Cryptographic Protocols

SS 2017

Handout 3

Exercises marked (*) will be checked by tutors.
We encourage submissions of solutions by small groups of up to four students.

Exercise 1:

Consider the Guillous-Quisquater (GQ) identification protocol which is based on RSA.
System parameters: Choose RSA parameters $N:=p \cdot q$ and some $e \in \mathbb{Z}_{\phi(N)}^{*}$. The parameters (N, e) are published to all participants.
User parameters: User A chooses a private $x_{A} \leftarrow \mathbb{Z}_{N}^{*}$. Her public key is $X_{A}:=x_{A}^{e} \bmod N$. Protocol: To prove the identity to B, the user A runs the following protocol:

$\frac{A\left(N, e, x_{A}\right)}{}$		$\underline{B\left(N, e, X_{A}\right)}$
choose $r \leftarrow \mathbb{Z}_{N}^{*}$ compute $R:=r^{e} \bmod N$	\xrightarrow{R}	
compute $y:=r \cdot x_{A}^{f} \bmod N$	$\stackrel{f}{\leftarrow}$	choose $f \leftarrow \mathbb{Z}_{e}$
	\xrightarrow{y}	compute $Y:=y^{e} \bmod N$ accepts iff $Y=R \cdot X_{A}^{f} \bmod N$

Show that the GQ-protocol from the previous exercise is a Σ-protocol for some relation P :
a) Give the relation P.
b) Correctness: Prove the protocol's completeness for P.
c) Special soundness: Present an extractor that, given two transcripts $(R, f, y),\left(R, f^{\prime}, y^{\prime}\right)$ with $f \neq f^{\prime}$ computes x_{a}.
d) SHV-ZK: Present a simulator that generates transcripts of protocol executions for given public keys (N, e, X_{A}) and challenge f. Prove that the simulated transcripts are indistinguishable from transcripts of real protocol executions.

Exercise 2 (4 points):

Consider the GQ-protocol from the previous exercise. Show that some party C can successfully impersonate A if she knows B 's challenge f before the protocol starts.
Note that this implies the existence of a $1 / e$-forger which guesses f and successfully impersonates A if the guess was correct.

Exercise 3 (4 points):
$\left(^{*}\right)$ Consider the Fiat-Shamir identification protocol modified as follows.
System parameters: Choose RSA modulus $N:=p \cdot q . N$ is published to all participants. User parameters: User A chooses a private $s_{A} \leftarrow \mathbb{Z}_{N}^{*}$. Her public key is $v_{A}:=s_{A}^{2} \bmod N$. Protocol: To prove the identity to B, the user A runs the following protocol:

```
\(\underline{A\left(N, s_{A}\right)}\)
\(\underline{B\left(N, v_{A}\right)}\)
choose \(r \leftarrow \mathbb{Z}_{N}^{*}\),
    compute \(r_{1}:=r^{2} \quad \bmod N\)
    and \(r_{2}:=25 \cdot r^{2} \bmod N\)
        \(\xrightarrow{r_{1}, r_{2}}\)
        choose \(b_{1}, b_{2} \leftarrow\{0,1\}\)
    compute \(t_{1}:=r \cdot s_{A}^{b_{1}} \quad \bmod N\)
    and \(t_{2}:=5 \cdot r \cdot s_{A}^{b_{2}} \quad \bmod N\)
        \(\xrightarrow{t_{1}, t_{2}}\)
        accepts iff \(t_{1}^{2}=r_{1} \cdot v_{A}^{b_{1}} \quad \bmod N\)
        and \(t_{2}^{2}=r_{2} \cdot v_{A}^{b_{2}} \quad \bmod N\)
```

Show that:
a) Correctness: If both A and B are honest, B will accept A 's identity.
b) After running this protocol B can compute the secret key of A efficiently if B chooses the bits b_{1}, b_{2} appropriately.

Exercise 4 (4 points):
$\left.{ }^{*}\right)$ Consider the stateful signature scheme presented on Slide 3 of the respective slide set. Prove the scheme's existential unforgeability under chosen-message attacks:
a) Provide an appropriately modified definition of security against existential unforgeability under chosen-message attacks.
b) Prove the signature scheme's security in the security model from (a) based on the security of the underlying one-time signature scheme.

Hint: Consult a book on Part (a).

