
Chapter 2 - Reductions and Complete Problems

I polynomial time reductions

I complete problems for classes NP and PSPACE

1 / 24

Polynomial time computable functions and reductions

Definition 2.1
A function f : Σ∗ → Σ∗ is a polynomial time computable function
if some polynomial time deterministic Turing machine M exists
that halts with Bf (w) on its tape, when started on any input
w ∈ Σ∗.

Definition 2.2
Language A is polynomial time mapping reducible, or simply
polynomial time reducible, to language B, written A ≤P B, if a
polynomial time computable function f : Σ∗ → Σ∗ exists, where
for every w ∈ Σ∗

w ∈ A⇔ f (w) ∈ B.

2 / 24

Illustration of polynomial time reductions

Σ∗

A B

f

f

3 / 24

Properties of polynomial reductions

Theorem 2.3
If A ≤P B and B ∈ P, then A ∈ P.

From B to A
M polynomial time DTM deciding B.

N = ”On input w :
1. Compute f (w).
2. Run M on input f (w), and output whatever M outputs.”

Lemma 2.4
If A ≤P B and B ≤P C, then A ≤P C.

4 / 24

CNF-formulas

Formulas in conjunctive normal form and cliques

I a literal is a Boolean variable x or a negated Boolean variable
¬x or x̄

I a clause consists of several literals connected with ∨’s, e.g.
(x1 ∨ x̄2 ∨ x4).

I a Boolean formula is in conjunctive normal form, called a
cnf-formula if it comprises several clauses connected with ∧’s,
e.g. (x1 ∨ x̄2 ∨ x4) ∧ (x2 ∨ x̄5 ∨ x6) ∧ (x3 ∨ x̄6).

I a cnf-formula is a 3cnf-formula if all its clauses have three
literals, e.g. (x1 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x4) ∧ (x2 ∨ x̄5 ∨ x6).

I a clique in an undirected graph G = (V ,E) is a subset C ⊆ V
of vertices such that for any two vertices u, v ∈ C (u, v) ∈ E

I a clique C is a k-clique, if |C | = k

5 / 24

The languages 3SAT and CLIQUE

3SAT

3SAT = {〈φ〉 | φ is a satisfiable 3cnf-formula}

CLIQUE

CLIQUE = {〈G , k〉 | G is an undirected graph with a k-clique}

Theorem 2.5
3SAT is polynomial time reducible to CLIQUE.

6 / 24

Reduction from 3SAT to CLIQUE

Input

A 3cnf-formula with k clauses

φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · ∧ (ak ∨ bk ∨ ck).

Reduction

I G = (V ,E) contains 3k vertices organized in k triples
t1, . . . , tk , one for each clause in φ. Vertices in a triple
correspond to literals in the clause and are labeled with the
corresponding literal.

I Any two vertices are connected by an edge in G , except if

1. they belong to the same triple, or
2. their labels are negations of each other.

I Size of clique set to k .

7 / 24

Example for the reduction from 3SAT to CLIQUE

Graph to formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3):

x1 x2 x̄3

x1

x̄2

x̄3

x̄1

x2

x3

8 / 24

Complete problems

Definition 2.6
A language B is NP-complete if it satisfies two conditions:

1. B is in NP, and

2. every language A in NP is polynomial time reducible to B.

Definition 2.7
A language B is PSPACE-complete if it satisfies two conditions:

1. B is in PSPACE, and

2. every language A in PSPACE is polynomial time reducible to
B.

9 / 24

Fundamental properties of complete langages

Theorem 2.8

1. If B is NP-complete and B ∈ P, then P = NP.

2. If B is PSPACE-complete and B ∈ P, then P = PSPACE.

Theorem 2.9

1. If B is NP-complete and B ≤P C for C in NP, then C is
NP-complete.

2. If B is PSPACE-complete and B ≤P C for C in PSPACE,
then C is PSPACE-complete.

10 / 24

The basic complete languages - SAT and TQBF

The languages

I SAT = {〈φ〉 | φ is a satisfiable Boolean formula}
I TQBF = {〈φ〉 | φ is a true fully quantified Boolean formula}

Theorem 2.10 (Cook-Levin)

SAT is NP-complete.

Theorem 2.11
TQBF is PSPACE-complete.

11 / 24

Proofs for Theorems 2.10 and 2.11

Proof idea

I M = (Q,Σ, Γ, δ, q0, qaccept, qreject) polynomial time NTM or
polynomial space DTM, w ∈ Σ∗

I Construct Boolean formula φ or fully quantified Boolean
formula φ that simulates computation of M on input w .

I If M is a NTM, then w ∈ L(M) iff φ has a satisfying
assignment.

I If M is a polynomial space DTM, then w ∈ L(M) iff φ is true.

I Difference between proofs for two theorems only at the end.

12 / 24

Proof preliminaries

I Let M be a t(n)− 1 time and s(n) space TM and set
A := Q ∪ Γ.

I Every configuration c of M on input w can be identified with
an element of As(n)+1, where n = |w |.

I Use four predicates on elements in As(n)+1:

legal : As(n)+1 → {0, 1}
start : As(n)+1 → {0, 1}

accept : As(n)+1 → {0, 1}
succ : As(n)+1 × As(n)+1 → {0, 1}

13 / 24

The predicates

∀c ∈ As(n)+1 : legal(c) = 1 ⇔ c is a legal configuration of M

∀c ∈ As(n)+1 : start(c) = 1⇔ c is the start configuration

of M on input w

∀c ∈ As(n)+1 : accept(c) = 1⇔ c is an accepting configuration

∀(c1, c2) ∈ As(n)+1 × As(n)+1 : succ(c1, c2) = 1 ⇔ c1 yields c2

14 / 24

The predicates and the language L(M)

Observation

w ∈ L(M)⇔ ∃c1, . . . , ct(n) ∈ As(n)+1 :

t(n)∧
i=1

legal(ci) ∧ start(c1) ∧ accept(ct(n)) ∧
t(n)−1∧
i=1

succ(ci , ci+1).

15 / 24

Replacing the predicates by Boolean formulas

The variables
Variables

xi ,j ,s , 1 ≤ i ≤ t(n), 1 ≤ j ≤ s(n) + 1, s ∈ A,

such that

xi ,j ,s = 1 iff the j-th symbol in configuration ci is s

The formula for legal

φlegal =
∧

1≤i≤t(n)
1≤j≤s(n)


(∨

s∈A
xi ,j ,s

)
∧

 ∧
s,t∈A
s 6=t

(x̄i ,j ,s ∨ x̄i ,j ,t)




16 / 24

Replacing the predicates by Boolean formulas

The formula for start

φstart = x1,1,q0 ∧ x1,2,B∧
x1,3,w1 ∧ · · · ∧ x1,n+2,wn∧
x1,n+3,t ∧ · · · ∧ x1,s(n)+1,t

The formula for accept

φaccept =
∨

1≤i≤t(n)
1≤j≤s(n)

xi ,j ,qaccept

17 / 24

Replacing the predicates by Boolean formulas

Windows

I We call the 2× 3 window consisting of symbols in positions
j − 1, j , j + 1 in configurations ci , ci+1 the (i , j)-th window

I a window is called legal if it does not violate the actions
specified by M’s transition function δ

I legal windows∨
a1,...,a6

is a legal window

(xi ,j−1,a1 ∧ xi ,j ,a2 ∧ · · · ∧ xi+1,j+1,a6)

The formula for succ

φsucc =
∧

1≤i≤t(n)−1
2≤j≤s(n)

the (i , j)-th window is legal

18 / 24

Completing the proof for Theorem 2.10

I φ := φlegal ∧ φstart ∧ φsucc ∧ φaccept
I w ∈ L(M)⇔ φ ∈ SAT.

I If M is a polynomial time Turing machine, then there is a
k ∈ N such that for all n ∈ N t(n), s(n) ≤ nk .

I In that case, on input w the formula φ can be constructed in
time polynomial in |w |.

19 / 24

The problem for PSPACE and TQBF

Problem and hint for solution

I If TM M is only polynomial space nk , the best we know is
that is has run time 2O(n

k).

I But did not use quantifiers (more precisely, only used
existential quantifiers).

I Extend successor predicate by using quantifiers.

20 / 24

Extended successor predicate and L(M)

Extended successor predicate succl

∀(c1, c2) ∈ As(n)+1×As(n)+1 : succl(c1, c2) = 1⇔ c2 is reachable

from c1 with at most 2l steps of M

Observations

I For l := dlog(t(n))e :

w ∈ L(M)⇔ ∃c1, c2 ∈ As(n)+1 : start(c1) ∧ accept(c2)∧
succl(c1, c2)

I succl(c1, c2)⇔ ∃c3 : legal(c3)∧succl−1(c1, c3)∧succl−1(c3, c2)

21 / 24

An auxilliary predicate for succl

Auxilliary predicate H

H :
(
As(n)+1

)5 → {0, 1}, with

H(c1, . . . , c5) = ¬
((

(c1, c3) = (c4, c5)
)
∨
(
(c3, c2) = (c4, c5)

))
.

A short description for succl

succl(c1, c2)⇔ ∃c3∀c4∀c5 :

legal(c3) ∧
(
H(c1, . . . , c5) ∨ succl−1(c4, c5)

)
.

22 / 24

Completing the proof for Theorem 2.11 (1)

I M a polynomial space TM, choose k ∈ N such that M has
space complexity s(n) = nk and time complexity t(n) = 2n

k
.

Set l := nk .

I From definition of succl :

w ∈ L(M)⇔ ∃c1, c2 ∈ As(n)+1 :

start(c1) ∧ accept(c2) ∧ succnk (c1, c2).

I Replace succl by its short description to obtain

w ∈ L(M)⇔ ∃c1∃c2∃c3∀c4∀c5 ∈ As(n)+1 :

start(c1) ∧ accept(c2)∧(
legal(c3) ∧

(
H(c1, . . . , c5) ∨ succnk−1(c4, c5)

))
.

I Repeat this process with succl−1, succl−2, . . . , succ1.

23 / 24

Completing the proof for Theorem 2.11 (2)

I Obtain
w ∈ L(M)⇔ Q1c1Q2c2 . . .QBcB ∈ As(n)+1 ψ(c1, . . . , cB),
where

1. B = B(n) is polynomial in n
2. Qj ∈ {∃,∀}, j = 1, . . . ,B
3. ψ(·) is a predicate of polynomial size using Boolean operators

and the predicates start, accept, legal, succ.

I Use variables xi ,j ,s and Boolean predicates as before to obtain
a fully quantified Boolean formula of size polynomial in
|w | = n that is true iff w ∈ L(M).

I The formula can be computed in polynomial time.

24 / 24

	Chapter 2 - Reductions and complete problems

