
Chapter 8 - Probabilistic complexity classes

I Define probabilistic complexity classes

I Including BPP,RP, and ZPP

I Show how BPP relates to the polynomial time hierarchy, i.e.
BPP ⊆ Σ2 ∩ Π2
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Probabilistic algorithms - an example

I MM :=
{

(A,B,C ) ∈ Zn×n
2 ×Zn×n

2 ×Zn×n
2 n ∈ N,A ·B = C

}
I MM :=

{
(A,B,C ) ∈ Zn×n

2 ×Zn×n
2 ×Zn×n

2 n ∈ N,A ·B 6= C
}

MMM = ”On input A,B,C ∈ Zn×n
2 :

1. Choose x ∈ Zn
2 uniformly at random.

2. Compute y := B · x , z := A · y ,w := C · x .
3. Accept, if z 6= w , otherwise reject.”

Lemma 8.1
For all A,B,C ∈ Zn×n

2 :

1. if (A,B,C ) 6∈ MM, then MMM rejects the triple (A,B,C ) with
probability 1,

2. if (A,B,C ) ∈ MM, then MMM accepts the triple (A,B,C )
with probability at least 1/2.

In both cases, the probability is over the choice of x .
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Balanced Turing machines

Definition 8.2
We call an NTM N = (Q,Σ, Γ, δ, q0, qaccept, qreject) balanced, if
there is a function f : N→ N such that for all x ∈ Σ∗ all
computation branches of N on input x have length f (|x |) and have
for every nondeterministic step exactly two possible choices. We
identify computation branches with elements in {0, 1}f (|x |).

Properties

I Every polynomial time NTM can be simulated by a balanced
polynomial time NTM.

I If N is a balanced NTM such that computation branches on
input x have length p(|x |) for a polynomial p : N→ N, then
we call N p-balanced.
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The classes RP, co-RP, and ZPP

Definition 8.3
The class RP consists of all languages L for which there is a
polynomial p : N→ N and a p-balanced NTM N with the
following properties:

1. If w 6∈ L, then all computation branches of N on input w
reject.

2. If w ∈ L, then at least half of the computation branches of N
on input w accept, i.e. on input w NTM N has at least
2p(|w |)−1 accepting computation branches.

Definition 8.4
ZPP := RP ∩ co-RP.
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The class BPP

Definition 8.5
The class BPP consists of all languages L for which there is a
polynomial p : N→ N and a p-balanced NTM N with the
following properties:

1. If w 6∈ L, then at most 1/4 of the computation branches of N
on input w accept, i.e. for w 6∈ L the NTM has at most
2p(|w |)−2 accepting computation branches.

2. If w ∈ L, then at least 3/4 of the computation branches of N
on input w accept, i.e. on input w NTM N has at least
3 · 2p(|w |)−2 accepting computation branches.
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Amplifying the probabilities

Theorem 8.6
For L ∈ BPP there is a polynomial p : N→ N and a p-balanced
NTM N with the following properties:

1. If w 6∈ L, then N has at most 2−|w | · 2p(|w |) accepting
computation branches on input w .

2. If w ∈ L, then N has at least
(
1− 2−|w |

)
· 2p(|w |) accepting

computation branches on input w .
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BPP and the polynomial time hierarchy

Theorem 8.7
BPP ⊆ Σ2.

Corollary 8.8

BPP ⊆ Σ2 ∩ Π2.
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Proof of Theorem 8.7

I Language L ∈ BPP

I p : N→ N polynomial and N p-balanced NTM with L(N) = L

I for x ∈ {0, 1}∗ identify elements in {0, 1}p(|x |) with
computation branches of N on input x

I set

A(x) := {w ∈ {0, 1}p(|x |) | w describes an accepting

computation branch of N on input x}

I from Theorem 8.6 we obtain

x ∈ L⇒ |A(x)| ≥ (1− 2−|x |)2p(|x |)

x 6∈ L⇒ |A(x)| ≤ 2−|x |2p(|x |)
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Proof of Theorem 8.7

I for S ⊆ {0, 1}p(|x |) and t ∈ {0, 1}p(|x |) set

t ⊕ S := {t ⊕ z | z ∈ S}

I we show

x ∈ L⇒ ∃t1 . . . , tp(|x |) ∈ {0, 1}p(|x |) :

p(|x |)⋃
i=1

ti ⊕ A(x) = {0, 1}p(|x |)

x 6∈ L⇒ ∀t1 . . . , tp(|x |) ∈ {0, 1}p(|x |) :

p(|x |)⋃
i=1

ti ⊕ A(x) 6= {0, 1}p(|x |)
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Proof of Theorem 8.7 - the case x 6∈ L

I x 6∈ L⇒ |A(x)| ≤ 2−|x |2p(|x |)

⇒ ∣∣∣∣∣∣
p(|x |)⋃
i=1

ti ⊕ A(x)

∣∣∣∣∣∣ ≤ p(|x |)2−|x |2p(|x |)

for all t1, . . . , tp(|x |)

I wlog. assume p(|x |)2−|x | < 1 (p is a polynomial)

⇒

x 6∈ L⇒ ∀t1 . . . , tp(|x |) ∈ {0, 1}p(|x |) :

p(|x |)⋃
i=1

ti⊕A(x) 6= {0, 1}p(|x |)
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Proof of Theorem 8.7 - the case x ∈ L

Proof strategy

I Use the probabilistic method, i.e.

I show that for t1, . . . , tp(|x |) chosen uniformly, independently at
random

Pr

p(|x |)⋃
i=1

ti ⊕ A(x) = {0, 1}p(|x |)
 > 0

⇒ t1, . . . , tp(|x |) with
⋃p(|x |)

i=1 ti ⊕ A(x) = {0, 1}p(|x |) exist
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Proof of Theorem 8.7 - the probabilistic argument

I fix x ∈ L and choose t1, . . . , tp(|x |) uniformly, independently at
random, probabilities over this choice

I for all i

Pr
(
y 6∈ ti ⊕ A(x)

)
= Pr

(
ti 6∈ y ⊕ A(x)

)
≤ 2−|x |,

since |A(x)| = |y ⊕ A(x)| ≥ (1− 2−|x |)2p(|x |)

I the ti ’s are chosen independently, hence

Pr

y 6∈
p(|x |)⋃
i=1

ti ⊕ A(x)

 ≤ 2−|x |p(|x |),
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Proof of Theorem 8.7 - the probabilistic argument

I by union bound

Pr

∃y ∈ {0, 1}p(|x |) : y 6∈
p(|x |)⋃
i=1

ti ⊕ A(x)

 ≤ 2p(|x |)·2−|x |p(|x |)

I assuming |x | ≥ 2, we have 2p(|x |) · 2−|x |p(|x |) < 1

⇒

Pr

p(|x |)⋃
i=1

ti ⊕ A(x) = {0, 1}p(|x |)
 > 0
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Proof of Theorem 8.7 - combining both cases

I overall

x ∈ L⇔ ∃t = (t1, . . . , tp(|x |)) ∈ {0, 1}p(|x |)
2∀y ∈ {0, 1}p(|x |) :

y ∈
p(|x |)⋃
i=1

ti ⊕ A(x).

I define language

A := {(x , y , t) ∈ {0, 1}|x |×p(|x |)×p(|x |)2 t = (t1, . . . , tp(|x |)),

y ∈
p(|x |)⋃
i=1

ti ⊕ A(x)}
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Proof of Theorem 8.7 - combining both cases

I using A obtain

x ∈ L⇔ ∃t = (t1, . . . , tp(|x |)) ∈ {0, 1}p(|x |)
2∀y ∈ {0, 1}p(|x |) :

(x , y , t) ∈ A

I using Corollary 7.6 obtain L ∈ Σ2
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