Chapter 4 - Inside P

- Turing machines with input and output tape
- space complexity below linear
- complexity classes L, NL, and co-NL
- paths in directed graphs and NL
- log space reductions and NL-complete problems
- NL = co-NL (Theorem of Immerman/Szelepcsènyi)

Turing machines with input tape

- A Turing machine with input tape is a 2-tape TM. The first tape is called the *input tape*, the second tape is called the *work tape*.
- ► The first tape is a read-only tape. At the beginning of a computation the input tape contains the input w. The end of the input is marked by the special symbol #.
- The TM cannot change any symbols on its input tape.
 Furthermore, its head cannot move beyond the symbol #.
- The work tape can be read and written in the usual way.
- Configurations of TM M on input w consist of
 - 1. the position *pos* of the head on the input tape,
 - 2. the content of the work tape (ignoring ⊔'s as usual) and the position of the head of the work tape,
 - 3. the state.

Schematic of a Turing machine with input tape

Space complexity of TMs with input tape

Definition 4.1

Let M be a TM with input tape that halts on all inputs. The space complexity of M is the function $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells on its work tape that M scans on any input of length n.

Definition 4.2

Let $s : \mathbb{N} \to \mathbb{R}^+$ be a monotonically increasing function. The space complexity class **DSPACE**(s(n)) consists of all languages that are decidable by an $\mathcal{O}(s(n))$ space DTM with input tape. Similarly, the class **NSPACE**(s(n)) consists of all languages that are decidable by an $\mathcal{O}(s(n))$ space NTM with input tape.

Classes $\boldsymbol{\mathsf{L}}$ and $\boldsymbol{\mathsf{NL}}$

Definition 4.3

L is the class of languages that are decidable in logarithmic space on a DTM with input tape, i.e.

L := DSPACE(log(n)).

Definition 4.4

NL is the class of languages that are decidable in logarithmic space on a NTM with input tape, i.e.

NL := NSPACE(log(n)).

A language in $\boldsymbol{\mathsf{L}}$

Example

The language $\{0^k 1^k | k \in \mathbb{N}\}$ is a member of **L**.

M = "On input $w \in \{0,1\}^*$:

- 1. Scan w to test whether w is of the form $0^n 1^m$. If not, *reject*.
- 2. Count the number of 0's and 1's in *w*. If these numbers are the same *accept*, otherwise *reject*."

A language in **NL**

Example

The language

 $\mathsf{PATH} := \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has} \\ \text{a directed path from } s \text{ to } t \}$

is a member of NL.

An NTM deciding PATH

$$N = "On input G = (V, E) directed graph and s, t \in V:$$
1. Compute $|V| - 1$. Set $i \leftarrow 0, v \leftarrow s$.
2. Repeat until $i = |V| - 1$ or N has accepted:
3. Nondeterministically select $(v, u) \in E$.
4. If $u = t$, then accept.
5. Set $i \leftarrow i + 1, v \leftarrow u$.
6. Reject."

Classes ${\bf P}$ and ${\bf NL}$

Theorem 4.5 $NL \subseteq P$.

Configurations

Configurations of TMs with input tape

For a TM with input tape and $w \in \Sigma^*$, a *configuration of* M on w is a setting of the state, the work tape, and the positions of the two tape heads. The input w is not part of a configuration of M on w.

Observation

If *M* is a TM with input tape that runs in space s(n), then there is a constant *c* such that for an input *w* of length *n* the number of configurations of *M* on *w* is bounded by $n \cdot 2^{c \cdot s(n)}$.

Proof of Theorem 4.5

- Let L be a language in NL and M be a O(log(n)) space NTM with L = L(M). Consider w ∈ Σ*, |w| = n arbitrary.
- ► The number of configurations of M on w is (n+2) · 2^{c·log(n)} ≤ n^{c+2}, which is polynomial.
- Let G be the configuration graph of M on input w and let s be the starting configuration of M on input w.
- G has polynomial size.
- We may assume that M has a single accepting configuration t.
- $w \in L(M)$ if and only if there is a directed path from s to t in G.
- ► We can decide in polynomial time whether w ∈ L by using breadth-first-search on graph G and vertices s and t.
- $\Rightarrow L \in \mathbf{P}.$

Deterministic and nondeterministic space

Theorem 4.6 (Savitch's theorem - general version) Let $s : \mathbb{N} \to \mathbb{N}$ be a space constructible function with $s(n) \ge \log(n)$ for all $n \in \mathbb{N}$, then

 $NSPACE(s(n)) \subseteq DSPACE(s(n)^2).$

Turing machines with input and output tape

- A Turing machine M with input and output tape is a 3-tape TM. The first tape is called the *input tape*, the second tape is called the *work tape*, the third tape is called *output tape*.
- The input tape and the work tape are as for Turing machine with input tape only.
- The output tape is a write-only tape, i.e.
 - 1. the head of the tape can only move to the right
 - 2. if the head writes a symbol, it moves one cell to the right.
- Configurations of TM M on input w consist of
 - 1. the position *pos* of the head on the input tape,
 - 2. the content of the work tape (ignoring ⊔'s as usual) and the position of the head of the work tape,
 - 3. the state.
- Neither the content nor the head position of output contribute to a configuration.

Schematic of a Turing machine with input & output tape

Space complexity of TMs with input & output tape

Definition 4.7

Let M be a TM with input and output tape that halts on all inputs. The space complexity of M is the function $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells on its work tape that M scans on any input of length n.

Definition 4.8

A function $f : \Sigma^* \to \Sigma^*$ is a log space computable function if a deterministic $\mathcal{O}(\log(n))$ space Turing machine M with input and output tape exists that halts with $\triangleright f(w)$ on its output tape, when started on any input $w \in \Sigma^*$.

Log space reductions

Definition 4.9

Language A is log space reducible to language B, written $A \leq_L B$, if a log space computable function $f : \Sigma^* \to \Sigma^*$ exists, where for every $w \in \Sigma^*$

 $w \in A \Leftrightarrow f(w) \in B.$

Lemma 4.10

Let f and g be log space computable functions. Then $g \circ f$ is log space computable.

Corollary 4.11 If $A \leq_L B$ and $B \leq_L C$, then $A \leq_L C$.

Proof of Lemma 4.10

► Let M_f, M_g be log space DTMs with input and output tape that compute f, g, respectively.

The problem

On input w cannot compute f(w) with M_f and then g(f(w)) using M_g , since we may not be able to store f(w) in space $\mathcal{O}(\log(n))$ on work tape.

The solution

 $M_{g \circ f} =$ "On input w:

1. Run M_g on input f(w). Whenever M_g needs to read a symbol of f(w), run M_f with input w to compute that symbol, while ignoring all other symbols of f(w)."

NL-complete languages

Definition 4.12 A language B is **NL**-complete, if

- 1. $B \in \mathbf{NL}$, and
- 2. every language $A \in \mathbf{NL}$ is log space reducible to B.

```
Theorem 4.13 If A \leq_L B and B \in \mathbf{L}, then A \in \mathbf{L}.
```

Corollary 4.14 If any NL-complete language is in L, then L = NL.

Paths in directed graphs and class NL

Theorem 4.15 PATH is **NL**-complete.

Proof

- $A \in \mathbf{NL}$ and N a log space NTM with input tape and L(N) = A
- assume N has unique accepting configuration w_{accept}
- reduction f from A to PATH maps w to $\langle G, s, t \rangle$, where
 - 1. G is the configuration graph of N on input w
 - 2. s is the start configuration of N on input w

3. $t = w_{\text{accept}}$

NL and co-NL

Theorem 4.16 (Immerman/Szelepcsènyi) NL = co-NL.

Very rough idea

 Construct log space NTM that decides the complement PATH of language PATH, where

 $\overline{\mathsf{PATH}} := \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that does} \\ not \text{ have a directed path from } s \text{ to } t \}$

Proof outline

 Construct log space NTM that decides the complement PATH of language PATH, where

 $\overrightarrow{\mathsf{PATH}} := \{ \langle G, s, t \rangle \mid G = (V, E) \text{ is a directed graph that} \\ \text{does$ *not*have a directed path from*s*to*t* $} \}$

 $A_i := \{ v \in V \mid G \text{ has a directed path of length} \\ \text{at most } i \text{ from } s \text{ to } v \}$

•
$$c_i := |A_i|, i = 0, ..., |V| - 1$$

 \Rightarrow (*G*, *s*, *t*) \in $\overline{\mathsf{PATH}}$ \Leftrightarrow *t* \notin *A*_{|*V*|-1}

Proof outline

NTM for $\overline{\text{PATH}}$

- ▶ Inductively and nondeterministically compute the values c_i , i = 0, ..., m, where m = |V| - 1, i.e. for the computation of c_i only knowledge of c_{i-1} is required and if the NTM does not reject it has computed c_i correctly.
- ► Given c_m compute A_m nondeterministically, i.e. guess the elements v of A_m and verify nondeterministically that v ∈ A_m.
- Accept if and only if $t \notin A_m$.

An NTM deciding $\overline{\text{PATH}}$

An NTM deciding PATH

$$M =$$
 "On input $\langle G, s, t \rangle$, $G = (V, E), m = |V| - 1$:

- 12. Let d = 0.
- 13. For each node $u \neq t$ in *G*:

:

- 14. Nondeterministically either perform or skip
- 15. Nondeterministically follow a path of length at most *m* from *s* and *reject* if it does not end at *u*.
- 16. Increment *d*.
- 17. If $d \neq c_m$, then *reject*, otherwise *accept*. "