
Chapter 7 - The Polynomial Time Hierarchy

I Relativized complexity classes.

I The classes in the polynomial time hierarchy (PH).

I Characterizations of classes in PH.

I PH and PSPACE
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Relativized complexity classes

Let C be a class of languages.Then

P(C) := {L | L can be decided by a deterministic polynomial time

OTM M? with oracle A ∈ C.}

NP(C) := {L | L can be decided by a nondeterministic polynomial

time OTM M? with an oracle A ∈ C.}
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The polynomial time hierarchy (PH)

Definition 7.1
Set ∆0 = Σ0 = Π0 := P. Inductively define for all k ∈ N:

1. Σk = NP(Σk−1)

2. Πk = co-Σk

3. ∆k = P(Σk−1)

Definition 7.2
The class

PH :=
⋃
k≥0

Σk

is called the polynomial time hierarchy.
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P,NP, co-NP and PH

Observation

I ∆1 = P

I Σ1 = NP

I Π1 = co-NP
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Minimal Boolean formulas and PH

Equivalence and minimality of Boolean formulas

I We call two Boolean formulas equivalent, if

1. they have the same set of variables and
2. they are true on the same set of assignments to those variables.

I A Boolean formula is called minimal if no shorter Boolean
formula is equivalent to it.

Two languages

MF := {〈φ〉 | φ is a minimal Boolean formula}
MF = {〈φ〉 | φ is a not minimal Boolean formula}

Observation
MF ∈ NPSAT, i.e. MF ∈ Σ2 and MF ∈ Π2.
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Inclusions inside of PH

Lemma 7.3
For all k ∈ N

1. ∆k = co-∆k ⊆ Σk ∩ Πk ⊆ Σk ∪ Πk ⊆ Σk+1

2. Σk ∪ Πk ⊆ ∆k+1
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llustration of inclusions

∆1 = P

NP = Σ1 Π1 = co-NP

Σ1 ∪ Π1

∆2

Σ2 ∩ Π2

Σ2 Π2

Σ2 ∪ Π2

Σ3 ∩ Π3

Σ3 Π3

Σ3 ∪ Π3

∆3

PH
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Alternative characterizations

Theorem 7.4
L ∈ Σk if and only if there is a polynomial p : N→ N and a
language A ∈ Πk−1 with

L = {x ∃w ∈ {0, 1}p(|x |) : (x ,w) ∈ A}.

Corollary 7.5

L ∈ Πk if and only if there is a polynomial p : N→ N and a
language A ∈ Σk−1 with

L = {x ∀w ∈ {0, 1}p(|x |) : (x ,w) ∈ A}.
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Alternative characterizations

Corollary 7.6

L ∈ Σk if and only if there is a polynomial p : N→ N and a
language A ∈ P with

L =

{
x
∃w1 ∈ {0, 1}p(|x |)∀w2 ∈ {0, 1}p(|x |) · · ·
Qkwk ∈ {0, 1}p(|x |) : (x ,w1,w2, . . . ,wk) ∈ A

}
,

here Qk = ∃, if k is odd, and Qk = ∀ otherwise.
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Alternative characterizations

Corollary 7.7

L ∈ Πk if and only if there is a polynomial p : N→ N and a
language A ∈ P with

L =

{
x
∀w1 ∈ {0, 1}p(|x |)∃w2 ∈ {0, 1}p(|x |) · · ·
Qkwk ∈ {0, 1}p(|x |) : (x ,w1,w2, . . . ,wk) ∈ A

}
,

here Qk = ∀, if k is odd, and Qk = ∃ otherwise.
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Consequences

Corollary 7.8

PH ⊆ PSPACE.

Corollary 7.9

If there is a k ∈ N with Σk = Πk , then Σl = Σk = Πk = Πl for all
l ≥ k , i.e. the polynomial time hierarchy collapses to its k-th level.

Corollary 7.10

I If NP = P, then PH = P.

I If NP = co-NP, then PH = NP.
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Proof of Theorem 7.4 ⇐

I Let L be a language such that a polynomial p : N→ N and a
language A ∈ Πk−1 exist with

L = {x | ∃w ∈ {0, 1}p(|x |) : (x ,w) ∈ A}.

I Consider the following OTM

M?
L = ”On input x :

1. Nondeterministically choose w ∈ {0, 1}p(|x |).
2. Write (x ,w) onto the oracle tape.
3. From state qno go to state qaccept, from state qyes

go to state qreject.”
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Proof of Theorem 7.4 ⇐

I Consider the following OTM

M?
L = ”On input x :

1. Nondeterministically choose w ∈ {0, 1}p(|x |).
2. Write (x ,w) onto the oracle tape.
3. From state qno go to state qaccept, from state qyes

go to state qreject.”

I L(M Ā
L ) = L

I Ā ∈ Σk−1

⇒ L ∈ Σk
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Proof of Theorem 7.4 ⇒

I induction over k

I induction basis for k = 1, i.e. for Σ1 = NP

I follows from

Theorem 3.4
L ⊆ Σ∗ is in NP, if and only if k ∈ N and A ∈ P exist with

L =
{
x ∈ Σ∗ | ∃z ∈ {0, 1}|x |k : (x , z) ∈ A

}
.
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Proof of Theorem 7.4 ⇒ (induction step)

Start from

L ∈ Σk ⇒

{
there is a polynomial time NOTM M?

and a language K ∈ Σk−1 with L
(
MK

)
= L.

Induction hypothesis

K ∈ Σk−1 ⇒


there is a polynomial q : N→ N
and a language S ∈ Πk−2

with K = {z | ∃w ∈ {0, 1}q(|z|) : (z ,w) ∈ S}.

Computations of M?

We say that a string y ∈ {0, 1}∗ describes a computation of M? on
input x if y fixes the nondeterministic choices of M? and fixes the
answers to the oracle queries of M?.
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Start from
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{
there is a polynomial time NOTM M?

and a language K ∈ Σk−1 with L
(
MK

)
= L.

Induction hypothesis

K ∈ Σk−1 ⇒


there is a polynomial q : N→ N
and a language S ∈ Πk−2

with K = {z | ∃w ∈ {0, 1}q(|z|) : (z ,w) ∈ S}.

Computations of M?

B := {(x , y) | y describes an accepting computation

of M? on input x}
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Proof of Theorem 7.4 ⇒ (induction step)

I h : N→ N polynomial such that for all x ∈ {0, 1}∗ an
accepting computation of M? on input x can be described by
a string y ∈ {0, 1}h(|x |).

I

x ∈ L⇔ ∃y ∈ {0, 1}h(|x |): y describes an accepting

computation of M? on input x and the

query answers contained in y

correspond to oracle K .
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Proof of Theorem 7.4 ⇒ (induction step)

A refined version of language B

A := {(x , y ,w1, . . . ,ws) | (x , y) ∈ B, ui ∈ K̄ for the oracle

queries u1, . . . , ut that are answered

with qno in y and (vi ,wi ) ∈ S

for the oracle queries v1, . . . , vs in y

that are answered with qyes in y .}

Basic observation
L = {x | ∃z : (x , z) ∈ A}

Need to show: A ∈ Πk−1.
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A refined version of language B

A := {(x , y ,w1, . . . ,ws) | (x , y) ∈ B, ui ∈ K̄ for the oracle

queries u1, . . . , ut that are answered

with qno in y and (vi ,wi ) ∈ S

for the oracle queries v1, . . . , vs in y

that are answered with qyes in y .}

(x , y ,w1, . . . ,ws) ∈ Ā⇔
(x , y) ∈ B̄ or

there is i ∈ {1, . . . , t} with ui ∈ K or

there is i ∈ {1, . . . , s} with (vi ,wi ) ∈ S̄
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Proof of Theorem 7.4 ⇒ (induction step)

(x , y ,w1, . . . ,ws) ∈ Ā⇔
(x , y) ∈ B̄ or

there is i ∈ {1, . . . , t} with ui ∈ K or

there is i ∈ {1, . . . , s} with (vi ,wi ) ∈ S̄

I B̄ ∈ Σk−1, since B ∈ P;

I K ∈ Σk−1 by definition;

I S̄ ∈ Σk−1, since S ∈ Πk−2 by induction hypothesis and
Πk−2 ⊆ Πk−1.

⇒ Ā ∈ Σk−1, since Σk−1 is closed under union

⇒ A ∈ Πk−1
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