VII. Group signatures

- group signatures allow group members to sign messages on behalf of the group
- signatures of different group members are indistinguishable
- hence, group signatures provide anonymity
- however, a group member can lift anonymity
- group signatures are unforgeable in a strong sense

Syntax of group signatures

Definition 7.1 A group signature scheme Γ is a 4-tuple of probabilistic polynomial time algorithms (ppts) (Gen, Sign, Vrfy, Open), where

- 1. Gen $(1, {}^{\kappa}1^{l})$ outputs an (l+2)-tuple $(pk, sk_0, sk_1, ..., sk_l)$ with with $|pk|, |sk_i| \ge K$. pk: group public key, sk_0 : group manager secret, $sk_i, i \ge 1$, group members' secret keys
- 2. Sign takes as input a secret key sk_i , $i \ge 1$, and a message $m \in \{0,1\}^*$ and outputs a signature $\sigma, \sigma \leftarrow Sign_{sk_i}(m)$.
- 3. Vrfy takes as input a public key pk, a message $m \in \{0,1\}^*$, and a signature σ . It ouputs $b \in \{0,1\}$.
- 4 Open takes as input message m, signature σ , public key pk. and group manager's secret key sk₀, and outputs i $\in \{1, ..., I\}$ or \perp .

Correctness of group signatures

Correctness

Group signature scheme Γ (Gen, Sign, Vrfy, Open) is correct if $\forall K, I \in N, (pk, sk_0, ..., sk_i) \leftarrow Gen(1^{\kappa}, 1^i), m \in \{0, 1\}^*, 1 \le i \le I$:

- 1. $Vrfy_{pk}(m, Sign_{sk_i}(m)) = 1$,
- 2. $\operatorname{Open}_{sk_0}(m, \operatorname{Sign}_{sk_i}(m)) = i.$

Security requirements

- many security concepts and requirements have been formulated
- all implied by the following two
 - full anonymity
 - full traceability
- implied by these are
 - unforgeability
 - linkability
 - exculpability
 - linkability

. . .

Full anonymity and traceability

full anonymity except the group manager, nobody can decide which group member created a signature

full traceability no subset S of group members, including possibly the group manager, can create signatures that cannot be traced or cannot be trace to a member of S

Formal definition of full anonymity

Anonymity game GS-anonym^A_{A, Γ} (K,I) 1. Run Gen(1^K,1^I) to obtain (pk,sk₀,...,sk₁).

- 2. A gets as input 1^{κ} and $(pk, sk_1, ..., sk_1)$ and oracle access to $Open_{sk_0}(\cdot)$. A outputs $i_0, i_1 \in \{1, ..., I\}, m \in \{0, 1\}^*$.
- 3. $b \leftarrow \{0,1\}, \sigma \leftarrow \text{Sign}_{i_b}(m).$
- 4. A is given additional input σ . A still has oracle access to $Open_{sk_0}(\cdot)$, but is not allowed to query (m, σ) . A outputs bit b'.
- 3. Output of experiment is 1, if and only b = b'.

Write GS-anonym_{A, Γ} (K,I) = 1, if output is 1. Say A succeeds.

Formal definition of full anonymity

Definition 7.1 Group signature scheme Γ is fully anonymous, if for every ppt A there is a negligible function $\mu(\cdot, \cdot)$ such that

$$Pr[GS-anonym_{A,\Gamma}(K,I) = 1] - \frac{1}{2} = \mu(K,I).$$

Definition 7.2 A function $\mu : \mathbb{N} \times \mathbb{N} \to \mathbb{R}^+$ is negligible, if for every $c \in \mathbb{N}$ the function $\mu_c : \mathbb{N} \to \mathbb{R}^+, \mu_c(K) = \mu(K, K^c)$ is negligible.

Similar formalization for full traceability, but much more involved.

Three round protocols for relation R

- present construction of group signatures based on
 - ∑- protocols
 - Fiat-Shamir heuristic
 - Elgamal encryption scheme
- scheme does not quite achieve full anonymity, but close
- has many features common to several constructions of group signature schemes

Ingredients - Elgamal

Elgamal is cpa-secure, but not cca-secure.

A \sum - protocol \sum_{Elg} for Elgamal

Relation R_{Elg}

- G cyclic, |G| = p, p prime, g,h \in G, relation on $G^2 \times \mathbb{Z}_p^2$

$$- \mathsf{R}_{Elg}(\mathsf{x}_{1},\mathsf{x}_{2},\mathsf{w}_{1},\mathsf{w}_{2}) = 1 : \Leftrightarrow \mathsf{x}_{1} = \mathsf{g}^{\mathsf{w}_{1}},\mathsf{x}_{2} = \mathsf{h}^{\mathsf{w}_{1}}\mathsf{g}^{\mathsf{w}_{2}}.$$

A \sum - protocol \sum_{EQ} for equality of exponents

Relation R_{EQ}

- G cyclic, |G| = p, p prime, g,h \in G, relation on $G^2 \times \mathbb{Z}_p$

$$- \mathsf{R}_{\mathsf{Elg}}(\mathsf{x}_1,\mathsf{x}_2,\mathsf{w}) = 1 : \Leftrightarrow \mathsf{x}_1 = \mathsf{g}^\mathsf{w}, \mathsf{x}_2 = \mathsf{h}^\mathsf{w}.$$

Conjunction and disjunction of relations $R_i \subseteq \{0,1\}^* \times \{0,1\}^*, i = 1,2$

$$\mathbf{R}_{1} \wedge \mathbf{R}_{2} \subseteq \left(\left\{\mathbf{0},\mathbf{1}\right\}^{*} \times \left\{\mathbf{0},\mathbf{1}\right\}^{*}\right) \times \left(\left\{\mathbf{0},\mathbf{1}\right\}^{*} \times \left\{\mathbf{0},\mathbf{1}\right\}^{*}\right)$$
$$\left(\mathbf{X}_{1},\mathbf{X}_{2},\mathbf{W}_{1},\mathbf{W}_{2}\right) \in \mathbf{R}_{1} \wedge \mathbf{R}_{2} : \Leftrightarrow \left(\mathbf{X}_{1},\mathbf{W}_{1}\right) \in \mathbf{R}_{1} \wedge \left(\mathbf{X}_{2},\mathbf{W}_{2}\right) \in \mathbf{R}_{2}$$

$$\mathbf{R}_{1} \lor \mathbf{R}_{2} \subseteq \left(\left\{\mathbf{0},\mathbf{1}\right\}^{*} \times \left\{\mathbf{0},\mathbf{1}\right\}^{*}\right) \times \left(\left\{\mathbf{0},\mathbf{1}\right\}^{*} \times \left\{\mathbf{0},\mathbf{1}\right\}^{*}\right)$$
$$\left(\mathbf{X}_{1},\mathbf{X}_{2},\mathbf{W}_{1},\mathbf{W}_{2}\right) \in \mathbf{R}_{1} \lor \mathbf{R}_{2} : \Leftrightarrow \left(\mathbf{X}_{1},\mathbf{W}_{1}\right) \in \mathbf{R}_{1} \lor \left(\mathbf{X}_{2},\mathbf{W}_{2}\right) \in \mathbf{R}_{2}$$

Theorem 7.4 If there exist Σ - protocols for relations R_1, R_2 , then Σ - protocols $\Sigma_{R_1 \wedge R_2}$ and $\Sigma_{R_1 \vee R_2}$ for relations $R_1 \wedge R_2$ and $R_1 \vee R_2$ exist as well.

A ∑- protocol for existence of 1-out-l expoment

Relation R_{OR.}

- G cyclic, |G| = p, p prime, $g \in G$, relation on $G^{I} \times \mathbb{Z}_{p}$

$$- \mathsf{R}_{\mathsf{Elg}}(\mathsf{x}_1,\ldots,\mathsf{x}_{\mathsf{I}},\mathsf{w}) = 1 : \Leftrightarrow \exists \mathsf{i} \in \{1,\ldots,\mathsf{I}\} : \mathsf{x}_{\mathsf{i}} = \mathsf{g}^{\mathsf{w}}.$$

Theorem 7.5 For every I there is a Σ **- protocol for relation R**_{OR}.

A dlog-based group signature scheme

Construction 7.6 Let H₁, H₂ be appropriate hash functions to be used in $\boldsymbol{\Sigma}_{_{\text{EQ}}}\text{-}$ signatures and in $\boldsymbol{\Sigma}_{_{\text{Elg}\wedge\text{OR}_{}}}\text{-}$ signatures. Then group signature scheme $\Gamma = (Gen, Sign, Vrfy, Open)$ is defined by Gen $(1^{\kappa}, 1^{\prime})$: compute cyclic group G, $|G| = p, p \ge 2^{\kappa}$ prime, $\mathbf{g} \in \mathbf{G}, \mathbf{sk}_{i} \leftarrow \mathbb{Z}_{p}, \mathbf{pk}_{i} = \mathbf{g}^{\mathbf{sk}_{i}}, \mathbf{i} = \mathbf{0}, \dots, \mathbf{l}, \mathbf{pk} = (\mathbf{pk}_{n}, \dots, \mathbf{pk}_{l})$ $\mathbf{u} \leftarrow \mathbb{Z}_{\mathbf{n}}, \mathbf{A} := \mathbf{g}^{\mathsf{u}}, \mathbf{B} := \mathbf{p}\mathbf{k}_{\mathbf{n}}^{\mathsf{u}} \cdot \mathbf{p}\mathbf{k}_{\mathbf{i}} = \mathbf{p}\mathbf{k}_{\mathbf{n}}^{\mathsf{u}} \cdot \mathbf{g}^{\mathsf{s}\mathbf{k}_{\mathbf{i}}},$ Sign_{sk} (m): $C \leftarrow \Sigma_{Elg \land OR}$ - signature on m with secret key (u, sk_i) , output $\sigma = (A, B, C)$ Vrfy_{nk} (m, σ) : Output 1, if C is a valid $\Sigma_{Elg \land OR}$ - signature on m for public key (A,B,pk). $Open_{sk_{a}}(m,\sigma)$ decrypt (A,B) to some h_i , set D:=B h_i^{-1} , $\overline{\sigma} \leftarrow \Sigma_{_{\mathsf{FO}}}$ - signature on some message with secret key sk, (and public key (pk, D)), output (h,,D,ō) 14

Properties of Construction 7.6

- Zero-knowledge property of ∑- protocols guarantees that Construction 7.6 achieves full anonymity if adversaries do not get access to Open oracle
- to achieve full anonymity one has to replace Elgamal with a cca-secure encryption scheme
- but then need replacement for \sum_{Elg}
- Construction 7.6 is fully traceable due to the properties of ∑- protocols