Chapter 2 - Reductions and Complete Problems

- polynomial time reductions
- complete problems for classes NP and PSPACE

Polynomial time computable functions and reductions

Definition 2.1

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial time computable function if some polynomial time deterministic Turing machine M exists that halts with $\triangleright f(w)$ on its tape, when started on any input $w \in \Sigma^{*}$.

Definition 2.2

Language A is polynomial time mapping reducible, or simply polynomial time reducible, to language B, written $A \leq_{P} B$, if a polynomial time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ exists, where for every $w \in \Sigma^{*}$

$$
w \in A \Leftrightarrow f(w) \in B
$$

Illustration of polynomial time reductions

Properties of polynomial reductions

Theorem 2.3
If $A \leq_{P} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.

From B to A
M polynomial time DTM deciding B.
$N="$ On input w :

1. Compute $f(w)$.
2. Run M on input $f(w)$, and output whatever M outputs."

Lemma 2.4
If $A \leq_{P} B$ and $B \leq_{P} C$, then $A \leq_{P} C$.

CNF-formulas

Formulas in conjunctive normal form and cliques

- a literal is a Boolean variable x or a negated Boolean variable $\neg x$ or \bar{x}
- a clause consists of several literals connected with \vee 's, e.g. $\left(x_{1} \vee \bar{x}_{2} \vee x_{4}\right)$.
- a Boolean formula is in conjunctive normal form, called a cnf-formula if it comprises several clauses connected with \wedge 's, e.g. $\left(x_{1} \vee \bar{x}_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee \bar{x}_{5} \vee x_{6}\right) \wedge\left(x_{3} \vee \bar{x}_{6}\right)$.
- a cnf-formula is a 3cnf-formula if all its clauses have three literals, e.g. $\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee \bar{x}_{5} \vee x_{6}\right)$.
- a clique in an undirected graph $G=(V, E)$ is a subset $C \subseteq V$ of vertices such that for any two vertices $u, v \in C(u, v) \in E$
- a clique C is a k-clique, if $|C|=k$

The languages $3 S A T$ and CLIQUE

3SAT

$$
3 S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable 3cnf-formula }\}
$$

CLIQUE

CLIQUE $=\{\langle G, k\rangle \mid G$ is an undirected graph with a k-clique $\}$

Theorem 2.5
3SAT is polynomial time reducible to CLIQUE.

Reduction from $3 S A T$ to CLIQUE

Input

A 3cnf-formula with k clauses

$$
\phi=\left(a_{1} \vee b_{1} \vee c_{1}\right) \wedge\left(a_{2} \vee b_{2} \vee c_{2}\right) \wedge \cdots \wedge\left(a_{k} \vee b_{k} \vee c_{k}\right)
$$

Reduction

- $G=(V, E)$ contains $3 k$ vertices organized in k triples t_{1}, \ldots, t_{k}, one for each clause in ϕ. Vertices in a triple correspond to literals in the clause and are labeled with the corresponding literal.
- Any two vertices are connected by an edge in G, except if

1. they belong to the same triple, or
2. their labels are negations of each other.

- Size of clique set to k.

Example for the reduction from $3 S A T$ to CLIQUE

Graph to formula $\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right):$

Complete problems

Definition 2.6

A language B is NP-complete if it satisfies two conditions:

1. B is in NP, and
2. every language A in NP is polynomial time reducible to B.

Definition 2.7
A language B is PSPACE-complete if it satisfies two conditions:

1. B is in PSPACE, and
2. every language A in PSPACE is polynomial time reducible to B.

Fundamental properties of complete langages

Theorem 2.8

1. If B is NP-complete and $B \in \mathbf{P}$, then $\mathbf{P}=\mathbf{N P}$.
2. If B is PSPACE-complete and $B \in \mathbf{P}$, then $\mathbf{P}=\mathbf{P S P A C E}$.

Theorem 2.9

1. If B is NP-complete and $B \leq_{P} C$ for C in NP, then C is NP-complete.
2. If B is PSPACE-complete and $B \leq_{p} C$ for C in PSPACE, then C is PSPACE-complete.

The basic complete languages - SAT and TQBF

The languages

- SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable Boolean formula $\}$
- TQBF $=\{\langle\phi\rangle \mid \phi$ is a true fully quantified Boolean formula $\}$

Theorem 2.10 (Cook-Levin)
SAT is NP-complete.

Theorem 2.11
TQBF is PSPACE-complete.

Proofs for Theorems 2.10 and 2.11

Proof idea

- $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ polynomial time NTM or polynomial space DTM, $w \in \Sigma^{*}$
- Construct Boolean formula ϕ or fully quantified Boolean formula ϕ that simulates computation of M on input w.
- If M is a NTM, then $w \in L(M)$ iff ϕ has a satisfying assignment.
- If M is a polynomial space DTM, then $w \in L(M)$ iff ϕ is true.
- Difference between proofs for two theorems only at the end.

Proof preliminaries

- Let M be a $t(n)-1$ time and $s(n)$ space TM and set $A:=Q \cup \Gamma$.
- Every configuration c of M on input w can be identified with an element of $A^{s(n)+1}$, where $n=|w|$.
- Use four predicates on elements in $A^{s(n)+1}$:

$$
\begin{aligned}
\text { legal }: A^{s(n)+1} & \rightarrow\{0,1\} \\
\text { start }: A^{s(n)+1} & \rightarrow\{0,1\} \\
\text { accept }: A^{s(n)+1} & \rightarrow\{0,1\} \\
\text { succ }: A^{s(n)+1} \times A^{s(n)+1} & \rightarrow\{0,1\}
\end{aligned}
$$

The predicates

$\forall c \in A^{s(n)+1}$: legal $(c)=1 \Leftrightarrow c$ is a legal configuration of M
$\forall c \in A^{s(n)+1}: \operatorname{start}(c)=1 \Leftrightarrow c$ is the start configuration of M on input w
$\forall c \in A^{s(n)+1}: \operatorname{accept}(c)=1 \Leftrightarrow c$ is an accepting configuration
$\forall\left(c_{1}, c_{2}\right) \in A^{s(n)+1} \times A^{s(n)+1}: \operatorname{succ}\left(c_{1}, c_{2}\right)=1 \Leftrightarrow c_{1}$ yields c_{2}

The predicates and the language $L(M)$

Observation

$$
\begin{aligned}
& w \in L(M) \Leftrightarrow \exists c_{1}, \ldots, c_{t(n)} \in A^{s(n)+1}: \\
& \quad \bigwedge_{i=1}^{t(n)} \operatorname{legal}\left(c_{i}\right) \wedge \operatorname{start}\left(c_{1}\right) \wedge \operatorname{accept}\left(c_{t(n)}\right) \wedge \bigwedge_{i=1}^{t(n)-1} \operatorname{succ}\left(c_{i}, c_{i+1}\right)
\end{aligned}
$$

Replacing the predicates by Boolean formulas

The variables
Variables

$$
x_{i, j, s}, 1 \leq i \leq t(n), 1 \leq j \leq s(n)+1, s \in A,
$$

such that
$x_{i, j, s}=1$ iff the j-th symbol in configuration c_{i} is s

The formula for legal

$$
\phi_{\text {legal }}=\bigwedge_{\substack{1 \leq i \leq t(n) \\ 1 \leq j \leq s(n)}}\left[\left(\bigvee_{s \in A} x_{i, j, s}\right) \wedge\left(\bigwedge_{\substack{s, t \in A \\ s \neq t}}\left(\bar{x}_{i, j, s} \vee \bar{x}_{i, j, t}\right)\right)\right]
$$

Replacing the predicates by Boolean formulas

The formula for start

$$
\begin{aligned}
& \phi_{\text {start }}=x_{1,1, q_{0}} \wedge x_{1,2, \triangleright} \wedge \\
& x_{1,3, w_{1}} \wedge \cdots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3, \sqcup} \wedge \cdots \wedge x_{1, s(n)+1, \sqcup}
\end{aligned}
$$

The formula for accept

$$
\phi_{\text {accept }}=\bigvee_{\substack{1 \leq i \leq t(n) \\ 1 \leq j \leq s(n)}} x_{i, j, q_{\text {accept }}}
$$

Replacing the predicates by Boolean formulas

Windows

- We call the 2×3 window consisting of symbols in positions $j-1, j, j+1$ in configurations c_{i}, c_{i+1} the (i, j)-th window
- a window is called legal if it does not violate the actions specified by M's transition function δ
- legal windows

$$
\bigvee_{\substack{a_{1}, \ldots, a_{6} \\ \text { is a legal window }}}\left(x_{i, j-1, a_{1}} \wedge x_{i, j, a_{2}} \wedge \cdots \wedge x_{i+1, j+1, a_{6}}\right)
$$

The formula for succ

$$
\phi_{\text {succ }}=\bigwedge_{\substack{1 \leq i \leq t(n)-1 \\ 2 \leq j \leq s(n)}} \text { the }(i, j) \text {-th window is legal }
$$

Completing the proof for Theorem 2.10

- $\phi:=\phi_{\text {legal }} \wedge \phi_{\text {start }} \wedge \phi_{\text {succ }} \wedge \phi_{\text {accept }}$
- $w \in L(M) \Leftrightarrow \phi \in S A T$.
- If M is a polynomial time Turing machine, then there is a $k \in \mathbb{N}$ such that for all $n \in \mathbb{N} t(n), s(n) \leq n^{k}$.
- In that case, on input w the formula ϕ can be constructed in time polynomial in $|w|$.

The problem for PSPACE and TQBF

Problem and hint for solution

- If TM M is only polynomial space n^{k}, the best we know is that is has run time $2^{\mathcal{O}\left(n^{k}\right)}$.
- But did not use quantifiers (more precisely, only used existential quantifiers).
- Extend successor predicate by using quantifiers.

Extended successor predicate and $L(M)$

Extended successor predicate succ,

$$
\forall\left(c_{1}, c_{2}\right) \in A^{s(n)+1} \times A^{s(n)+1}: \operatorname{succ}_{l}\left(c_{1}, c_{2}\right)=1 \Leftrightarrow c_{2} \text { is reachable }
$$ from c_{1} with at most 2^{l} steps of M

Observations

- For $I:=\lceil\log (t(n))\rceil$:

$$
\begin{aligned}
& w \in L(M) \Leftrightarrow \exists c_{1}, c_{2} \in A^{s(n)+1}: \operatorname{start}\left(c_{1}\right) \wedge \operatorname{accept}\left(c_{2}\right) \wedge \\
& \operatorname{succ}_{l}\left(c_{1}, c_{2}\right)
\end{aligned}
$$

$-\operatorname{succ}_{I}\left(c_{1}, c_{2}\right) \Leftrightarrow \exists c_{3}: \operatorname{legal}\left(c_{3}\right) \wedge \operatorname{succ}_{I-1}\left(c_{1}, c_{3}\right) \wedge \operatorname{succ}_{1-1}\left(c_{3}, c_{2}\right)$

An auxilliary predicate for succ,

Auxilliary predicate H
$H:\left(A^{s(n)+1}\right)^{5} \rightarrow\{0,1\}$, with

$$
H\left(c_{1}, \ldots, c_{5}\right)=\neg\left(\left(\left(c_{1}, c_{3}\right)=\left(c_{4}, c_{5}\right)\right) \vee\left(\left(c_{3}, c_{2}\right)=\left(c_{4}, c_{5}\right)\right)\right) .
$$

A short description for succ,

$$
\begin{aligned}
\operatorname{succ}_{/}\left(c_{1}, c_{2}\right) \Leftrightarrow \exists & \exists c_{3} \forall c_{4} \forall c_{5}: \\
& \quad \operatorname{legal}\left(c_{3}\right) \wedge\left(H\left(c_{1}, \ldots, c_{5}\right) \vee \operatorname{succ}_{I-1}\left(c_{4}, c_{5}\right)\right) .
\end{aligned}
$$

Completing the proof for Theorem 2.11 (1)

- M a polynomial space TM, choose $k \in \mathbb{N}$ such that M has space complexity $s(n)=n^{k}$ and time complexity $t(n)=2^{n^{k}}$. Set $I:=n^{k}$.
- From definition of succ/:

$$
\begin{aligned}
& w \in L(M) \Leftrightarrow \exists c_{1}, c_{2} \in A^{s(n)+1}: \\
& \operatorname{start}\left(c_{1}\right) \wedge \operatorname{accept}\left(c_{2}\right) \wedge \operatorname{succ}_{n^{k}}\left(c_{1}, c_{2}\right) .
\end{aligned}
$$

- Replace succ, by its short description to obtain

$$
\begin{aligned}
& w \in L(M) \Leftrightarrow \exists c_{1} \exists c_{2} \exists c_{3} \forall c_{4} \forall c_{5} \in A^{s(n)+1}: \\
& \operatorname{start}\left(c_{1}\right) \wedge \operatorname{accept}\left(c_{2}\right) \wedge \\
&\left(\operatorname{legal}\left(c_{3}\right)\right.\left.\wedge\left(H\left(c_{1}, \ldots, c_{5}\right) \vee \operatorname{succ}_{n^{k}-1}\left(c_{4}, c_{5}\right)\right)\right) .
\end{aligned}
$$

- Repeat this process with succ $_{/-1}$, succ $_{I-2}, \ldots$, succ $_{1}$.

Completing the proof for Theorem 2.11 (2)

- Obtain
$w \in L(M) \Leftrightarrow Q_{1} c_{1} Q_{2} c_{2} \ldots Q_{B} c_{B} \in A^{s(n)+1} \psi\left(c_{1}, \ldots, c_{B}\right)$, where

1. $B=B(n)$ is polynomial in n
2. $Q_{j} \in\{\exists, \forall\}, j=1, \ldots, B$
3. $\psi(\cdot)$ is a predicate of polynomial size using Boolean operators and the predicates start, accept, legal, succ.

- Use variables $x_{i, j, s}$ and Boolean predicates as before to obtain a fully quantified Boolean formula of size polynomial in $|w|=n$ that is true iff $w \in L(M)$.
- The formula can be computed in polynomial time.

