Chapter 8 - Probabilistic complexity classes

» Define probabilistic complexity classes
» Including BPP,RP, and ZPP

» Show how BPP relates to the polynomial time hierarchy, i.e.
BPP C Y, N Ty
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Probabilistic algorithms - an example

> MM = {(A,B,C) € Zy*" x Z3*" x Z3*" |[n € N,A- B = C}
> MM := {(A,B,C) € Z*" x ZJ*" x Z3*" |n € N,A- B # C}

Mz ="On input A, B, C € Z3*":
1. Choose x € Z3 uniformly at random.
2. Computey:=B-x,z:=A-y,w:=C-x.
3. Accept, if z # w, otherwise reject.”

Lemma 8.1
For all A,B, C € ZJ*":

1. if (A, B, C) & MM, then My; rejects the triple (A, B, C) with
probability 1,

2. if (A,B,C) € MM, then Myz; accepts the triple (A, B, C)
with probability at least 1/2.

In both cases, the probability is over the choice of x.

N
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Balanced Turing machines

Definition 8.2

We call an NTM N = (Q, X, T, 0, qo, Gaccept» Greject) balanced, if
there is a function f : N — N such that for all x € ¥* all
computation branches of N on input x have length f(|x|) and have
for every nondeterministic step exactly two possible choices. We
identify computation branches with elements in {0,1}f(X]).

Properties

> Every polynomial time NTM can be simulated by a balanced
polynomial time NTM.

» If N is a balanced NTM such that computation branches on
input x have length p(|x|) for a polynomial p : N — N, then
we call N p-balanced.
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The classes RP, co-RP, and ZPP

Definition 8.3
The class RP consists of all languages L for which there is a
polynomial p : N — N and a p-balanced NTM N with the
following properties:
1. If w ¢ L, then all computation branches of N on input w
reject.
2. If w € L, then at least half of the computation branches of N
on input w accept, i.e. on input w NTM N has at least
2p(Iwl)-1 accepting computation branches.

Definition 8.4
ZPP := RP N co-RP.
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The class BPP

Definition 8.5
The class BPP consists of all languages L for which there is a
polynomial p : N — N and a p-balanced NTM N with the
following properties:
1. If w & L, then at most 1/4 of the computation branches of N
on input w accept, i.e. for w & L the NTM has at most
2p(Iwl)-2 accepting computation branches.

2. If w € L, then at least 3/4 of the computation branches of N
on input w accept, i.e. on input w NTM N has at least
3. 2P(WD=2 3ccepting computation branches.



Amplifying the probabilities

Theorem 8.6
For L € BPP there is a polynomial p : N — N and a p-balanced
NTM N with the following properties:

1. If w¢ L, then N has at most 2-Iwl . 2p(IW)) accepting
computation branches on input w.

2. Ifw €L, then N has at least (1 —271"1) . 2P(w) accepting
computation branches on input w.

6
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BPP and the polynomial time hierarchy

Theorem 8.7
BPP C 3,.

Corollary 8.8
BPP C >, NTl.
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Proof of Theorem 8.7

» Language L € BPP

» p: N — N polynomial and N p-balanced NTM with L(N) = L
for x € {0,1}* identify elements in {0, 1}P(X) with
computation branches of N on input x

v

> set
A(x) := {w € {0,1}P(XD) | w describes an accepting
computation branch of N on input x}

from Theorem 8.6 we obtain

v

x € L= |A(x)| > (1 -2~ X)2p(x)
x & L= |A(x)| < 2 xI2p(xD
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Proof of Theorem 8.7
» for S C {0, 1}”("“) and t € {0, 1}P(|X|) set
teS ={tdz|zeS}

» we show

p(Ix1)

x€L=3t..., tp(\x\) S {0, 1}p(|x|) : U t ® A(x) = {07 ]_}P(‘XD
i=1
p(Ix1)

x & L=Vt ty € {0,13P0D U t: @ A(x) # {0, 1}P(xD



Proof of Theorem 8.7 - the case x ¢ L

» x & L= |A(x)| < 27IxI2p(xD

=
p(lx])

U i@ AK)
i=1

forall tq,..., tp(\x\)

< p(’x‘)Q_‘X‘QP(‘XD

» wlog. assume p(|x|)2~¥l < 1 (p is a polynomial)
=

p(Ix))
X & L=Vt ..ty € {0,1}P1XD U ti®A(x) # {0,1}P(X)
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Proof of Theorem 8.7 - the case x € L

Proof strategy

» Use the probabilistic method, i.e.

» show that for t1,..., t;(|x|) chosen uniformly, independently at
random

p(Ix))
Pr ( U oA = {0,1}P(X)> >0
i=1

= t1,..., tp(|x|) with Uf)ilfl) t; D A(X) = {0, 1}p(\x\) exist
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Proof of Theorem 8.7 - the probabilistic argument

» fix x € L and choose t1, ..., ty(|x)) uniformly, independently at
random, probabilities over this choice

> for all i
Pr (y gt A(x)) = Pr(t,- Zyd A(x)) <2 K

since |A(x)| = |y @ A(x)| > (1 — 2~ )2p(xD)
> the t;'s are chosen independently, hence
p(IxI)

Priyg |J tioAK) | <27 eix),
i=1
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Proof of Theorem 8.7 - the probabilistic argument

> by union bound

p(Ix])
Pr (Ely e{o. 1}y g | te A(X)) < 2p(Ix1). o~ Ixlp(Ix])

i=1

> assuming lxl > 2’ we have 2p(|X|) . 27‘X‘p(‘x|) <1

=

p(|x])
( U tio Alx {0,1}”(X)) >0
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Proof of Theorem 8.7 - combining both cases
> overall

xelsdt= (tl, Cey tp(\x\)) € {07 1}p(|X|)2Vy c {07 ]_}P(|X|) :
p(Ix1)

ye | o AX).
i=1

> define language
A= {(Xv.y’ t) € {07 1}|X|><p(\X\)Xp(|X|)2 ‘ t= (tlv SRR tp(\x|))a

p(lx)
ye U teAx)

i=1
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Proof of Theorem 8.7 - combining both cases
> using A obtain

xelsdt= (tl, Cey tp(\x\)) € {07 1}p(|X|)2Vy c {07 ]_}P(|X|) :
(x,y,t) €A

» using Corollary 7.6 obtain L € ¥,
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