VI. The Fiat-Shamir Heuristic

- as already seen signatures can be used and are used in practice to design identification protocols
- next we show how we can obtain signatures schemes from
 ∑- protocols using the Fiat-Shamir heuristic
- construction based on hash functions
- prove security of resulting signatures in random oracle model
- FS heuristic leads to signatures schemes used in practice, i.e. Schnorr signatures
- construction can also be used to design signatures schemes with additional functionality
- see group signatures as an example in next section

Relations

- $R \subseteq \{0,1\}^* \times \{0,1\}^*$ binary relation, $(x,y) \in R : \Leftrightarrow R(x,y) = 1$
- $x \in \{0,1\}^* : W(x) := \{w \in \{0,1\}^* : R(x,w) = 1\}, w \in W(x) \text{ called witnesses for } x.$
- $L_R := \{x \in \{0,1\}^* : W(x) \neq \emptyset\}$ language corresponding to R
- R polynomially bounded : \Leftrightarrow there is a $I \in \mathbb{N}$ such that for all $x \in \{0,1\}^*$ and all $w \in W(x)$: $|w| \le |x|^{l}$.
- In this section assume for simplicity $|x| = |x|^{i}$.
- Since we want to formally prove the security of signatures obtained from Fiat-Shamir heuristic need to be more careful
 - asymptotics
 - instance generators
 - hard relations

Instance generators

Definition 5.4 (restated) An instance generator for relation R is a ppt IG that an input 1^{κ} outputs a pair (x,w) \in R with |x| = K.

Witness finding

Witness finding game $WF_{A,IG}^{R}(K)$

- 1. Run Gen(1^{κ}) to obtain (x,w).
- 2. A gets as input 1^{κ} and x. A outputs $w \in \{0,1\}^{*}$.
- 3. Output of experiment is 1, if and only if $w \in W(x)$.

Write $WF_{A,IG}^{R}(K) = 1$, if output is 1.

Definition 6.1 Let R be an relation and IG an instance generator for R. Relation R is called hard for generator IG if for every ppt A there is a negligible function μ such that $Pr[WF_{A,IG}^{R}(K) = 1] = \mu(k).$

Three round protocols for relation R

Three round protocols for relation R

- $L(\cdot)$ polynomial in K, α, ρ, ϕ ppts in K

 $-A_{\kappa}, C_{\kappa}, R_{\kappa}$ sets with size $2^{\kappa^{l}}$ for some fixed $l \in \mathbb{N}$.

Soundness and zero-knowledge

Definition 3.5 (restated) A three round protocol for relation R has special soundness if there exists a ppt algorithm E (extractor) which given $x \in L_R$ and any two accepting transcripts (a,c,r) and (a,c',r') with $c \neq c'$ computes a witness w satisfying $(x,w) \in R$.

Definition 3.6 (restated) A three round protocol for relation R is a special honest verifier zero-knowledge protocol if there exists a ppt algorithm S (simulator) which given any $x \in L_R$ and any challenge c produces transcripts (a,c,r) with the same distribution as in the real protocol.

- ppts always with respect to |x|.

The Fiat-Shamir heuristic

Construction 6.2 Let R be a relation, IG an instance generator and Σ_R a three round protocol for R with ppts α, ρ, ϕ , announcement spaces A_{κ} , challenge spaces C_{κ} , and response spaces R_{κ} . Let $\{H_{\kappa}\}_{\kappa \in \mathbb{N}}$, $H_{\kappa} : A_{\kappa} \times \{0,1\}^* \to C_{\kappa}$ be a family of functions. Then signature scheme $\Upsilon = (Gen, Sign, Vrfy)$ is defined by

$$\begin{split} & \mathsf{Gen}\big(\mathbf{1}^{\kappa}\big)\colon \qquad (\mathbf{x},\mathbf{w}) \leftarrow \mathsf{IG}\big(\mathbf{1}^{\kappa}\big), \mathsf{pk} \coloneqq \mathbf{x}, \mathsf{sk} \coloneqq \mathbf{w}.\\ & \mathsf{Sign}_{\mathsf{sk}}\left(\mathsf{m}\right)\colon \qquad \mathsf{a} \leftarrow \alpha\big(\mathsf{pk},\mathsf{sk};\mathsf{k}\big), \mathsf{c} \coloneqq \mathsf{H}_{\mathsf{K}}\big(\mathsf{a},\mathsf{m}\big), \mathsf{r} \leftarrow \rho\big(\mathsf{pk},\mathsf{sk},\mathsf{k},\mathsf{c}\big).\\ & \mathsf{Output}\ \sigma \coloneqq \big(\mathsf{a},\mathsf{c},\mathsf{r}\big).\\ & \mathsf{Vrfy}_{\mathsf{pk}}\left(\mathsf{m},\sigma\right)\colon \quad \mathsf{Output}\ \mathsf{1},\ \mathsf{iff}\ \phi\big(\mathsf{pk},\mathsf{a},\mathsf{c},\mathsf{r}\big) = \mathsf{1} \wedge \mathsf{H}_{\mathsf{K}}\big(\mathsf{a},\mathsf{m}\big) = \mathsf{c}. \end{split}$$

 Υ called $\Sigma_{_{\rm R}}\text{-}$ signature scheme

Fiat-Shamir and Schnorr

Example Schnorr protocol for R_{DI} pk = (p, g, v), sk := w such that $g^w = v \mod p$. $H: \mathbb{Z}_{p}^{*} \times \{0,1\}^{*} \rightarrow \{1,\ldots,2^{l}\} \ (\subseteq \mathbb{Z}_{p-1}) \text{ collision-resistant}$ Sign_{sk}(m): $\mathbf{k} \leftarrow \mathbb{Z}_{\mathbf{p}-1}, \mathbf{a} := \mathbf{g}^{\mathbf{k}} \mod \mathbf{p}, \mathbf{c} := \mathbf{H}(\mathbf{a}, \mathbf{m}),$ $r := k - c \cdot w \mod p - 1$. Output $\sigma := (a, c, r)$. Vrfy_{nk} (m, σ): Output 1, iff $a = g^r \cdot pk^c \wedge H(a, m) = c$.

Modification

Sign_{sk} (m): just outputs (c,r) Vrfy_{pk} (m, σ): compute a = g^r · pk^c, output 1 iff H(a,m) = c.

Security of Fiat-Shamir heuristic

- Definition 6.3 A three round protocol Σ_R for relation R is called smooth if for all $K \in \mathbb{N}, (x, w) \in R, |x| = K, a \in A_K$ we have $\Pr_{k \leftarrow \{0,1\}^{L(K)}} \left[a = \alpha(x, w; k) \right] \le 2^{-K/2}.$
- Theorem 6.4 If relation R is smooth, IG is hard for R, and Σ_R is a Σ protocol for R, then signature scheme Υ from Construction 6.2 is existentially unforgeable under chosen message attacks, provided thefunctions H_K are modelled as random oracles.

Outline of proof

- will us a proof technique similar to the one used for the proof of Theorem 3.12
- this time use forger to construct two forgeries from which, using the extractor, one can construct witnesses
- but forgeries must be on the same message and having the same a in order to apply extractor for \sum_{R} to obtain witnesses
- how to do this not obvious since there is additional randomness due to the hash functions H
- first show the result for adversaries A without access to signing racle

Restrictions and extensions for A

- assume that on input pk of length K, adversaries makes exactly q = q(K)queries
- assume that A does not repeat queries
- extend A's original output $(m,\sigma) = (m,a,c,r)$ to (m,σ,J) with $0 \le J \le q$, where
 - $J = \begin{cases} 0 & \text{if } (m, \sigma) \text{ is not a valid forgery or A never queried for} \\ & H(a, m) \\ & \text{i } & \text{if A's i-th query is for } H(a, m) \end{cases}$

From forger A to witness finder A⁺

A on input 1^{K} and x = pk, |x| = K

1.
$$\mathbf{R} \leftarrow \left\{\mathbf{0},\mathbf{1}\right\}^{L(K)}, \mathbf{h} = \left(\mathbf{h}_{1,}\dots,\mathbf{h}_{q}\right) \leftarrow \mathbf{C}_{K}^{q}$$

- 2. Simulate A with randomness R and H_{κ} realized by h. Let (m, σ ,I) be A's extended output.
- 3. If I = 0, output \perp and abort.
- **4.** $(\mathbf{h}'_{I_1},\ldots,\mathbf{h}'_q) \leftarrow \mathbf{C}^{q-l+1}_{K}$
- 5. Simulate A with randomness R and H realized by $h' = (h_1, ..., h_{I_1}, h'_{I_1}, ..., h'_{q})$. Let (m', σ', I') be A's extended output.
- 6. If I = I', run extractor E for Σ_R with input σ , σ' . Output whatever E outputs.

Two simple lemmata

Lemma 6.5 Let Y be a discrte random variable. Then $E[X^2] \ge E[X]^2$.

Lemma 6.6 Let $\mathbf{x}_1, \dots, \mathbf{x}_q \in \mathbb{R}$. Then $\sum_{i=1}^q \mathbf{x}_i^2 \ge \frac{1}{q} \left(\sum_{i=1}^q \mathbf{x}_i \right)^2$.

Answering queries to Sign

- On query m to $\operatorname{Sig}_{sk}(\cdot)$:
 - 1. if query is the i-th (overall) query, use the simulator for Σ_R to obtain $\sigma = (a,c,r)$
 - 2. if H(a,m) was among the first i 1 queries, then abort
 - 3. else, set $H(a,m) = h_i$ and output $Sign_{sk}(m) = \sigma = ()$