Chapter 8 - Probabilistic complexity classes

- Define probabilistic complexity classes
- Including BPP, RP, and ZPP
- Show how BPP relates to the polynomial time hierarchy, i.e. $\mathbf{B P P} \subseteq \Sigma_{2} \cap \Pi_{2}$

Probabilistic algorithms - an example

- $\mathrm{MM}:=\left\{(A, B, C) \in \mathbb{Z}_{2}^{n \times n} \times \mathbb{Z}_{2}^{n \times n} \times \mathbb{Z}_{2}^{n \times n} \mid n \in \mathbb{N}, A \cdot B=C\right\}$
- $\overline{\mathrm{MM}}:=\left\{(A, B, C) \in \mathbb{Z}_{2}^{n \times n} \times \mathbb{Z}_{2}^{n \times n} \times \mathbb{Z}_{2}^{n \times n} \mid n \in \mathbb{N}, A \cdot B \neq C\right\}$
$M_{\overline{\mathrm{MM}}}=$ "On input $A, B, C \in \mathbb{Z}_{2}^{n \times n}$:

1. Choose $x \in \mathbb{Z}_{2}^{n}$ uniformly at random.
2. Compute $y:=B \cdot x, z:=A \cdot y, w:=C \cdot x$.
3. Accept, if $z \neq w$, otherwise reject."

Lemma 8.1
For all $A, B, C \in \mathbb{Z}_{2}^{n \times n}$:

1. if $(A, B, C) \notin \overline{M M}$, then $M_{\overline{M M}}$ rejects the triple (A, B, C) with probability 1 ,
2. if $(A, B, C) \in \overline{M M}$, then $M_{\overline{M M}}$ accepts the triple (A, B, C) with probability at least $1 / 2$.
In both cases, the probability is over the choice of x.

Balanced Turing machines

Definition 8.2

We call an $N T M N=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ balanced, if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $x \in \Sigma^{*}$ all computation branches of N on input x have length $f(|x|)$ and have for every nondeterministic step exactly two possible choices. We identify computation branches with elements in $\{0,1\}^{f(|x|)}$.

Properties

- Every polynomial time NTM can be simulated by a balanced polynomial time NTM.
- If N is a balanced NTM such that computation branches on input x have length $p(|x|)$ for a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$, then we call N p-balanced.

The classes RP, co-RP, and ZPP

Definition 8.3

The class RP consists of all languages L for which there is a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a p-balanced NTM N with the following properties:

1. If $w \notin L$, then all computation branches of N on input w reject.
2. If $w \in L$, then at least half of the computation branches of N on input w accept, i.e. on input w NTM N has at least $2^{p(|w|)-1}$ accepting computation branches.

Definition 8.4
$\mathbf{Z P P}:=\mathbf{R P} \cap$ co-RP.

The class BPP

Definition 8.5

The class BPP consists of all languages L for which there is a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a p-balanced NTM N with the following properties:

1. If $w \notin L$, then at most $1 / 4$ of the computation branches of N on input w accept, i.e. for $w \notin L$ the NTM has at most $2^{p(|w|)-2}$ accepting computation branches.
2. If $w \in L$, then at least $3 / 4$ of the computation branches of N on input w accept, i.e. on input w NTM N has at least $3 \cdot 2^{p(|w|)-2}$ accepting computation branches.

Amplifying the probabilities

Theorem 8.6
For $L \in \mathbf{B P P}$ there is a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a p-balanced NTM N with the following properties:

1. If $w \notin L$, then N has at most $2^{-|w|} \cdot 2^{p(|w|)}$ accepting computation branches on input w.
2. If $w \in L$, then N has at least $\left(1-2^{-|w|}\right) \cdot 2^{p(|w|)}$ accepting computation branches on input w.

BPP and the polynomial time hierarchy

Theorem 8.7
$\mathbf{B P P} \subseteq \Sigma_{2}$.

Corollary 8.8
$\mathbf{B P P} \subseteq \Sigma_{2} \cap \Pi_{2}$.

Proof of Theorem 8.7

- Language $L \in \mathbf{B P P}$
- $p: \mathbb{N} \rightarrow \mathbb{N}$ polynomial and $N p$-balanced NTM with $L(N)=L$
- for $x \in\{0,1\}^{*}$ identify elements in $\{0,1\}^{p(|x|)}$ with computation branches of N on input x
- set

$$
\begin{aligned}
A(x):=\left\{w \in\{0,1\}^{p(|x|)} \mid w\right. & \text { describes an accepting } \\
& \text { computation branch of } N \text { on input } x\}
\end{aligned}
$$

- from Theorem 8.6 we obtain

$$
\begin{aligned}
& x \in L \Rightarrow|A(x)| \geq\left(1-2^{-|x|}\right) 2^{p(|x|)} \\
& x \notin L \Rightarrow|A(x)| \leq 2^{-|x|} 2^{p(|x|)}
\end{aligned}
$$

Proof of Theorem 8.7

- for $S \subseteq\{0,1\}^{p(|x|)}$ and $t \in\{0,1\}^{p(|x|)}$ set

$$
t \oplus S:=\{t \oplus z \mid z \in S\}
$$

- we show

$$
\begin{aligned}
& x \in L \Rightarrow \exists t_{1} \ldots, t_{p(|x|)} \in\{0,1\}^{p(|x|)}: \bigcup_{i=1}^{p(|x|)} t_{i} \oplus A(x)=\{0,1\}^{p(|x|)} \\
& x \notin L \Rightarrow \forall t_{1} \ldots, t_{p(|x|)} \in\{0,1\}^{p(|x|)}: \bigcup_{i=1}^{p(|x|)} t_{i} \oplus A(x) \neq\{0,1\}^{p(|x|)}
\end{aligned}
$$

Proof of Theorem 8.7 - the case $x \notin L$

- $x \notin L \Rightarrow|A(x)| \leq 2^{-|x|} 2^{p(|x|)}$
\Rightarrow

$$
\left|\bigcup_{i=1}^{p(|x|)} t_{i} \oplus A(x)\right| \leq p(|x|) 2^{-|x|} 2^{p(|x|)}
$$

for all $t_{1}, \ldots, t_{p(|x|)}$

- wlog. assume $p(|x|) 2^{-|x|}<1$ (p is a polynomial)
\Rightarrow

$$
x \notin L \Rightarrow \forall t_{1} \ldots, t_{p(|x|)} \in\{0,1\}^{p(|x|)}: \bigcup_{i=1}^{p(|x|)} t_{i} \oplus A(x) \neq\{0,1\}^{p(|x|)}
$$

Proof of Theorem 8.7 - the case $x \in L$

Proof strategy

- Use the probabilistic method, i.e.
- show that for $t_{1}, \ldots, t_{p(|x|)}$ chosen uniformly, independently at random

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{p(|x|)} t_{i} \oplus A(x)=\{0,1\}^{p(|x|)}\right)>0
$$

$\Rightarrow t_{1}, \ldots, t_{p(|x|)}$ with $\bigcup_{i=1}^{p(|x|)} t_{i} \oplus A(x)=\{0,1\}^{p(|x|)}$ exist

Proof of Theorem 8.7 - the probabilistic argument

- fix $x \in L$ and choose $t_{1}, \ldots, t_{p(|x|)}$ uniformly, independently at random, probabilities over this choice
- for all i

$$
\operatorname{Pr}\left(y \notin t_{i} \oplus A(x)\right)=\operatorname{Pr}\left(t_{i} \notin y \oplus A(x)\right) \leq 2^{-|x|}
$$

since $|A(x)|=|y \oplus A(x)| \geq\left(1-2^{-|x|}\right) 2^{p(|x|)}$

- the t_{i} 's are chosen independently, hence

$$
\operatorname{Pr}\left(y \notin \bigcup_{i=1}^{p(|x|)} t_{i} \oplus A(x)\right) \leq 2^{-|x| p(|x|)}
$$

Proof of Theorem 8.7 - the probabilistic argument

- by union bound

$$
\operatorname{Pr}\left(\exists y \in\{0,1\}^{p(|x|)}: y \notin \bigcup_{i=1}^{p(|x|)} t_{i} \oplus A(x)\right) \leq 2^{p(|x|)} \cdot 2^{-|x| p(|x|)}
$$

- assuming $|x| \geq 2$, we have $2^{p(|x|)} \cdot 2^{-|x| p(|x|)}<1$
\Rightarrow

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{p(|x|)} t_{i} \oplus A(x)=\{0,1\}^{p(|x|)}\right)>0
$$

Proof of Theorem 8.7 - combining both cases

- overall

$$
\begin{array}{r}
x \in L \Leftrightarrow \exists t=\left(t_{1}, \ldots, t_{p(|x|)}\right) \in\{0,1\}^{p(|x|)^{2}} \forall y \in\{0,1\}^{p(|x|)}: \\
y \in \bigcup_{i=1}^{p(|x|)} t_{i} \oplus A(x) .
\end{array}
$$

- define language

$$
\begin{aligned}
A:=\left\{(x, y, t) \in\{0,1\}^{|x| \times p(|x|) \times p(|x|)^{2} \mid} \mid\right. & t=\left(t_{1}, \ldots, t_{p(|x|)}\right), \\
y & \left.\in \bigcup_{i=1}^{p(|x|)} t_{i} \oplus A(x)\right\}
\end{aligned}
$$

Proof of Theorem 8.7 - combining both cases

- using A obtain

$$
\begin{array}{r}
x \in L \Leftrightarrow \exists t=\left(t_{1}, \ldots, t_{p(|x|)}\right) \in\{0,1\}^{p(|x|)^{2}} \forall y \in\{0,1\}^{p(|x|)}: \\
(x, y, t) \in A
\end{array}
$$

- using Corollary 7.6 obtain $L \in \Sigma_{2}$

