Chapter 1 - Time and Space Complexity

- deterministic and non-deterministic Turing machine
- time and space complexity
- classes P, NP, PSPACE, NPSPACE

Deterministic Turing machines

Definition 1.1

A (deterministic 1-tape) Turing machine (DTM) is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathrm{accept}}, q_{\mathrm{reject}})$, where Q, Σ, Γ are finite sets and

- 1. *Q* is the set of states,
- Σ is the input alphabet not containing the start symbol ▷ and the blank symbol □,
- 3. Γ is the tape alphabet, where $\Sigma \subset \Gamma$ and $\sqcup, \rhd \in \Gamma$,
- 4. $\delta: Q \setminus \{q_{\text{accept}}, q_{\text{reject}}\} \times \Gamma \rightarrow Q \times \Gamma \times \{R, L\}$ is the transition function,
- 5. q_0 is the start state, $q_{\rm accept}$ is the accept state, and $q_{\rm reject}$ is the reject state.

Schematic of a Turing machine

Transition function

Semantics of transitions

 $\delta(q_i, a) = (q_j, b, X)$ means that, if the machine is in state q_i and the head reads symbols a, then

- 1. the machine goes to state q_j ,
- 2. the head writes the symbol b on the tape,
- the machine directs the head to move right (X = R) or to move left (X = L).

Restrictions

We always assume the following restrictions on δ :

For all $q \in Q$:

 $\delta(q, \rhd) = (p, \rhd, R)$ for some $p \in Q$.

For all $q \in Q$ and $a \in \Gamma, a \neq \triangleright$:

 $\delta(q,a) = (p,b,D) \quad ext{with} \quad p \in Q, b \in \Gamma, b
eq arphi, D \in \{L,R\} \;\;.$

Configurations

- A configuration of a DTM M is an element in $\Gamma^* \times Q \times \Gamma^*$.
- M is in configuration $\alpha q\beta$, iff
 - 1. the left-most cells of the tape contain $\alpha\beta\in\Gamma^*$, all other tape cells contain \sqcup .
 - 2. the head of the Turing machine is on the first symbol of β ,
 - 3. the state of the Turing machine is q.

Turing machine in configuration $> 010q_710011$

Computations - single steps

- ▶ step of a DTM \triangleq single application of transition function
- computation \triangleq sequence of steps
- ► configuration C₁ yields configuration C₂ iff DTM M can legally go from C₁ to C₂ in one step

•
$$C_1 = uaq_ibv, C_2 = uq_jacv, q_i, q_j \in Q, a, b, c \in \Gamma, u, v \in \Gamma^*$$
,

•
$$C_1$$
 yields C_2 , iff $\delta(q_i, b) = (q_j, c, L)$.

- ► $C_1 = uaq_ibv, C_2 = uacq_jv, q_i, q_j \in Q, a, b, c \in \Gamma, u, v \in \Gamma^*$,
- C_1 yields C_2 , iff $\delta(q_i, b) = (q_j, c, R)$.

Computations

- $q_0
 ho w \triangleq$ start configuration of DTM M on input w
- configuration C is an accepting configuration iff the state in C is q_{accept}
- configuration C is a rejecting configuration iff the state in C is q_{reject}
- accepting and rejecting configurations are *halting* configurations
- if a DTM *M* reaches a halting configuration the computation of *M* halts
- if M is started on some input and never reaches a halting state, we say that M loops

Computations

- ► DTM *M* accepts input *w* if a sequence of configurations *C*₁, *C*₂,..., *C_k* exists, where
 - 1. C_1 is the start configuration of M on input w,
 - 2. each C_i yields C_{i+1} ,
 - 3. C_k is an accepting configuration.

Turing machines and languages

Definition 1.2

The set of words $w \in \Sigma^*$ that DTM M accepts is called the language accepted or recognized by M. We write

$$L(M) := \{w \in \Sigma^* \mid M \text{ accepts } w.\}$$

Definition 1.3 DTM M decides L(M), if M halts on every input $w \in \Sigma^*$.

Definition 1.4

- 1. $L \subseteq \Sigma^*$ is called Turing-recognizable or recursively enumerable if some DTM M recognizes L.
- 2. $L \subseteq \Sigma^*$ is called Turing-decidable or decidable if some DTM M decides it.

Time complexity

Definition 1.5

Let M be a DTM that halts on all inputs. The running time or time complexity of M is the function $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that M uses on any input of length n.

If f(n) is the running time of M we say that M runs in time f(n)and that M is an f(n) time Turing machine.

Customarily, n denotes the length of the representation of the input.

Time complexity classes

Definition 1.6

Let $t : \mathbb{N} \to \mathbb{R}^+$ be a monotonically increasing function. The time complexity class **DTIME**(t(n)) consists of all languages that are decidable by an $\mathcal{O}(t(n))$ time DTM.

Space complexity and space complexity classes

Definition 1.7

Let M be a DTM that halts on all inputs. The space complexity of M is the function $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells that M scans on any input of length n.

If the space complexity of M is f(n) we say that M runs in space f(n).

Definition 1.8

Let $s : \mathbb{N} \to \mathbb{R}^+$ be a monotonically increasing function. The space complexity class **DSPACE**(s(n)) consists of all languages that are decidable by an $\mathcal{O}(s(n))$ space DTM.

Multi-tape Turing machines

- A k-tape Turing machine (k-DTM) has k independent tapes, each with its own read/write head.
- The transition function of a k-tape Turing machine is of the form

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$$
 .

- δ(q_i, a₁,..., a_k) = (q_j, b₁,..., b_k, X₁, X₂,..., X_k) means that, if the machine is in state q_i and the heads 1 through k read symbols a₁,..., a_k, then
 - 1. the machine goes to state q_j ,
 - the heads 1 through k write the symbols b₁,..., b_k on their respective tapes,
 - the machine directs each head to move right (X_i = R), to move left (X_i = L), or to stay put (X_i = S).

Schematic of a 3-tape Turing machine

Time and space complexity classes for multi-tape DTMs

Definition 1.9

Let $t : \mathbb{N} \to \mathbb{R}^+$ be a monotonically increasing function. The time complexity class **DTIME**_k(t(n)) consists of all languages that are decidable by an $\mathcal{O}(t(n))$ time k-DTM.

Definition 1.10

Let $s : \mathbb{N} \to \mathbb{R}^+$ be a monotonically increasing function. The space complexity class **DSPACE**_k(s(n)) consists of all languages that are decidable by an $\mathcal{O}(s(n))$ space k-DTM.

```
1-tape vs. k-tape DTMs
```

```
Theorem 1.11
```

If language L can be decided by a $\mathcal{O}(s(n))$ space k-DTM, then L can be decided by a $\mathcal{O}(s(n))$ space 1-DTM.

```
Theorem 1.12
If language L can be decided by a O(t(n)) time k-DTM, then L
can be decided by a O(t(n)^2) time 1-DTM.
```

```
Corollary 1.13 For all k \in \mathbb{N}
```

```
\mathsf{DTIME}_k(t(n)) \subseteq \mathsf{DTIME}(t(n)^2).
```

```
1-tape vs. k-tape DTMs
```

Theorem 1.14

There is a language L that can be decided by a $\mathcal{O}(n)$ time 2-DTM, but that cannot be decided by a 1-DTM with time complexity $o(n^2)$.

Corollary 1.15 Let $t : \mathbb{N} \to \mathbb{R}^+$ be a function with $t(n) = o(n^2)$. For all $k \in \mathbb{N}, k \ge 2$ DTIME_k $(n) \not\subseteq$ DTIME(t(n)).

Classes **P** and **PSPACE**

Definition 1.16

P is the class of languages that are decidable in polynomial time on a (single- or multi-tape) deterministic Turing machine. That is

$$\mathbf{P} = \bigcup_{k \in \mathbb{N}} \mathbf{DTIME}(n^k).$$

Definition 1.17

PSPACE is the class of languages that are decidable in polynomial space on a (single- or multi-tape) deterministic Turing machine. That is

$$\mathsf{PSPACE} = \bigcup_{k \in \mathbb{N}} \mathsf{DSPACE}(n^k).$$

Time and space

Theorem 1.18

Let $f : \mathbb{N} \to \mathbb{R}^+$ be a function with $f(n) \ge n$ for all $n \in \mathbb{N}$. If a language L is in **DSPACE**(f(n)), then there is a $2^{\mathcal{O}(f(n))}$ time DTM that decides L.

Boolean formula and fully quantified Boolean formula

Boolean formula

- A Boolean formula ψ(x₁,...,x_l) is an expression over Boolean variables x₁,...,x_l and the Boolean operators ∧, ∨, ¬.
- Example: $\psi = (x_1 \lor \neg x_2) \land x_3 \lor (\neg x_3 \lor \neg x_1).$
- ► A fully quantified Boolean formula φ in prenex normal form is an expression of the form Q₁x₁...Q_lx_l ψ(x₁,...,x_l), where
 - 1. ψ is a Boolean formula,
 - 2. $Q_i \in \{\exists, \forall\}, i = 1, ..., I.$
- Example: $\phi = \forall x_1 \forall x_2 \exists x_3 (x_1 \lor \neg x_2) \land x_3 \lor (\neg x_3 \lor \neg x_1).$

Remark

A fully quantified Boolean formula is either true $\triangleq 1$ or false $\triangleq 0$.

Definition 1.19 The language TQBF is defined as

 $TQBF := \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula}$ in prenex normal form.}

Example

 $\phi = \forall x_1 \forall x_2 \exists x_3 (x_1 \lor \neg x_2) \land x_3 \lor (\neg x_3 \lor \neg x_1) \text{ is an element of } \mathsf{TQBF}.$

Theorem 1.20 $TQBF \in \mathbf{PSPACE}$.

A space efficient algorithm for TQBF

- T = "On input $\langle \phi \rangle$, a fully quantified Boolean formula:
 - 1. If ϕ contains no quantifiers, then ϕ contains only constants. Evaluate the expression.
 - If φ equals ∃x φ', recursively call T on φ', first with 0 substituted for x and then with 1 substituted for x.
 If either result is accept, then accept, else reject.
 - If φ equals ∀x φ', recursively call T on φ', first with 0 substituted for x and then with 1 substituted for x.
 If both results are accept, then accept, else reject."

Recursion tree

Nondeterministic Turing machines

Power sets

For a set M, we denote by $\mathcal{P}(M)$ the power set of M, i.e. the set of all subsets of M.

Definition 1.21

A nondeterministic (1-tape) Turing machine (NTM) is a 7-tuple $N = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where $Q, \Sigma, \Gamma, q_0, q_{accept}, q_{reject}$ are as for deterministic Turing machines. The transition function δ of a nondeterministic Turing machine is of the form

$$\delta: Q \setminus \{q_{\text{accept}}, q_{\text{reject}}\} \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{R, L\}).$$

Nondeterministic multi-tape Turing machines are defined similarly.

Computations of NTMs

- If δ(q_i, a) = {(r₁, b₁, X₁), ..., (r_l, b_l, X_l)} and if NTM N is in state q_i and reads symbol a, then it can perform any of the l steps described by the triples (r_j, b_j, X_j) in δ(q_i, a).
- Configurations, start configurations, accepting and rejecting configurations for NTMs are defined as for DTMs.
- ▶ Depending on the set δ(q_i, b) a configuration C = uaq_ibv of an NTM can yield different configurations.
- Started with input w ∈ Σ* an NTM N = (Q, Σ, Γ, δ, q₀, q_{accept}, q_{reject}) can perform different computations that can be represented in a *computation tree*.

Computation tree of an NTM

NTMs and languages

- NTM N = (Q, Σ, Γ, δ, q₀, q_{accept}, q_{reject}) accepts w ∈ Σ* if there is a computation of N started with w that ends in an accepting configuration.
- The language L(N) of words recognized by N is defined as

$$L(N) := \{ w \in \Sigma^* \mid N \text{ accepts } w \}.$$

- N always halts if for every w ∈ Σ* every computation branch of N with input w is finite. An NTM N that always halts is called a *decider*.
- ▶ NTM *N* decides language *L*(*N*) if *N* is a decider.

Nondeterministic time complexity

Definition 1.22

Let NTM N be a decider. The running time or time complexity of N is the function $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that N uses on any computation branch on any input of length n.

Definition 1.23

Let $t : \mathbb{N} \to \mathbb{R}^+$ be a monotonically increasing function. The time complexity class **NTIME**(t(n)) consists of all languages that are decidable by an $\mathcal{O}(t(n))$ time NTM.

Nondeterministic space complexity

Definition 1.24

Let N be a decider. The space complexity of N is the function $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells that N scans on any computation branch on any input of length n.

Definition 1.25

Let $s : \mathbb{N} \to \mathbb{R}^+$ be a monotonically increasing function. The space complexity class **NSPACE**(s(n)) consists of all languages that are decidable by an $\mathcal{O}(s(n))$ space NTM.

Example of a linear space NTM

Problems on NFAs

- $ALL_{NFA} := \{ \langle A \rangle \mid A \text{ is an NFA and } L(A) = \Sigma^* \}$
- ► ALL_{NFA} language consisting of all NFAs that reject at least one word over their input alphabet.

Example of a linear space NTM

N = "On input $\langle A \rangle$, where A is an NFA:

- 1. Place a marker on the start state of A.
- 2. Accept if the start state is not an accept state.
- 3. Repeat 2^q times, where q is the number of states of A:
- 4. Nondeterministically select an input symbol and change the positions of the markers on *A*'s states to simulate reading that symbol.
- 5. Accept if none of the markers lie on accept states of A.
- 6. Reject."

Theorem 1.26 *N* is a decider for $\overline{ALL_{NFA}}$ with space complexity $\mathcal{O}(n)$, i.e. $\overline{ALL_{NFA}} \in \mathbf{NSPACE}(n)$. Nondeterministic polynomial time and space

Definition 1.27 $NP = \bigcup_{k \in \mathbb{N}} NTIME(n^k).$

Definition 1.28 NPSPACE = $\bigcup_{k \in \mathbb{N}} NSPACE(n^k)$.

Deterministic and nondeterministic time

Theorem 1.29

Let $t : \mathbb{N} \to \mathbb{N}$ be a function with $t(n) \ge n$ for all $n \in \mathbb{N}$. If language L can be decided by an $\mathcal{O}(t(n))$ time (single-tape) NTM, then L can be decided by a $2^{\mathcal{O}(t(n))}$ time (single-tape) DTM.

Space constructible functions

Definition 1.30

Let $f : \mathbb{N} \to \mathbb{N}$ be a function with $f(n) \ge n$ for all $n \in \mathbb{N}$. Function f is called space constructible if there is a $\mathcal{O}(f(n))$ space DTM that on input 1^n (i.e. n 1's) computes the binary representation of f(n).

Examples

- f(n) = n is space constructible.
- $f(n) = n^2$ is space constructible.
- $f(n) = 2^n$ is space constructible.

Remark

We will later generalize space constructibility to functions that grow slower than linear.

Deterministic and nondeterministic space

Theorem 1.31 (Savitch's theorem) Let $s : \mathbb{N} \to \mathbb{N}$ be a space constructible function with $s(n) \ge n$ for all $n \in \mathbb{N}$, then

 $NSPACE(s(n)) \subseteq DSPACE(s(n)^2).$

Yieldability problem

- **Given** Two configurations c_1, c_2 of NTM *N* and time bound $t \in \mathbb{N}$.
- **Test** Whether the NTM N can get from c_1 to c_2 within t steps.

Procedure CANVIELD

- T ="On input configurations c_1, c_2 and $t \in \mathbb{N}$:
 - 1. If t = 1, then test directly whether $c_1 = c_2$ or whether c_1 yields c_2 in one step according to the rules of N. Accept if either test succeeds; reject if both fail.
 - 2. If t > 1, then for each configuration c_m of N on w using space s(n):
 - Run CANYIELD $(c_1, c_m, \frac{t}{2})$. Run CANYIELD $(c_m, c_2, \frac{t}{2})$. 3.
 - 4.
 - 5. If steps 3 and 4 both accept, then accept.
 - 6. If have not accepted yet, reject."

Deterministic $s(n)^2$ space TM

Preliminaries

- ▶ $c_{\text{start},w} := q_0 \triangleright w$, i.e. start configuration of N on input w
- Modify N so that there is single accepting configuration c_{accept}: when N accepts,
 - 1. it first clears its tape,
 - 2. then moves the head to the leftmost cell.
- ► d chosen such that N has at most 2^{d·s(n)} configurations using s(n) tape cells.

M, on input *w*:

1. Output the result of CANYIELD($c_{\text{start},w}, c_{\text{accept}}, 2^{d \cdot s(n)}$).

PSPACE and **NPSPACE**

Corollary 1.32 **PSPACE** = **NPSPACE**.

Configuration graphs

Definition 1.33 Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ be Turing machine and $w \in \Sigma^*$. The configuration graph of M on input w is the graph G = (V, E), where

- 1. V consists of the configurations of M on its computation branches on input w,
- 2. for all $c_1, c_2 \in V$ the tuple (c_1, c_2) is in E if c_1 yields c_2 .

Remark

If *M* has space complexity s(n), then the configuration graph of *M* on input *w* has $2^{\mathcal{O}(s(|w|))}$ vertices.

Procedure CANYIELD

- T = "On input configurations c_1, c_2 and $t \in \mathbb{N}$:
 - 1. If t = 1, then test directly whether $c_1 = c_2$ or whether c_1 yields c_2 in one step according to the rules of *N*. *Accept* if either test succeeds; *reject* if both fail.
 - 2. If t > 1, then for each configuration c_m of N on w using space s(n):
 - 3. Run CANYIELD $(c_1, c_m, \frac{t}{2})$.

4. Run CANYIELD
$$(c_m, c_2, \frac{t}{2})$$
.

- 5. If steps 3 and 4 both accept, then *accept*.
- 6. If have not accepted yet, reject."

Remark

For a NTM $N = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ and $w \in \Sigma^*$, the procedure CANYIELD decides whether there is a (directed) path from c_1 to c_2 of length at most t.