Chapter 7 - The Polynomial Time Hierarchy

- Relativized complexity classes.
- The classes in the polynomial time hierarchy (PH).
- Characterizations of classes in PH.
- PH and PSPACE

Relativized complexity classes

Let \mathbf{C} be a class of languages. Then
$\mathbf{P}(\mathbf{C}):=\{L \mid L$ can be decided by a deterministic polynomial time OTM $M^{\text {? }}$ with oracle $A \in \mathbf{C}$.\}
$\mathbf{N P}(\mathbf{C}):=\{L \mid L$ can be decided by a nondeterministic polynomial time OTM $M^{?}$ with an oracle $A \in \mathbf{C}$.\}

The polynomial time hierarchy (PH)

Definition 7.1
Set $\Delta_{0}=\Sigma_{0}=\Pi_{0}:=\mathbf{P}$. Inductively define for all $k \in \mathbb{N}$:

1. $\Sigma_{k}=\mathbf{N P}\left(\Sigma_{k-1}\right)$
2. $\Pi_{k}=c o-\Sigma_{k}$
3. $\Delta_{k}=\mathbf{P}\left(\Sigma_{k-1}\right)$

Definition 7.2

The class

$$
\mathbf{P H}:=\bigcup_{k \geq 0} \Sigma_{k}
$$

is called the polynomial time hierarchy.

P, NP, co-NP and PH

Observation

- $\Delta_{1}=\mathbf{P}$
- $\Sigma_{1}=\mathbf{N P}$
- $\Pi_{1}=\mathbf{c o}-N P$

Minimal Boolean formulas and PH

Equivalence and minimality of Boolean formulas

- We call two Boolean formulas equivalent, if

1. they have the same set of variables and
2. they are true on the same set of assignments to those variables.

- A Boolean formula is called minimal if no shorter Boolean formula is equivalent to it.

Two languages
MF $:=\{\langle\phi\rangle \mid \phi$ is a minimal Boolean formula $\}$
$\overline{\mathrm{MF}}=\{\langle\phi\rangle \mid \phi$ is a not minimal Boolean formula $\}$
Observation
$\overline{\mathrm{MF}} \in \mathbf{N} \mathbf{P}^{S A T}$, i.e. $\overline{\mathrm{MF}} \in \Sigma_{2}$ and $\mathrm{MF} \in \Pi_{2}$.

Inclusions inside of PH

Lemma 7.3
For all $k \in \mathbb{N}$

1. $\Delta_{k}=c o-\Delta_{k} \subseteq \Sigma_{k} \cap \Pi_{k} \subseteq \Sigma_{k} \cup \Pi_{k} \subseteq \Sigma_{k+1}$
2. $\Sigma_{k} \cup \Pi_{k} \subseteq \Delta_{k+1}$

Ilustration of inclusions

Alternative characterizations

Theorem 7.4
$L \in \Sigma_{k}$ if and only if there is a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a language $A \in \Pi_{k-1}$ with

$$
L=\left\{x \mid \exists w \in\{0,1\}^{p(|x|)}:(x, w) \in A\right\}
$$

Corollary 7.5

$L \in \Pi_{k}$ if and only if there is a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a language $A \in \Sigma_{k-1}$ with

$$
L=\left\{x \mid \forall w \in\{0,1\}^{p(|x|)}:(x, w) \in A\right\}
$$

Alternative characterizations

Corollary 7.6

$L \in \Sigma_{k}$ if and only if there is a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a language $A \in \mathbf{P}$ with

$$
L=\left\{\begin{array}{l}
x
\end{array} \left\lvert\, \begin{array}{l}
\exists w_{1} \in\{0,1\}^{p(|x|)} \forall w_{2} \in\{0,1\}^{p(|x|)} \ldots \\
Q_{k} w_{k} \in\{0,1\}^{p(|x|)}:\left(x, w_{1}, w_{2}, \ldots, w_{k}\right) \in A
\end{array}\right.\right\},
$$

here $Q_{k}=\exists$, if k is odd, and $Q_{k}=\forall$ otherwise.

Alternative characterizations

Corollary 7.7

$L \in \Pi_{k}$ if and only if there is a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a language $A \in \mathbf{P}$ with

$$
L=\left\{\begin{array}{l}
x
\end{array} \begin{array}{l}
\forall w_{1} \in\{0,1\}^{p(|x|)} \exists w_{2} \in\{0,1\}^{p(|x|)} \ldots \\
Q_{k} w_{k} \in\{0,1\}^{p(|x|)}:\left(x, w_{1}, w_{2}, \ldots, w_{k}\right) \in A
\end{array}\right\},
$$

here $Q_{k}=\forall$, if k is odd, and $Q_{k}=\exists$ otherwise.

Consequences

Corollary 7.8
$\mathbf{P H} \subseteq$ PSPACE .

Corollary 7.9
If there is a $k \in \mathbb{N}$ with $\Sigma_{k}=\Pi_{k}$, then $\Sigma_{I}=\Sigma_{k}=\Pi_{k}=\Pi_{\text {I }}$ for all $I \geq k$, i.e. the polynomial time hierarchy collapses to its k-th level.

Corollary 7.10

- If $\mathbf{N P}=\mathbf{P}$, then $\mathbf{P H}=\mathbf{P}$.
- If $\mathbf{N P}=$ co-NP, then $\mathbf{P H}=\mathbf{N P}$.

Proof of Theorem $7.4 \Leftarrow$

- Let L be a language such that a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a language $A \in \Pi_{k-1}$ exist with

$$
L=\left\{x \mid \exists w \in\{0,1\}^{p(|x|)}:(x, w) \in A\right\}
$$

- Consider the following OTM

$$
M_{L}^{?}=" \text { On input } x:
$$

1. Nondeterministically choose $w \in\{0,1\}^{p(|x|)}$.
2. Write (x, w) onto the oracle tape.
3. From state q_{no} go to state q_{accept}, from state $q_{\mathrm{y} \text { es }}$ go to state $q_{\text {reject. }}$."

Proof of Theorem $7.4 \Leftarrow$

- Consider the following OTM

$$
M_{\dot{L}}^{?}=" \text { On input } x:
$$

1. Nondeterministically choose $w \in\{0,1\}^{p(|x|)}$.
2. Write (x, w) onto the oracle tape.
3. From state q_{no} go to state q_{accept}, from state q_{yes} go to state $q_{\text {reject. }}$."

- $L\left(M_{L}^{\bar{A}}\right)=L$
- $\bar{A} \in \Sigma_{k-1}$
$\Rightarrow L \in \Sigma_{k}$

Proof of Theorem $7.4 \Rightarrow$

- induction over k
- induction basis for $k=1$, i.e. for $\Sigma_{1}=\mathbf{N P}$
- follows from

Theorem 3.4
$L \subseteq \Sigma^{*}$ is in $\mathbf{N P}$, if and only if $k \in \mathbb{N}$ and $A \in \mathbf{P}$ exist with

$$
L=\left\{x \in \Sigma^{*} \mid \exists z \in\{0,1\}^{|x|^{k}}:(x, z) \in A\right\} .
$$

Proof of Theorem $7.4 \Rightarrow$ (induction step)

Start from
$L \in \Sigma_{k} \Rightarrow\left\{\begin{array}{l}\text { there is a polynomial time NOTM } M^{?} \\ \text { and a language } K \in \Sigma_{k-1} \text { with } L\left(M^{K}\right)=L .\end{array}\right.$
Induction hypothesis
$K \in \Sigma_{k-1} \Rightarrow\left\{\begin{array}{l}\text { there is a polynomial } q: \mathbb{N} \rightarrow \mathbb{N} \\ \text { and a language } S \in \Pi_{k-2} \\ \text { with } K=\left\{z \mid \exists w \in\{0,1\}^{q(|z|)}:(z, w) \in S\right\} .\end{array}\right.$
Computations of M ?
We say that a string $y \in\{0,1\}^{*}$ describes a computation of $M^{\text {? }}$ on input x if y fixes the nondeterministic choices of $M^{\text {? }}$ and fixes the answers to the oracle queries of M ?

Proof of Theorem $7.4 \Rightarrow$ (induction step)

Start from
$L \in \Sigma_{k} \Rightarrow\left\{\begin{array}{l}\text { there is a polynomial time NOTM } M^{?} \\ \text { and a language } K \in \Sigma_{k-1} \text { with } L\left(M^{K}\right)=L .\end{array}\right.$
Induction hypothesis
$K \in \Sigma_{k-1} \Rightarrow\left\{\begin{array}{l}\text { there is a polynomial } q: \mathbb{N} \rightarrow \mathbb{N} \\ \text { and a language } S \in \Pi_{k-2} \\ \text { with } K=\left\{z \mid \exists w \in\{0,1\}^{q(|z|)}:(z, w) \in S\right\} .\end{array}\right.$
Computations of M ?
$B:=\{(x, y) \mid y$ describes an accepting computation

$$
\text { of } \left.M^{?} \text { on input } x\right\}
$$

Proof of Theorem $7.4 \Rightarrow$ (induction step)

- $h: \mathbb{N} \rightarrow \mathbb{N}$ polynomial such that for all $x \in\{0,1\}^{*}$ an accepting computation of M ? on input x can be described by a string $y \in\{0,1\}^{h(|x|)}$.

$$
x \in L \Leftrightarrow \exists y \in\{0,1\}^{h(|x|)}: y \text { describes an accepting }
$$

computation of $M^{\text {? }}$ on input x and the
query answers contained in y
correspond to oracle K.

Proof of Theorem $7.4 \Rightarrow$ (induction step)

A refined version of language B

$$
A:=\left\{\left(x, y, w_{1}, \ldots, w_{s}\right) \mid(x, y) \in B, u_{i} \in \bar{K}\right. \text { for the oracle }
$$

queries u_{1}, \ldots, u_{t} that are answered with q_{no} in y and $\left(v_{i}, w_{i}\right) \in S$ for the oracle queries v_{1}, \ldots, v_{s} in y that are answered with $q_{\text {yes }}$ in $\left.y.\right\}$

Basic observation
$L=\{x \mid \exists z:(x, z) \in A\}$
Need to show: $A \in \Pi_{k-1}$.

Proof of Theorem $7.4 \Rightarrow$ (induction step)

A refined version of language B

$$
\begin{gathered}
A:=\left\{\left(x, y, w_{1}, \ldots, w_{s}\right) \mid(x, y) \in B, u_{i} \in \bar{K}\right. \text { for the oracle } \\
\text { queries } u_{1}, \ldots, u_{t} \text { that are answered } \\
\text { with } q_{\mathrm{no}} \text { in } y \text { and }\left(v_{i}, w_{i}\right) \in S \\
\\
\text { for the oracle queries } v_{1}, \ldots, v_{s} \text { in } y
\end{gathered}
$$

that are answered with $q_{\text {yes }}$ in $\left.y.\right\}$
$\left(x, y, w_{1}, \ldots, w_{s}\right) \in \bar{A} \Leftrightarrow$
$\begin{cases}(x, y) \in \bar{B} & \text { or } \\ \text { there is } i \in\{1, \ldots, t\} \text { with } u_{i} \in K & \text { or } \\ \text { there is } i \in\{1, \ldots, s\} \text { with }\left(v_{i}, w_{i}\right) \in \bar{S} & \end{cases}$

Proof of Theorem $7.4 \Rightarrow$ (induction step)

$$
\left(x, y, w_{1}, \ldots, w_{s}\right) \in \bar{A} \Leftrightarrow
$$

$$
\begin{cases}(x, y) \in \bar{B} & \text { or } \\ \text { there is } i \in\{1, \ldots, t\} \text { with } u_{i} \in K & \text { or } \\ \text { there is } i \in\{1, \ldots, s\} \text { with }\left(v_{i}, w_{i}\right) \in \bar{S} & \end{cases}
$$

- $\bar{B} \in \Sigma_{k-1}$, since $B \in \mathbf{P}$;
- $K \in \Sigma_{k-1}$ by definition;
- $\bar{S} \in \Sigma_{k-1}$, since $S \in \Pi_{k-2}$ by induction hypothesis and $\Pi_{k-2} \subseteq \Pi_{k-1}$.
$\Rightarrow \bar{A} \in \Sigma_{k-1}$, since Σ_{k-1} is closed under union
$\Rightarrow A \in \Pi_{k-1}$

