Chapter 7 - The Polynomial Time Hierarchy

» Relativized complexity classes.

» The classes in the polynomial time hierarchy (PH).

» Characterizations of classes in PH.
» PH and PSPACE
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Relativized complexity classes

Let C be a class of languages. Then

P(C) :={L| L can be decided by a deterministic polynomial time
OTM M? with oracle A e C.}

NP(C) := {L | L can be decided by a nondeterministic polynomial
time OTM M’ with an oracle A € C.}

)
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The polynomial time hierarchy (PH)

Definition 7.1
Set Ay = Xo = Mg := P. Inductively define for all k € N:

1. £ = NP(X4-1)
2. My = co-x
3. Ay =P(Xk-1)

Definition 7.2
The class

PH = U )P
k>0

is called the polynomial time hierarchy.



P,NP,co-NP and PH

Observation
» A1 =P
> ¥ =NP
» [1; = co-NP
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Minimal Boolean formulas and PH

Equivalence and minimality of Boolean formulas

» We call two Boolean formulas equivalent, if
1. they have the same set of variables and

2. they are true on the same set of assignments to those variables.

» A Boolean formula is called minimal if no shorter Boolean
formula is equivalent to it.

Two languages

MF := {(¢) | ¢ is a minimal Boolean formula}
MF = {(¢) | ¢ is a not minimal Boolean formula}

Observation
MF € NP°AT je. MF € ¥, and MF € I,.
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Inclusions inside of PH

Lemma 7.3
For all k € N

1. Ag=co-A TN CTXe UM, Cxppg
2. L UMK C Akyn
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[lustration of inclusions
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Alternative characterizations

Theorem 7.4
L € X if and only if there is a polynomial p: N — N and a
language A € lNy_1 with

L={x|3w e {0,1}P) . (x,w) € A}.

Corollary 7.5

L € My if and only if there is a polynomial p : N — N and a
language A € X y_1 with

L={x|vw e {0,1}P) : (x,w) € A}.

18



Alternative characterizations

Corollary 7.6

L € ¥ if and only if there is a polynomial p: N — N and a
language A € P with

L:{X

here Q, = 3, if k is odd, and Q, = V otherwise.

3w € {0, 13Dy, € {0,1}PX) . ..
Qrwy € {0, 1}”("(‘) S wi, wa, ... ) €A
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Alternative characterizations

Corollary 7.7

L € My if and only if there is a polynomial p: N — N and a
language A € P with

L:{X

here Qx =V, if k is odd, and Q) = 3 otherwise.

vwy € {0, 13P(D3w, € {0, 13P(XD ...
Quewi € {0¢ 1}p(\x\) : (Xv Wi, W2, ..., Wk) €A ’
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Consequences

Corollary 7.8
PH C PSPACE.

Corollary 7.9

If there is a k € N with £y =y, then ¥y = X =My =111, for all
I > k, i.e. the polynomial time hierarchy collapses to its k-th level.

Corollary 7.10

» I[fNP = P, then PH = P.
» [f NP = co-NP, then PH = NP.
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Proof of Theorem 7.4 «

> Let L be a language such that a polynomial p: N — N and a
language A € lN,_; exist with

L={x]3we {0,1}*X): (x,w) € A}.

» Consider the following OTM

ML? ="0On input x:
Nondeterministically choose w € {0, 1}P(X).
. Write (x, w) onto the oracle tape.
3. From state gy, go to state Gaccept, from state gyes
go to state Greject-
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Proof of Theorem 7.4 «

» Consider the following OTM

I\/IZ ="On input x:
1. Nondeterministically choose w € {0, 1}P(x]),
2. Write (x, w) onto the oracle tape.
3. From state gy, g0 to state Gaccept, from state qyes
go to state Greject-

> L(MP) =L
> [\eZk,l
= LeXxy,
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Proof of Theorem 7.4 =

» induction over k
» induction basis for k =1, i.e. for ¥1 = NP

» follows from

Theorem 3.4
LCY*isin NP, ifand only if k € N and A € P exist with

L= {XE Y* |3z e {0,1}‘X|k L (x, z) EA}.
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Proof of Theorem 7.4 = (induction step)

Start from ,
there is a polynomial time NOTM M

LeY, = K
and a language K € ¥_1 with L(M") = L.

Induction hypothesis
there is a polynomial ¢ : N — N

K e Xi_1= ¢ and a language S € Ny_»
with K = {z | 3w € {0,1}907) . (z,w) € S}.

Computations of M’

We say that a string y € {0,1}* describes a computation of M’ on
input x if y fixes the nondeterministic choices of M? and fixes the
answers to the oracle queries of M”.
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Proof of Theorem 7.4 = (induction step)

Start from .
there is a polynomial time NOTM M

and a language K € X1 with L(M") = L.

LeY, =

Induction hypothesis
there is a polynomial ¢ : N — N
K e Xi_1= ¢ and a language S € Ny_»

with K = {z | 3w € {0,1}907) . (z,w) € S}.

Computations of M’

B :={(x,y) | y describes an accepting computation

of M7 on input x}
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Proof of Theorem 7.4 = (induction step)

» h:N — N polynomial such that for all x € {0,1}* an
accepting computation of M? on input x can be described by
a string y € {0, 1}7(X)).

x € L& 3y e {0,1}MX): y describes an accepting
computation of M’ on input x and the
query answers contained in y

correspond to oracle K.
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Proof of Theorem 7.4 = (induction step)

A refined version of language B

A= {(x,y,wi,...,ws) | (x,y) € B, u; € K for the oracle
queries uq, ..., us that are answered
with gno in y and (vj,w;) € S
for the oracle queries vq,...,vs iny

that are answered with gyes in y.}

Basic observation
L={x|3z:(x,z) € A}

Need to show: A c [1,_;.
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Proof of Theorem 7.4 = (induction step)

A refined version of language B

A= {(x,y,w1,...,ws) | (x,y) € B, uj € K for the oracle
queries uq, ..., Us that are answered
with gno in y and (v, w;) € S
for the oracle queries vq,...,vsiny

that are answered with gyes in y.}

(X,y,wi,...,ws) €A &
(x,y) € B or
thereis i € {1,...,t} with u; € K or

there is i € {1,...,s} with (vj,w;) € S
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Proof of Theorem 7.4 = (induction step)

(X,y,wi,...,ws) €EA&
(x,y) € B or
thereis i € {1,...,t} with u; € K or

thereis i € {1,...,s} with (v;,w;) € S

» Be X, 1, since BeP;

> K € X1 by definition;

» Sc ¥, 1, since S € My_y by induction hypothesis and
M2 CMy_1.

= A€ X, 1, since X,_1 is closed under union

= Ac rlk,1
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