Chapter 7 - The Polynomial Time Hierarchy

- Relativized complexity classes.
- ► The classes in the polynomial time hierarchy (**PH**).
- Characterizations of classes in **PH**.
- PH and PSPACE

Relativized complexity classes

Let ${\boldsymbol{\mathsf{C}}}$ be a class of languages.Then

 $\mathbf{P}(\mathbf{C}) := \{L \mid L \text{ can be decided by a deterministic polynomial time} \\ \text{OTM } M^? \text{ with oracle } A \in \mathbf{C}.\}$

 $\mathbf{NP}(\mathbf{C}) := \{L \mid L \text{ can be decided by a nondeterministic polynomial} \\ \text{time OTM } M^{?} \text{ with an oracle } A \in \mathbf{C}.\}$

The polynomial time hierarchy (**PH**)

Definition 7.1 Set $\Delta_0 = \Sigma_0 = \Pi_0 := \mathbf{P}$. Inductively define for all $k \in \mathbb{N}$: 1. $\Sigma_k = \mathbf{NP}(\Sigma_{k-1})$ 2. $\Pi_k = co \cdot \Sigma_k$ 3. $\Delta_k = \mathbf{P}(\Sigma_{k-1})$

Definition 7.2

The class

$$\mathsf{PH} := \bigcup_{k \ge 0} \Sigma_k$$

is called the polynomial time hierarchy.

$\boldsymbol{\mathsf{P}}, \boldsymbol{\mathsf{NP}}, \boldsymbol{\mathsf{co-NP}} \text{ and } \boldsymbol{\mathsf{PH}}$

Observation

- $\blacktriangleright \ \Delta_1 = \mathbf{P}$
- $\blacktriangleright \ \Sigma_1 = \textbf{NP}$
- ► $\Pi_1 = \text{co-NP}$

Minimal Boolean formulas and **PH**

Equivalence and minimality of Boolean formulas

- ► We call two Boolean formulas equivalent, if
 - 1. they have the same set of variables and
 - 2. they are true on the same set of assignments to those variables.
- A Boolean formula is called *minimal* if no shorter Boolean formula is equivalent to it.

Two languages

$$\frac{\mathrm{MF}}{\mathrm{MF}} := \{ \langle \phi \rangle \mid \phi \text{ is a minimal Boolean formula} \}$$
$$\overline{\mathrm{MF}} = \{ \langle \phi \rangle \mid \phi \text{ is a not minimal Boolean formula} \}$$

$\begin{array}{l} Observation\\ \overline{\mathrm{MF}} \in \boldsymbol{\mathsf{NP}}^{SAT} \text{, i.e. } \overline{\mathrm{MF}} \in \boldsymbol{\Sigma}_2 \text{ and } \mathrm{MF} \in \boldsymbol{\Pi}_2. \end{array}$

Inclusions inside of $\ensuremath{\mathsf{PH}}$

Lemma 7.3 For all $k \in \mathbb{N}$ 1. $\Delta_k = co \cdot \Delta_k \subseteq \Sigma_k \cap \Pi_k \subseteq \Sigma_k \cup \Pi_k \subseteq \Sigma_{k+1}$ 2. $\Sigma_k \cup \Pi_k \subseteq \Delta_{k+1}$

llustration of inclusions

Alternative characterizations

Theorem 7.4 $L \in \Sigma_k$ if and only if there is a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a language $A \in \Pi_{k-1}$ with

$$L = \{x \mid \exists w \in \{0,1\}^{p(|x|)} : (x,w) \in A\}.$$

Corollary 7.5

 $L \in \Pi_k$ if and only if there is a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a language $A \in \Sigma_{k-1}$ with

$$L = \{x \mid \forall w \in \{0,1\}^{p(|x|)} : (x,w) \in A\}.$$

Alternative characterizations

Corollary 7.6

 $L\in \Sigma_k$ if and only if there is a polynomial $p:\mathbb{N}\to\mathbb{N}$ and a language $A\in \textbf{P}$ with

$$L = \left\{ x \mid \exists w_1 \in \{0,1\}^{p(|x|)} \forall w_2 \in \{0,1\}^{p(|x|)} \cdots \\ Q_k w_k \in \{0,1\}^{p(|x|)} : (x, w_1, w_2, \dots, w_k) \in A \right\},\$$

here $Q_k = \exists$, if k is odd, and $Q_k = \forall$ otherwise.

Alternative characterizations

Corollary 7.7

 $L \in \Pi_k$ if and only if there is a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a language $A \in \mathbf{P}$ with

$$L = \left\{ x \mid \begin{array}{l} \forall w_1 \in \{0,1\}^{p(|x|)} \exists w_2 \in \{0,1\}^{p(|x|)} \cdots \\ Q_k w_k \in \{0,1\}^{p(|x|)} : (x, w_1, w_2, \dots, w_k) \in A \end{array} \right\},$$

here $Q_k = \forall$, if k is odd, and $Q_k = \exists$ otherwise.

Consequences

Corollary 7.8 $PH \subseteq PSPACE$.

Corollary 7.9

If there is a $k \in \mathbb{N}$ with $\Sigma_k = \Pi_k$, then $\Sigma_l = \Sigma_k = \Pi_k = \Pi_l$ for all $l \ge k$, i.e. the polynomial time hierarchy collapses to its k-th level.

Corollary 7.10

- If NP = P, then PH = P.
- If NP = co-NP, then PH = NP.

Proof of Theorem 7.4 \Leftarrow

Let L be a language such that a polynomial p : N → N and a language A ∈ Π_{k-1} exist with

$$L = \{x \mid \exists w \in \{0,1\}^{p(|x|)} : (x,w) \in A\}.$$

Consider the following OTM

 $M_L^? =$ "On input *x*:

- 1. Nondeterministically choose $w \in \{0, 1\}^{p(|x|)}$.
- 2. Write (x, w) onto the oracle tape.
- 3. From state q_{no} go to state q_{accept} , from state q_{yes} go to state q_{reject} ."

Proof of Theorem 7.4 \Leftarrow

Consider the following OTM

 $M_L^? =$ "On input *x*:

- 1. Nondeterministically choose $w \in \{0, 1\}^{p(|x|)}$.
- 2. Write (x, w) onto the oracle tape.
- 3. From state $q_{\rm no}$ go to state $q_{\rm accept}$, from state $q_{\rm yes}$ go to state $q_{\rm reject}$."

$$L(M_L^{\bar{A}}) = L$$

$$\bar{A} \in \Sigma_{k-1}$$

$$\geq L \in \Sigma_k$$

Proof of Theorem 7.4 \Rightarrow

- induction over k
- induction basis for k = 1, i.e. for $\Sigma_1 = \mathbf{NP}$
- follows from

Theorem 3.4

 $L \subseteq \Sigma^*$ is in **NP**, if and only if $k \in \mathbb{N}$ and $A \in \mathbf{P}$ exist with

$$L = \left\{ x \in \Sigma^* \mid \exists z \in \{0,1\}^{|x|^k} : (x,z) \in A \right\}.$$

Start from $L \in \Sigma_k \Rightarrow \begin{cases} \text{there is a polynomial time NOTM } M^? \\ \text{and a language } K \in \Sigma_{k-1} \text{ with } L(M^K) = L. \end{cases}$

 $\begin{array}{l} \mbox{Induction hypothesis} \\ \mathcal{K} \in \Sigma_{k-1} \Rightarrow \left\{ \begin{array}{l} \mbox{there is a polynomial } q: \mathbb{N} \to \mathbb{N} \\ \mbox{and a language } S \in \Pi_{k-2} \\ \mbox{with } \mathcal{K} = \{z \mid \exists w \in \{0,1\}^{q(|z|)} : (z,w) \in S\}. \end{array} \right. \end{array}$

Computations of $M^{?}$

We say that a string $y \in \{0,1\}^*$ describes a computation of $M^?$ on input x if y fixes the nondeterministic choices of $M^?$ and fixes the answers to the oracle queries of $M^?$.

Start from $L \in \Sigma_k \Rightarrow \begin{cases} \text{there is a polynomial time NOTM } M^? \\ \text{and a language } K \in \Sigma_{k-1} \text{ with } L(M^K) = L. \end{cases}$

 $\begin{array}{l} \mbox{Induction hypothesis} \\ \mathcal{K} \in \Sigma_{k-1} \Rightarrow \left\{ \begin{array}{l} \mbox{there is a polynomial } q: \mathbb{N} \to \mathbb{N} \\ \mbox{and a language } S \in \Pi_{k-2} \\ \mbox{with } \mathcal{K} = \{z \mid \exists w \in \{0,1\}^{q(|z|)} : (z,w) \in S\}. \end{array} \right. \end{array}$

Computations of $M^{?}$

 $B := \{(x, y) \mid y \text{ describes an accepting computation} \\ \text{of } M^{?} \text{ on input } x\}$

h: N → N polynomial such that for all x ∈ {0,1}* an accepting computation of M? on input x can be described by a string y ∈ {0,1}^{h(|x|)}.

 $x \in L \Leftrightarrow \exists y \in \{0,1\}^{h(|x|)}$: y describes an accepting computation of $M^{?}$ on input x and the query answers contained in y correspond to oracle K.

A refined version of language B

 $A := \{(x, y, w_1, \dots, w_s) \mid (x, y) \in B, u_i \in \overline{K} \text{ for the oracle} \\ \text{queries } u_1, \dots, u_t \text{ that are answered} \\ \text{with } q_{\text{no}} \text{ in } y \text{ and } (v_i, w_i) \in S \\ \text{for the oracle queries } v_1, \dots, v_s \text{ in } y \\ \text{that are answered with } q_{\text{ves}} \text{ in } y.\}$

Basic observation $L = \{x \mid \exists z : (x, z) \in A\}$

Need to show: $A \in \prod_{k=1}$.

A refined version of language B

 $A := \{(x, y, w_1, \dots, w_s) \mid (x, y) \in B, u_i \in \overline{K} \text{ for the oracle} \\ \text{queries } u_1, \dots, u_t \text{ that are answered} \\ \text{with } q_{\text{no}} \text{ in } y \text{ and } (v_i, w_i) \in S \\ \text{for the oracle queries } v_1, \dots, v_s \text{ in } y \\ \text{that are answered with } q_{\text{ves}} \text{ in } y.\}$

$$(x, y, w_1, \dots, w_s) \in \bar{A} \Leftrightarrow \begin{cases} (x, y) \in \bar{B} & \text{or} \\ \text{there is } i \in \{1, \dots, t\} \text{ with } u_i \in K & \text{or} \\ \text{there is } i \in \{1, \dots, s\} \text{ with } (v_i, w_i) \in \bar{S} \end{cases}$$

Proof of Theorem 7.4 \Rightarrow (induction step) $(x, y, w_1, \dots, w_s) \in \overline{A} \Leftrightarrow$ $\begin{cases}
(x, y) \in \overline{B} & \text{or} \\
\text{there is } i \in \{1, \dots, t\} \text{ with } u_i \in K & \text{or} \\
\text{there is } i \in \{1, \dots, s\} \text{ with } (v_i, w_i) \in \overline{S}
\end{cases}$

- $\bar{B} \in \Sigma_{k-1}$, since $B \in \mathbf{P}$;
- $K \in \Sigma_{k-1}$ by definition;
- ► $\overline{S} \in \Sigma_{k-1}$, since $S \in \Pi_{k-2}$ by induction hypothesis and $\Pi_{k-2} \subseteq \Pi_{k-1}$.
- $\Rightarrow \bar{A} \in \Sigma_{k-1}$, since Σ_{k-1} is closed under union
- $\Rightarrow A \in \Pi_{k-1}$