ Σ∗

∣∣∣∃z ∈ {0, 1}|x |k : (x , z) ∈ A
}
.

Corollary 3.5

L ⊆ Σ∗ is in co-NP, if and only if k ∈ N and B ∈ P exist with

L =
{
x ∈ Σ∗

∣∣∣∀z ∈ {0, 1}|x |k : (x , z) ∈ B
}
.

5 / 13

co-NP-completeness

Definition 3.6
A language B is co-NP-complete, if it satisfies two conditions:

1. B ∈ co-NP, and

2. every language A ∈ co-NP is polynomial time reducible to B.

We denote by co-NPC the class of co-NP-complete languages.

6 / 13

P,NP, and co-NP

Theorem 3.7
If there is a NP-complete language A that is in co-NP, then
NP = co-NP.

Corollary 3.8

If NP 6= co-NP, then languages in NP ∩ co-NP are not
NP-complete.

7 / 13

Conjectured relations between P,NP, co-NP

NP co-NP

P

NPC co-NPC

8 / 13

Ladner’s theorem

Theorem 3.1 (Ladner)

If P 6= NP, then there is a language L ∈ NP, that is neither in P
nor in NPC.

9 / 13

A strange variant of SAT

I Mi TM with Gödel number i .

I For H : N→ N define language SATH as follows:

SATH :=
{
ψ01n

H(n)
: ψ ∈ SAT und |ψ| = n

}
I

SATH(x) :=

{
1, if x ∈ SATH

0, if x 6∈ SATH

I Use specific H : N→ N defined as follows:

H(n) is the smallest number i < log log(n) such that
for every x ∈ {0, 1}∗ with |x | ≤ log(n) the Turing
machine Mi outputs SATH(x) within i |x |i steps. If
there is no such number i , then H(n) = log log(n).

10 / 13

Properties of H and SATH

Lemma 3.9

1. H is well-defined.

2. H can be computed in time O(n3).

Lemma 3.10

1. If SATH ∈ P, then there is a constant C ∈ N such that
H(n) ≤ C for all n.

2. If SATH 6∈ P, then for every C ∈ N there are only finitely
many n ∈ N with H(n) ≤ C . In particular,

lim
n→∞

H(n) =∞.

11 / 13

The final steps of the proof

Case SATH ∈ P

⇒ H(n) ≤ C for some constant C (Lemma 3.10)

⇒ For all Boolean formulas ψ∣∣∣ψ01|ψ|
H(|ψ|)

∣∣∣ ≤ |ψ|C+1.

⇒ SAT ∈ P and P = NP. E

12 / 13

The final steps of the proof

Case SATH ∈ NPC

⇒ There is a polynomial time reduction f from SAT to SATH .
Assume f can be computed in time nC .

⇒ There is n0 ∈ N with H(n) ≥ 2C for all n ≥ n0 (Lemma 3.10)

⇒ For all φ with |φ| > n20, if f (φ) = ψ01|ψ|
H(|ψ|)

, then
|ψ| ≤

√
|φ|.

⇒ SAT ∈ P and P = NP. E

13 / 13

	Chapter 3 - Inside NP

