Chapter 1 - Time and Space Complexity

- deterministic and non-deterministic Turing machine
- time and space complexity
- classes P, NP, PSPACE, NPSPACE

Deterministic Turing machines

Definition 1.1

A (deterministic 1-tape) Turing machine (DTM) is a 7-tuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)$, where Q, Σ, Γ are finite sets and

1. Q is the set of states,
2. Σ is the input alphabet not containing the start symbol \triangleright and the blank symbol \sqcup,
3. Γ is the tape alphabet, where $\Sigma \subset \Gamma$ and $\sqcup, \triangleright \in \Gamma$,
4. $\delta: Q \backslash\left\{q_{\text {accept }}, q_{\text {reject }}\right\} \times \Gamma \rightarrow Q \times \Gamma \times\{R, L\}$ is the transition function,
5. q_{0} is the start state, $q_{\text {accept }}$ is the accept state, and $q_{\text {reject }}$ is the reject state.

Schematic of a Turing machine

Transition function

Semantics of transitions
$\delta\left(q_{i}, a\right)=\left(q_{j}, b, X\right)$ means that, if the machine is in state q_{i} and the head reads symbols a, then

1. the machine goes to state q_{j},
2. the head writes the symbol b on the tape,
3. the machine directs the head to move right $(X=R)$ or to move left $(X=L)$.

Restrictions

We always assume the following restrictions on δ :

- For all $q \in Q$:

$$
\delta(q, \triangleright)=(p, \triangleright, R) \quad \text { for some } \quad p \in Q .
$$

- For all $q \in Q$ and $a \in \Gamma, a \neq \triangleright$:

$$
\delta(q, a)=(p, b, D) \quad \text { with } \quad p \in Q, b \in \Gamma, b \neq \triangleright, D \in\{L, R\} .
$$

Configurations

- A configuration of a DTM M is an element in $\Gamma^{*} \times Q \times \Gamma^{*}$.
- M is in configuration $\alpha \boldsymbol{q} \beta$, iff

1. the left-most cells of the tape contain $\alpha \beta \in \Gamma^{*}$, all other tape cells contain \sqcup.
2. the head of the Turing machine is on the first symbol of β,
3. the state of the Turing machine is q.

Turing machine in configuration $\triangleright 010 q_{7} 10011$

Computations - single steps

- step of a DTM \triangleq single application of transition function
- computation \triangleq sequence of steps
- configuration C_{1} yields configuration C_{2} iff DTM M can legally go from C_{1} to C_{2} in one step
- $C_{1}=u a q_{i} b v, C_{2}=u q_{j} a c v, q_{i}, q_{j} \in Q, a, b, c \in \Gamma, u, v \in \Gamma^{*}$,
- C_{1} yields C_{2}, iff $\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$.
- $C_{1}=u a q_{i} b v, C_{2}=u a c q_{j} v, q_{i}, q_{j} \in Q, a, b, c \in \Gamma, u, v \in \Gamma^{*}$,
- C_{1} yields C_{2}, iff $\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$.

Computations

- $q_{0} \triangleright w \triangleq$ start configuration of DTM M on input w
- configuration C is an accepting configuration iff the state in C is $q_{\text {accept }}$
- configuration C is a rejecting configuration iff the state in C is $q_{\text {reject }}$
- accepting and rejecting configurations are halting configurations
- if a DTM M reaches a halting configuration the computation of M halts
- if M is started on some input and never reaches a halting state, we say that M loops

Computations

- DTM M accepts input w if a sequence of configurations $C_{1}, C_{2}, \ldots, C_{k}$ exists, where

1. C_{1} is the start configuration of M on input w,
2. each C_{i} yields C_{i+1},
3. C_{k} is an accepting configuration.

Turing machines and languages

Definition 1.2

The set of words $w \in \Sigma^{*}$ that DTM M accepts is called the language accepted or recognized by M. We write

$$
L(M):=\left\{w \in \Sigma^{*} \mid M \text { accepts } w .\right\}
$$

Definition 1.3
DTM M decides $L(M)$, if M halts on every input $w \in \Sigma^{*}$.
Definition 1.4

1. $L \subseteq \Sigma^{*}$ is called Turing-recognizable or recursively enumerable if some DTM M recognizes L.
2. $L \subseteq \Sigma^{*}$ is called Turing-decidable or decidable if some DTM M decides it.

Time complexity

Definition 1.5

Let M be a DTM that halts on all inputs. The running time or time complexity of M is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps that M uses on any input of length n.

If $f(n)$ is the running time of M we say that M runs in time $f(n)$ and that M is an $f(n)$ time Turing machine.

Customarily, n denotes the length of the representation of the input.

Time complexity classes

Definition 1.6

Let $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a monotonically increasing function. The time complexity class $\operatorname{DTIME}(t(n))$ consists of all languages that are decidable by an $\mathcal{O}(t(n))$ time DTM.

Space complexity and space complexity classes

Definition 1.7

Let M be a DTM that halts on all inputs. The space complexity of M is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of tape cells that M scans on any input of length n.

If the space complexity of M is $f(n)$ we say that M runs in space $f(n)$.

Definition 1.8
Let $s: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a monotonically increasing function. The space complexity class DSPACE $(s(n))$ consists of all languages that are decidable by an $\mathcal{O}(s(n))$ space DTM.

Multi-tape Turing machines

- A k-tape Turing machine (k-DTM) has k independent tapes, each with its own read/write head.
- The transition function of a k-tape Turing machine is of the form

$$
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R, S\}^{k}
$$

- $\delta\left(q_{i}, a_{1}, \ldots, a_{k}\right)=\left(q_{j}, b_{1}, \ldots, b_{k}, X_{1}, X_{2}, \ldots, X_{k}\right)$ means that, if the machine is in state q_{i} and the heads 1 through k read symbols a_{1}, \ldots, a_{k}, then

1. the machine goes to state q_{j},
2. the heads 1 through k write the symbols b_{1}, \ldots, b_{k} on their respective tapes,
3. the machine directs each head to move right $\left(X_{i}=R\right)$, to move left $\left(X_{i}=L\right)$, or to stay put $\left(X_{i}=S\right)$.

Schematic of a 3-tape Turing machine

Time and space complexity classes for multi-tape DTMs

Definition 1.9

Let $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a monotonically increasing function. The time complexity class DTIME $_{k}(t(n))$ consists of all languages that are decidable by an $\mathcal{O}(t(n))$ time k-DTM.

Definition 1.10

Let $s: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a monotonically increasing function. The space complexity class DSPACE $k(s(n))$ consists of all languages that are decidable by an $\mathcal{O}(s(n))$ space $k-D T M$.

1-tape vs. k-tape DTMs

Theorem 1.11
If language L can be decided by a $\mathcal{O}(s(n))$ space k-DTM, then L can be decided by a $\mathcal{O}(s(n))$ space 1-DTM.

Theorem 1.12
If language L can be decided by a $\mathcal{O}(t(n))$ time $k-D T M$, then L can be decided by a $\mathcal{O}\left(t(n)^{2}\right)$ time 1-DTM.

Corollary 1.13
For all $k \in \mathbb{N}$
$\operatorname{DTIME}_{k}(t(n)) \subseteq \operatorname{DTIME}\left(t(n)^{2}\right)$.

1-tape vs. k-tape DTMs

Theorem 1.14
There is a language L that can be decided by a $\mathcal{O}(n)$ time 2-DTM, but that cannot be decided by a 1-DTM with time complexity $o\left(n^{2}\right)$.

Corollary 1.15
Let $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function with $t(n)=o\left(n^{2}\right)$. For all $k \in \mathbb{N}, k \geq 2$
$\operatorname{DTIME}_{k}(n) \nsubseteq \operatorname{DTIME}(t(n))$.

Classes \mathbf{P} and PSPACE

Definition 1.16

\mathbf{P} is the class of languages that are decidable in polynomial time on a (single- or multi-tape) deterministic Turing machine. That is

$$
\mathbf{P}=\bigcup_{k \in \mathbb{N}} \operatorname{DTIME}\left(n^{k}\right)
$$

Definition 1.17
PSPACE is the class of languages that are decidable in polynomial space on a (single- or multi-tape) deterministic Turing machine.
That is

$$
\operatorname{PSPACE}=\bigcup_{k \in \mathbb{N}} \operatorname{DSPACE}\left(n^{k}\right)
$$

Time and space

Theorem 1.18
Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function with $f(n) \geq n$ for all $n \in \mathbb{N}$. If a language L is in $\operatorname{DSPACE}(f(n))$, then there is a $2^{\mathcal{O}(f(n))}$ time DTM that decides L.

Boolean formula and fully quantified Boolean formula

Boolean formula

- A Boolean formula $\psi\left(x_{1}, \ldots, x_{l}\right)$ is an expression over Boolean variables x_{1}, \ldots, x_{I} and the Boolean operators \wedge, \vee, \neg.
- Example: $\psi=\left(x_{1} \vee \neg x_{2}\right) \wedge x_{3} \vee\left(\neg x_{3} \vee \neg x_{1}\right)$.
- A fully quantified Boolean formula ϕ in prenex normal form is an expression of the form $Q_{1} x_{1} \ldots Q_{I} x_{l} \psi\left(x_{1}, \ldots, x_{l}\right)$, where

1. ψ is a Boolean formula,
2. $Q_{i} \in\{\exists, \forall\}, i=1, \ldots, l$.

- Example: $\phi=\forall x_{1} \forall x_{2} \exists x_{3}\left(x_{1} \vee \neg x_{2}\right) \wedge x_{3} \vee\left(\neg x_{3} \vee \neg x_{1}\right)$.

Remark

A fully quantified Boolean formula is either true $\triangleq 1$ or false $\triangleq 0$.

Definition 1.19

The language TQBF is defined as
TQBF $:=\{\langle\phi\rangle \mid \phi$ is a true fully quantified Boolean formula in prenex normal form.\}

Example
$\phi=\forall x_{1} \forall x_{2} \exists x_{3}\left(x_{1} \vee \neg x_{2}\right) \wedge x_{3} \vee\left(\neg x_{3} \vee \neg x_{1}\right)$ is an element of TQBF.

Theorem 1.20
$T Q B F \in$ PSPACE.

A space efficient algorithm for TQBF

$T=$ "On input $\langle\phi\rangle$, a fully quantified Boolean formula:

1. If ϕ contains no quantifiers, then ϕ contains only constants. Evaluate the expression.
2. If ϕ equals $\exists x \phi^{\prime}$, recursively call T on ϕ^{\prime}, first with 0 substituted for x and then with 1 substituted for x. If either result is accept, then accept, else reject.
3. If ϕ equals $\forall x \phi^{\prime}$, recursively call T on ϕ^{\prime}, first with 0 substituted for x and then with 1 substituted for x. If both results are accept, then accept, else reject."

Recursion tree

Nondeterministic Turing machines

Power sets

For a set M, we denote by $\mathcal{P}(M)$ the power set of M, i.e. the set of all subsets of M.

Definition 1.21
A nondeterministic (1-tape) Turing machine (NTM) is a 7-tuple $N=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where $Q, \Sigma, \Gamma, q_{0}, q_{\text {accept }}, q_{\text {reject }}$ are as for deterministic Turing machines. The transition function δ of a nondeterministic Turing machine is of the form

$$
\delta: Q \backslash\left\{q_{\text {accept }}, q_{\text {reject }}\right\} \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times\{R, L\})
$$

Nondeterministic multi-tape Turing machines are defined similarly.

Computations of NTMs

- If $\delta\left(q_{i}, a\right)=\left\{\left(r_{1}, b_{1}, X_{1}\right), \ldots,\left(r_{l}, b_{l}, X_{l}\right)\right\}$ and if NTM N is in state q_{i} and reads symbol a, then it can perform any of the l steps described by the triples $\left(r_{j}, b_{j}, X_{j}\right)$ in $\delta\left(q_{i}, a\right)$.
- Configurations, start configurations, accepting and rejecting configurations for NTMs are defined as for DTMs.
- Depending on the set $\delta\left(q_{i}, b\right)$ a configuration $C=u a q_{i} b v$ of an NTM can yield different configurations.
- Started with input $w \in \Sigma^{*}$ an NTM $N=(Q, \Sigma, \Gamma$, $\delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}$) can perform different computations that can be represented in a computation tree.

Computation tree of an NTM

NTMs and languages

- NTM $N=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ accepts $w \in \Sigma^{*}$ if there is a computation of N started with w that ends in an accepting configuration.
- The language $L(N)$ of words recognized by N is defined as

$$
L(N):=\left\{w \in \Sigma^{*} \mid N \text { accepts } w\right\} .
$$

- N always halts if for every $w \in \Sigma^{*}$ every computation branch of N with input w is finite. An NTM N that always halts is called a decider.
- NTM N decides language $L(N)$ if N is a decider.

Nondeterministic time complexity

Definition 1.22
Let NTM N be a decider. The running time or time complexity of N is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps that N uses on any computation branch on any input of length n.

Definition 1.23
Let $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a monotonically increasing function. The time complexity class $\operatorname{NTIME}(t(n))$ consists of all languages that are decidable by an $\mathcal{O}(t(n))$ time NTM.

Nondeterministic space complexity

Definition 1.24

Let N be a decider. The space complexity of N is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of tape cells that N scans on any computation branch on any input of length n.

Definition 1.25
Let $s: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a monotonically increasing function. The space complexity class $\operatorname{NSPACE}(s(n))$ consists of all languages that are decidable by an $\mathcal{O}(s(n))$ space NTM.

Example of a linear space NTM

Problems on NFAs

- $A L L_{\text {NFA }}:=\left\{\langle A\rangle \mid A\right.$ is an NFA and $\left.L(A)=\Sigma^{*}\right\}$
- $\overline{A L L_{\text {NFA }}}$ language consisting of all NFAs that reject at least one word over their input alphabet.

Example of a linear space NTM

$N="$ On input $\langle A\rangle$, where A is an NFA:

1. Place a marker on the start state of A.
2. Accept if the start state is not an accept state.
3. Repeat 2^{q} times, where q is the number of states of A :
4. Nondeterministically select an input symbol and change the positions of the markers on A's states to simulate reading that symbol.
5. Accept if none of the markers lie on accept states of A.
6. Reject."

Theorem 1.26
N is a decider for $\overline{A L L_{N F A}}$ with space complexity $\mathcal{O}(n)$, i.e.
$\overline{A L L_{N F A}} \in \operatorname{NSPACE}(n)$.

Nondeterministic polynomial time and space
Definition 1.27
$\mathbf{N P}=\bigcup_{k \in \mathbb{N}} \operatorname{NTIME}\left(n^{k}\right)$.

Definition 1.28
$\operatorname{NPSPACE}=\bigcup_{k \in \mathbb{N}} \operatorname{NSPACE}\left(n^{k}\right)$.

Deterministic and nondeterministic time

Theorem 1.29
Let $t: \mathbb{N} \rightarrow \mathbb{N}$ be a function with $t(n) \geq n$ for all $n \in \mathbb{N}$. If language L can be decided by an $\mathcal{O}(t(n))$ time (single-tape) NTM, then L can be decided by a $2^{\mathcal{O}(t(n))}$ time (single-tape) DTM.

Space constructible functions

Definition 1.30

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function with $f(n) \geq n$ for all $n \in \mathbb{N}$. Function f is called space constructible if there is a $\mathcal{O}(f(n))$ space DTM that on input 1^{n} (i.e. $n 1$'s) computes the binary representation of $f(n)$.

Examples

- $f(n)=n$ is space constructible.
- $f(n)=n^{2}$ is space constructible.
- $f(n)=2^{n}$ is space constructible.

Remark

We will later generalize space constructibility to functions that grow slower than linear.

Deterministic and nondeterministic space

Theorem 1.31 (Savitch's theorem)
Let $s: \mathbb{N} \rightarrow \mathbb{N}$ be a space constructible function with $s(n) \geq n$ for all $n \in \mathbb{N}$, then

$\operatorname{NSPACE}(s(n)) \subseteq \operatorname{DSPACE}\left(s(n)^{2}\right)$.

Yieldability problem
Given Two configurations c_{1}, c_{2} of NTM N and time bound $t \in \mathbb{N}$.
Test Whether the NTM N can get from c_{1} to c_{2} within t steps.

Procedure Canyield

$T=$ "On input configurations c_{1}, c_{2} and $t \in \mathbb{N}$:

1. If $t=1$, then test directly whether $c_{1}=c_{2}$ or whether c_{1} yields c_{2} in one step according to the rules of N. Accept if either test succeeds; reject if both fail.
2. If $t>1$, then for each configuration c_{m} of N on w using space $s(n)$:
3. Run Canyield $\left(c_{1}, c_{m}, \frac{t}{2}\right)$.
4. Run Canyield $\left(c_{m}, c_{2}, \frac{t}{2}\right)$.
5. If steps 3 and 4 both accept, then accept.
6. If have not accepted yet, reject."

Deterministic $s(n)^{2}$ space TM

Preliminaries

- $c_{\text {start }, w}:=q_{0} \triangleright w$, i.e. start configuration of N on input w
- Modify N so that there is single accepting configuration Caccept: when N accepts,

1. it first clears its tape,
2. then moves the head to the leftmost cell.

- d chosen such that N has at most $2^{d \cdot s(n)}$ configurations using $s(n)$ tape cells.
M, on input w :

1. Output the result of CANYIELD $\left(c_{\text {start }, w}, c_{\text {accept }}, 2^{d \cdot s(n)}\right)$.

PSPACE and NPSPACE

Corollary 1.32
PSPACE $=$ NPSPACE .

Configuration graphs

Definition 1.33

Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be Turing machine and $w \in \Sigma^{*}$. The configuration graph of M on input w is the graph
$G=(V, E)$, where

1. V consists of the configurations of M on its computation branches on input w,
2. for all $c_{1}, c_{2} \in V$ the tuple $\left(c_{1}, c_{2}\right)$ is in E if c_{1} yields c_{2}.

Remark

If M has space complexity $s(n)$, then the configuration graph of M on input w has $2^{\mathcal{O}(s(|w|))}$ vertices.

Procedure Canyield

$T=$ " On input configurations c_{1}, c_{2} and $t \in \mathbb{N}$:

1. If $t=1$, then test directly whether $c_{1}=c_{2}$ or whether c_{1} yields c_{2} in one step according to the rules of N. Accept if either test succeeds; reject if both fail.
2. If $t>1$, then for each configuration c_{m} of N on w using space $s(n)$:
3. Run Canyield $\left(c_{1}, c_{m}, \frac{t}{2}\right)$.
4. Run Canyield $\left(c_{m}, c_{2}, \frac{t}{2}\right)$.
5. If steps 3 and 4 both accept, then accept.
6. If have not accepted yet, reject."

Remark

For a NTM $N=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ and $w \in \Sigma^{*}$, the procedure Canyield decides whether there is a (directed) path from c_{1} to c_{2} of length at most t.

