Chapter 2 - Reductions and Complete Problems

» polynomial time reductions
» complete problems for classes NP and PSPACE

24

Polynomial time computable functions and reductions

Definition 2.1

A function f : X* — ¥* is a polynomial time computable function
if some polynomial time deterministic Turing machine M exists
that halts with ©>f(w) on its tape, when started on any input
we X"

Definition 2.2
Language A is polynomial time mapping reducible, or simply
polynomial time reducible, to language B, written A <p B, if a
polynomial time computable function f : £* — L* exists, where
for every w € ¥*

weAs f(w) e B.

N

24

[[lustration

of polynomial time reductions

Z*

24

Properties of polynomial reductions

Theorem 2.3
IfA<p B and B <P, then Ac P.

From B to A
M polynomial time DTM deciding B.

N ="On input w:
1. Compute f(w).
2. Run M on input f(w), and output whatever M outputs.”

Lemma 2.4
IfA<p B and B <p C, then A<p C.

24

CNF-formulas

Formulas in conjunctive normal form and cliques

>

v

a literal is a Boolean variable x or a negated Boolean variable
—X or X

a clause consists of several literals connected with V's, e.g.
(Xl V Xo V X4).

a Boolean formula is in conjunctive normal form, called a
cnf-formula if it comprises several clauses connected with A's,
eg (x1VxaVxa)A(x2VXsVxe)A(X3V Xep).

a cnf-formula is a 3cnf-formula if all its clauses have three
literals, e.g. (x1 VX2 VX3)A(x1 VX Vxa)A(x2V X5V Xg).

a clique in an undirected graph G = (V, E) is a subset C C V
of vertices such that for any two vertices u,v € C (u,v) € E

a clique C is a k-clique, if |C| = k

The languages 3SAT and CLIQUE
3SAT

3SAT = {(¢) | ¢ is a satisfiable 3cnf-formula}

CLIQUE

CLIQUE = {(G, k) | G is an undirected graph with a k-clique}

Theorem 2.5
3SAT is polynomial time reducible to CLIQUE.

24

Reduction from 3SAT to CLIQUE

Input
A 3cnf-formula with k clauses

¢:(31\/[31\/Cl)/\(az\/b2\/C2)/\~--/\(ak\/bk\/Ck).

Reduction
» G = (V, E) contains 3k vertices organized in k triples
t1,..., tg, one for each clause in ¢. Vertices in a triple

correspond to literals in the clause and are labeled with the
corresponding literal.
» Any two vertices are connected by an edge in G, except if
1. they belong to the same triple, or
2. their labels are negations of each other.

» Size of clique set to k.

24

Example for the reduction from 3SAT to CLIQUE

Graph to formula (x1 Vxo VX3) A (x1 VX2 VX3) A (X1 V X2 V x3

Complete problems

Definition 2.6
A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and

2. every language A in NP is polynomial time reducible to B.

Definition 2.7
A language B is PSPACE-complete if it satisfies two conditions:

1. B is in PSPACE, and

2. every language A in PSPACE is polynomial time reducible to
B.

Fundamental properties of complete langages

Theorem 2.8
1. If B is NP-complete and B € P, then P = NP.

2. If B is PSPACE-complete and B € P, then P = PSPACE.

Theorem 2.9

1. If B is NP-complete and B <p C for C in NP, then C is
NP-complete.

2. If B is PSPACE-complete and B <p C for C in PSPACE,

then C is PSPACE-complete.

10/24

The basic complete languages - SAT and TQBF

The languages

» SAT = {(¢) | ¢ is a satisfiable Boolean formula}
» TQRBF = {{(¢) | ¢ is a true fully quantified Boolean formula}

Theorem 2.10 (Cook-Levin)
SAT is NP-complete.

Theorem 2.11
TQBF is PSPACE-complete.

11 /24

Proofs for Theorems 2.10 and 2.11

Proof idea
» M= (Q,X,T,0,q0, Gaccept Greject) Polynomial time NTM or
polynomial space DTM, w € ¥*
» Construct Boolean formula ¢ or fully quantified Boolean
formula ¢ that simulates computation of M on input w.
» If Misa NTM, then w € L(M) iff ¢ has a satisfying
assignment.

» If M is a polynomial space DTM, then w € L(M) iff ¢ is true.

» Difference between proofs for two theorems only at the end.

12 /24

Proof preliminaries

» Let M be a t(n) — 1 time and s(n) space TM and set

A=QUT.

» Every configuration ¢ of M on input w can be identified with
an element of AS(W*1 where n = |w|.

» Use four predicates on elements in AS("+1:

legal :
start :
accept :

Succ :

As(n)+1
As(n)+1
As(n)+l

As(n)+l % As(n)+1

— {0, 1}
— {0, 1}
—{0,1}
—{0,1}

13 /24

The predicates

Ve € ASMFL : legal(c) = 1 < c is a legal configuration of M

Ve € AW+ start(c) = 1 < c is the start configuration

of M on input w

Ve e As(M+L . accept(c) = 1 < c is an accepting configuration

V(e, @) € As(M+L 5 ps(m)+1 succ(cy, @) = 1 < ¢ yields ¢

14 /24

The predicates and the language L(M)

Observation

we L(M) & 3a,..., ¢y € AL,
t(n) t(n)—1

/\ legal(c;) A start(c1) A accept(cy(n)) A /\ succ(cj, Cip1)-

i=1 i=1

15 /24

Replacing the predicates by Boolean formulas

The variables
Variables

Xijs, 1 <i<t(n),1<j<s(n)+1,5€A,
such that

xi j,s = L iff the j-th symbol in configuration ¢; is s

The formula for legal

d’legal = /\ (\/ Xi,j,5> N /\ (>_<I'J75 v)_<ii.j7t)
1<i<t(n) s€A s,teA
1<j<s(n) s#t

16 /24

Replacing the predicates by Boolean formulas
The formula for start
Ostart = X1,1,q0 \ X1,2,5/\

X1,3,w1 N0 A XL np2,w, /A

Xt,n+3,0 A\ - - A X1 s(n)+1,U

The formula for accept

¢accept = \/ Xi.j,Gaccept

1<i<t(n)
1<j<s(n)

17 /24

Replacing the predicates by Boolean formulas

Windows

> We call the 2 x 3 window consisting of symbols in positions
Jj—1,j,j+ 1 in configurations c¢;, ¢;y1 the (i,/)-th window

» a window is called legal if it does not violate the actions
specified by M'’s transition function §

> legal windows

\/ (Xij—t,a0 AN Xijuay N -+ A Xig1j41,2)

. al,...7a_6
is a legal window

The formula for succ

Psuce = /\ the (/,/)-th window is legal
1<i<t(n)—1
2<j<s(n)

18 /24

Completing the proof for Theorem 2.10

> ¢ = ¢Iega| A ¢start A ¢succ A d)accept

» w e L(M) < ¢ e SAT.

» If M is a polynomial time Turing machine, then there is a
k € N such that for all n € N t(n), s(n) < n*.

» In that case, on input w the formula ¢ can be constructed in
time polynomial in |w|.

19 /24

The problem for PSPACE and TQBF

Problem and hint for solution
» If TM M is only polynomial space n*, the best we know is
that is has run time 20(n).

» But did not use quantifiers (more precisely, only used
existential quantifiers).

» Extend successor predicate by using quantifiers.

20 /24

Extended successor predicate and L(M)

Extended successor predicate succ,

V(c, @) € AS(MHL 5 ps(n)+1 succi(c1, 2) =1 < ¢ is reachable

from ¢; with at most 2/ steps of M

Observations
» For | := [log(t(n))] :

w e L(M) < Ja, ¢ € AWM start(cy) A accept(c)A

succy(c1, @)

» succ(ci, ¢2) < ez legal(cs) Asuccei—1(c1, c3) Asucc—1(c3, 2)

21 /24

An auxilliary predicate for succ,

Auxilliary predicate H
H: (AS(M+1)° 5 (0,1}, with

H(Cl, ceey C5) = —'(((Cl7 C3) = (C47 C5)) V ((C3, C2) = (C4, C5))).

A short description for succ,

succi(c1, @) < JazVaVes :

legal(c3) A (H(ct, ..., ¢s) V succi—1(ca, c5)).

22 /24

Completing the proof for Theorem 2.11 (1)

» M a polynomial space TM, choose k € N such that M has
space complexity s(n) = nk and time complexity t(n) = 2"".
Set | := n.

» From definition of succ;:

w e L(M) < 3a, ¢ € AL

start(cy) A accept(c) A succk(cr, ¢2).

» Replace succ; by its short description to obtain

w e L(M) & 33TV Ves € AS(MHL
start(c1) A accept(c2)A
(legal(c3) A (H(er, ..., c5) Vsuccu_1(cs, cs))) -

» Repeat this process with succ;_1,succ/_o, ..., succ;.

23 /24

Completing the proof for Theorem 2.11 (2)

» Obtain
w € L(M) S Qa@Qe ... Qpeg € As(m+1 w(cl, ceey CB),
where
1. B = B(n) is polynomial in n
2. Qef{aV}j=1,....B
3. (-) is a predicate of polynomial size using Boolean operators
and the predicates start, accept, legal, succ.
» Use variables x; j s and Boolean predicates as before to obtain
a fully quantified Boolean formula of size polynomial in
|w| = n that is true iff w € L(M).

» The formula can be computed in polynomial time.

24 /24

	Chapter 2 - Reductions and complete problems

